label_printer/faxmachine/xkbcommon/xkbcommon.go

617 lines
21 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// xkbcommon contains Go bindings for the libxkbcommon C library. All the doc
// comments here are 1-to-1 copies of the C doc comments, and may refer to
// C-specific behavior that is abstracted away by the bindings.
package xkbcommon
import (
"errors"
"unsafe"
)
/*
#cgo pkg-config: xkbcommon
#include <stdlib.h>
#include <xkbcommon/xkbcommon.h>
*/
import "C"
// @struct xkb_context
// Opaque top level library context object.
//
// The context contains various general library data and state, like
// logging level and include paths.
//
// Objects are created in a specific context, and multiple contexts may
// coexist simultaneously. Objects from different contexts are completely
// separated and do not share any memory or state.
type Context C.struct_xkb_context
func (c *Context) value() *C.struct_xkb_context {
return (*C.struct_xkb_context)(c)
}
// Opaque compiled keymap object.
//
// The keymap object holds all of the static keyboard information obtained
// from compiling XKB files.
//
// A keymap is immutable after it is created (besides reference counts, etc.);
// if you need to change it, you must create a new one.
type Keymap C.struct_xkb_keymap
func (k *Keymap) value() *C.struct_xkb_keymap {
return (*C.struct_xkb_keymap)(k)
}
// @struct xkb_state
// Opaque keyboard state object.
//
// State objects contain the active state of a keyboard (or keyboards), such
// as the currently effective layout and the active modifiers. It acts as a
// simple state machine, wherein key presses and releases are the input, and
// key symbols (keysyms) are the output.
type State C.struct_xkb_state
func (s *State) value() *C.struct_xkb_state {
return (*C.struct_xkb_state)(s)
}
// A number used to represent a physical key on a keyboard.
//
// A standard PC-compatible keyboard might have 102 keys. An appropriate
// keymap would assign each of them a keycode, by which the user should
// refer to the key throughout the library.
//
// Historically, the X11 protocol, and consequentially the XKB protocol,
// assign only 8 bits for keycodes. This limits the number of different
// keys that can be used simultaneously in a single keymap to 256
// (disregarding other limitations). This library does not share this limit;
// keycodes beyond 255 ('extended keycodes') are not treated specially.
// Keymaps and applications which are compatible with X11 should not use
// these keycodes.
//
// The values of specific keycodes are determined by the keymap and the
// underlying input system. For example, with an X11-compatible keymap
// and Linux evdev scan codes (see linux/input.h), a fixed offset is used:
//
// The keymap defines a canonical name for each key, plus possible aliases.
// Historically, the XKB protocol restricts these names to at most 4 (ASCII)
// characters, but this library does not share this limit.
//
// @code
// xkb_keycode_t keycode_A = KEY_A + 8;
// @endcode
//
// @sa xkb_keycode_is_legal_ext() xkb_keycode_is_legal_x11()
type Keycode C.xkb_keycode_t
// A number used to represent the symbols generated from a key on a keyboard.
//
// A key, represented by a keycode, may generate different symbols according
// to keyboard state. For example, on a QWERTY keyboard, pressing the key
// labled \<A\> generates the symbol a. If the Shift key is held, it
// generates the symbol A. If a different layout is used, say Greek,
// it generates the symbol α. And so on.
//
// Each such symbol is represented by a *keysym* (short for “key symbol”).
// Note that keysyms are somewhat more general, in that they can also represent
// some “function”, such as “Left” or “Right” for the arrow keys. For more
// information, see: Appendix A [“KEYSYM Encoding”][encoding] of the X Window
// System Protocol.
//
// Specifically named keysyms can be found in the
// xkbcommon/xkbcommon-keysyms.h header file. Their name does not include
// the `XKB_KEY_` prefix.
//
// Besides those, any Unicode/ISO&nbsp;10646 character in the range U+0100 to
// U+10FFFF can be represented by a keysym value in the range 0x01000100 to
// 0x0110FFFF. The name of Unicode keysyms is `U<codepoint>`, e.g. `UA1B2`.
//
// The name of other unnamed keysyms is the hexadecimal representation of
// their value, e.g. `0xabcd1234`.
//
// Keysym names are case-sensitive.
//
// @note **Encoding:** Keysyms are 32-bit integers with the 3 most significant
// bits always set to zero. See: Appendix A [“KEYSYM Encoding”][encoding] of
// the X Window System Protocol.
//
// @ingroup keysyms
// @sa XKB_KEYSYM_MAX
//
// [encoding]: https://www.x.org/releases/current/doc/xproto/x11protocol.html#keysym_encoding
type Keysym C.xkb_keysym_t
// Index of a modifier.
//
// A @e modifier is a state component which changes the way keys are
// interpreted. A keymap defines a set of modifiers, such as Alt, Shift,
// Num Lock or Meta, and specifies which keys may @e activate which
// modifiers (in a many-to-many relationship, i.e. a key can activate
// several modifiers, and a modifier may be activated by several keys.
// Different keymaps do this differently).
//
// When retrieving the keysyms for a key, the active modifier set is
// consulted; this detemines the correct shift level to use within the
// currently active layout (see xkb_level_index_t).
//
// Modifier indices are consecutive. The first modifier has index 0.
//
// Each modifier must have a name, and the names are unique. Therefore, it
// is safe to use the name as a unique identifier for a modifier. The names
// of some common modifiers are provided in the xkbcommon/xkbcommon-names.h
// header file. Modifier names are case-sensitive.
//
// @sa xkb_keymap_num_mods()
type ModIndex C.xkb_mod_index_t
// A mask of modifier indices.
type ModMask C.xkb_mod_mask_t
var ModInvalid ModIndex = C.XKB_MOD_INVALID
// Names to compile a keymap with, also known as RMLVO.
//
// The names are the common configuration values by which a user picks
// a keymap.
//
// If the entire struct is NULL, then each field is taken to be NULL.
// You should prefer passing NULL instead of choosing your own defaults.
type RuleNames struct {
// The rules file to use. The rules file describes how to interpret
// the values of the model, layout, variant and options fields.
//
// If NULL or the empty string "", a default value is used.
// If the XKB_DEFAULT_RULES environment variable is set, it is used
// as the default. Otherwise the system default is used.
Rules string
// The keyboard model by which to interpret keycodes and LEDs.
//
// If NULL or the empty string "", a default value is used.
// If the XKB_DEFAULT_MODEL environment variable is set, it is used
// as the default. Otherwise the system default is used.
Model string
// A comma separated list of layouts (languages) to include in the
// keymap.
//
// If NULL or the empty string "", a default value is used.
// If the XKB_DEFAULT_LAYOUT environment variable is set, it is used
// as the default. Otherwise the system default is used.
Layout string
// A comma separated list of variants, one per layout, which may
// modify or augment the respective layout in various ways.
//
// Generally, should either be empty or have the same number of values
// as the number of layouts. You may use empty values as in "intl,,neo".
//
// If NULL or the empty string "", and a default value is also used
// for the layout, a default value is used. Otherwise no variant is
// used.
// If the XKB_DEFAULT_VARIANT environment variable is set, it is used
// as the default. Otherwise the system default is used.
Variant string
// A comma separated list of options, through which the user specifies
// non-layout related preferences, like which key combinations are used
// for switching layouts, or which key is the Compose key.
//
// If NULL, a default value is used. If the empty string "", no
// options are used.
// If the XKB_DEFAULT_OPTIONS environment variable is set, it is used
// as the default. Otherwise the system default is used.
Options string
}
func (rn *RuleNames) value() *C.struct_xkb_rule_names {
if rn == nil {
return nil
}
var cStruct C.struct_xkb_rule_names
if rn.Rules != "" {
cStruct.rules = C.CString(rn.Rules)
}
if rn.Model != "" {
cStruct.model = C.CString(rn.Model)
}
if rn.Layout != "" {
cStruct.layout = C.CString(rn.Layout)
}
if rn.Variant != "" {
cStruct.variant = C.CString(rn.Variant)
}
if rn.Options != "" {
cStruct.options = C.CString(rn.Options)
}
return &cStruct
}
func (rn *RuleNames) free(cStruct *C.struct_xkb_rule_names) {
if cStruct != nil {
C.free(unsafe.Pointer(cStruct.rules))
C.free(unsafe.Pointer(cStruct.model))
C.free(unsafe.Pointer(cStruct.layout))
C.free(unsafe.Pointer(cStruct.variant))
C.free(unsafe.Pointer(cStruct.options))
}
}
// Get the name of a keysym.
//
// For a description of how keysyms are named, see @ref xkb_keysym_t.
//
// @param[in] keysym The keysym.
// @param[out] buffer A string buffer to write the name into.
// @param[in] size Size of the buffer.
//
// @warning If the buffer passed is too small, the string is truncated
// (though still NUL-terminated); a size of at least 64 bytes is recommended.
//
// @returns The number of bytes in the name, excluding the NUL byte. If
// the keysym is invalid, returns -1.
//
// You may check if truncation has occurred by comparing the return value
// with the length of buffer, similarly to the snprintf(3) function.
//
// @sa xkb_keysym_t
func (k Keysym) Name() (string, bool) {
size := C.xkb_keysym_get_name(C.xkb_keysym_t(k), nil, 0)
if size < 0 {
return "", false
}
buffer := (*C.char)(C.malloc(C.size_t(size + 1)))
defer C.free((unsafe.Pointer)(buffer))
C.xkb_keysym_get_name(C.xkb_keysym_t(k), buffer, C.size_t(size+1))
return C.GoString(buffer), true
}
// Flags for context creation.
type ContextFlags C.enum_xkb_context_flags
var (
// Do not apply any context flags.
ContextNoFlags ContextFlags = C.XKB_CONTEXT_NO_FLAGS
// Create this context with an empty include path.
ContextNoDefaultIncludes ContextFlags = C.XKB_CONTEXT_NO_DEFAULT_INCLUDES
// Don't take RMLVO names from the environment
//
// @since 0.3.0
ContextNoEnvironmentNames ContextFlags = C.XKB_CONTEXT_NO_ENVIRONMENT_NAMES
// Disable the use of secure_getenv for this context, so that privileged
// processes can use environment variables. Client uses at their own risk.
//
// @since 1.5.0
ContextNoSecureGetenv ContextFlags = C.XKB_CONTEXT_NO_SECURE_GETENV
)
// Create a new context.
//
// @param flags Optional flags for the context, or 0.
//
// @returns A new context, or NULL on failure.
//
// @memberof xkb_context
func NewContext(flags ContextFlags) (*Context, error) {
ctx := C.xkb_context_new(C.enum_xkb_context_flags(flags))
if ctx == nil {
return nil, errors.New("failed to create context")
}
return (*Context)(ctx), nil
}
// Release a reference on a context, and possibly free it.
//
// @param context The context. If it is NULL, this function does nothing.
//
// @memberof xkb_context
func (c *Context) Unref() {
C.xkb_context_unref(c.value())
}
// Flags for keymap compilation.
type KeymapCompileFlags C.enum_xkb_keymap_compile_flags
var (
// Do not apply any flags.
KeymapCompileFlagsNoFlags KeymapCompileFlags = C.XKB_KEYMAP_COMPILE_NO_FLAGS
)
// Create a keymap from RMLVO names.
//
// The primary keymap entry point: creates a new XKB keymap from a set of
// RMLVO (Rules + Model + Layouts + Variants + Options) names.
//
// @param context The context in which to create the keymap.
// @param names The RMLVO names to use. See xkb_rule_names.
// @param flags Optional flags for the keymap, or 0.
//
// @returns A keymap compiled according to the RMLVO names, or NULL if
// the compilation failed.
//
// @sa xkb_rule_names
// @memberof xkb_keymap
func NewKeymapFromNames(ctx *Context, names *RuleNames,
flags KeymapCompileFlags) (*Keymap, error) {
cNames := names.value()
defer names.free(cNames)
keymap := C.xkb_keymap_new_from_names(ctx.value(), cNames,
C.enum_xkb_keymap_compile_flags(flags))
if keymap == nil {
return nil, errors.New("failed to create keymap")
}
return (*Keymap)(keymap), nil
}
// Release a reference on a keymap, and possibly free it.
//
// @param keymap The keymap. If it is NULL, this function does nothing.
//
// @memberof xkb_keymap
func (k *Keymap) Unref() {
C.xkb_keymap_unref(k.value())
}
// Get the index of a modifier by name.
//
// @returns The index. If no modifier with this name exists, returns
// XKB_MOD_INVALID.
//
// @sa xkb_mod_index_t
// @memberof xkb_keymap
func (k *Keymap) ModGetIndex(name string) ModIndex {
cName := C.CString(name)
defer C.free(unsafe.Pointer(cName))
return ModIndex(C.xkb_keymap_mod_get_index(k.value(), cName))
}
// Create a new keyboard state object.
//
// @param keymap The keymap which the state will use.
//
// @returns A new keyboard state object, or NULL on failure.
//
// @memberof xkb_state
func NewState(keymap *Keymap) (*State, error) {
state := C.xkb_state_new(keymap.value())
if state == nil {
return nil, errors.New("failed to create state")
}
return (*State)(state), nil
}
func (s *State) Unref() {
C.xkb_state_unref(s.value())
}
// Specifies the direction of the key (press / release).
type KeyDirection C.enum_xkb_key_direction
var (
// The key was released.
KeyUp KeyDirection = C.XKB_KEY_UP
// The key was pressed.
KeyDown KeyDirection = C.XKB_KEY_DOWN
)
// Modifier and layout types for state objects. This enum is bitmaskable,
// e.g. (XKB_STATE_MODS_DEPRESSED | XKB_STATE_MODS_LATCHED) is valid to
// exclude locked modifiers.
//
// In XKB, the DEPRESSED components are also known as 'base'.
type StateComponent C.enum_xkb_state_component
var (
// Depressed modifiers, i.e. a key is physically holding them.
StateModsDepressed StateComponent = C.XKB_STATE_MODS_DEPRESSED
// Latched modifiers, i.e. will be unset after the next non-modifier
// key press.
StateModsLatched StateComponent = C.XKB_STATE_MODS_LATCHED
// Locked modifiers, i.e. will be unset after the key provoking the
// lock has been pressed again.
StateModsLocked StateComponent = C.XKB_STATE_MODS_LOCKED
// Effective modifiers, i.e. currently active and affect key
// processing (derived from the other state components).
// Use this unless you explicitly care how the state came about.
StateModsEffective StateComponent = C.XKB_STATE_MODS_EFFECTIVE
// Depressed layout, i.e. a key is physically holding it.
StateLayoutDepressed StateComponent = C.XKB_STATE_LAYOUT_DEPRESSED
// Latched layout, i.e. will be unset after the next non-modifier
// key press.
StateLayoutLatched StateComponent = C.XKB_STATE_LAYOUT_LATCHED
// Locked layout, i.e. will be unset after the key provoking the lock
// has been pressed again.
StateLayoutLocked StateComponent = C.XKB_STATE_LAYOUT_LOCKED
// Effective layout, i.e. currently active and affects key processing
// (derived from the other state components).
// Use this unless you explicitly care how the state came about.
StateLayoutEffective StateComponent = C.XKB_STATE_LAYOUT_EFFECTIVE
// LEDs (derived from the other state components).
STATE_LEDS StateComponent = C.XKB_STATE_LEDS
)
// Update the keyboard state to reflect a given key being pressed or
// released.
//
// This entry point is intended for *server* applications and should not be used
// by *client* applications; see @ref server-client-state for details.
//
// A series of calls to this function should be consistent; that is, a call
// with XKB_KEY_DOWN for a key should be matched by an XKB_KEY_UP; if a key
// is pressed twice, it should be released twice; etc. Otherwise (e.g. due
// to missed input events), situations like "stuck modifiers" may occur.
//
// This function is often used in conjunction with the function
// xkb_state_key_get_syms() (or xkb_state_key_get_one_sym()), for example,
// when handling a key event. In this case, you should prefer to get the
// keysyms *before* updating the key, such that the keysyms reported for
// the key event are not affected by the event itself. This is the
// conventional behavior.
//
// @returns A mask of state components that have changed as a result of
// the update. If nothing in the state has changed, returns 0.
//
// @memberof xkb_state
//
// @sa xkb_state_update_mask()
func (s *State) UpdateKey(key Keycode, direction KeyDirection) StateComponent {
stateComponent := C.xkb_state_update_key(s.value(), C.xkb_keycode_t(key),
C.enum_xkb_key_direction(direction))
return StateComponent(stateComponent)
}
// Get the Unicode/UTF-8 string obtained from pressing a particular key
// in a given keyboard state.
//
// @param[in] state The keyboard state object.
// @param[in] key The keycode of the key.
// @param[out] buffer A buffer to write the string into.
// @param[in] size Size of the buffer.
//
// @warning If the buffer passed is too small, the string is truncated
// (though still NUL-terminated).
//
// @returns The number of bytes required for the string, excluding the
// NUL byte. If there is nothing to write, returns 0.
//
// You may check if truncation has occurred by comparing the return value
// with the size of @p buffer, similarly to the snprintf(3) function.
// You may safely pass NULL and 0 to @p buffer and @p size to find the
// required size (without the NUL-byte).
//
// This function performs Capitalization and Control @ref
// keysym-transformations.
//
// @memberof xkb_state
// @since 0.4.1
func (s *State) KeyGetUtf8(key Keycode) string {
size := C.xkb_state_key_get_utf8(s.value(), C.xkb_keycode_t(key), nil, 0)
if size == 0 {
return ""
}
buffer := (*C.char)(C.malloc(C.size_t(size + 1)))
defer C.free((unsafe.Pointer)(buffer))
C.xkb_state_key_get_utf8(s.value(), C.xkb_keycode_t(key), buffer, C.size_t(size+1))
return C.GoString(buffer)
}
// Get the single keysym obtained from pressing a particular key in a
// given keyboard state.
//
// This function is similar to xkb_state_key_get_syms(), but intended
// for users which cannot or do not want to handle the case where
// multiple keysyms are returned (in which case this function is
// preferred).
//
// @returns The keysym. If the key does not have exactly one keysym,
// returns XKB_KEY_NoSymbol
//
// This function performs Capitalization @ref keysym-transformations.
//
// @sa xkb_state_key_get_syms()
// @memberof xkb_state
func (s *State) GetOneSym(keycode Keycode) Keysym {
keysym := C.xkb_state_key_get_one_sym(s.value(), C.xkb_keycode_t(keycode))
return Keysym(keysym)
}
// The counterpart to xkb_state_update_mask for modifiers, to be used on
// the server side of serialization.
//
// This entry point is intended for *server* applications; see @ref
// server-client-state for details. *Client* applications should use the
// xkb_state_mod_*_is_active API.
//
// @param state The keyboard state.
// @param components A mask of the modifier state components to serialize.
// State components other than XKB_STATE_MODS_* are ignored.
// If XKB_STATE_MODS_EFFECTIVE is included, all other state components are
// ignored.
//
// @returns A xkb_mod_mask_t representing the given components of the
// modifier state.
//
// @memberof xkb_state
func (s *State) SerializeMods(components StateComponent) ModMask {
return ModMask(C.xkb_state_serialize_mods(s.value(), C.enum_xkb_state_component(components)))
}
// Consumed modifiers mode.
//
// There are several possible methods for deciding which modifiers are
// consumed and which are not, each applicable for different systems or
// situations. The mode selects the method to use.
//
// Keep in mind that in all methods, the keymap may decide to "preserve"
// a modifier, meaning it is not reported as consumed even if it would
// have otherwise.
type ConsumedMode C.enum_xkb_consumed_mode
var (
// This is the mode defined in the XKB specification and used by libX11.
//
// A modifier is consumed if and only if it *may affect* key translation.
//
// For example, if `Control+Alt+<Backspace>` produces some assigned keysym,
// then when pressing just `<Backspace>`, `Control` and `Alt` are consumed,
// even though they are not active, since if they *were* active they would
// have affected key translation.
ConsumedModeXKB ConsumedMode = C.XKB_CONSUMED_MODE_XKB
// This is the mode used by the GTK+ toolkit.
//
// The mode consists of the following two independent heuristics:
//
// - The currently active set of modifiers, excluding modifiers which do
// not affect the key (as described for @ref XKB_CONSUMED_MODE_XKB), are
// considered consumed, if the keysyms produced when all of them are
// active are different from the keysyms produced when no modifiers are
// active.
//
// - A single modifier is considered consumed if the keysyms produced for
// the key when it is the only active modifier are different from the
// keysyms produced when no modifiers are active.
ConsumedModeGTK ConsumedMode = C.XKB_CONSUMED_MODE_GTK
)
// Get the mask of modifiers consumed by translating a given key.
//
// @param state The keyboard state.
// @param key The keycode of the key.
// @param mode The consumed modifiers mode to use; see enum description.
//
// @returns a mask of the consumed modifiers.
//
// @memberof xkb_state
// @since 0.7.0
func (s *State) KeyGetConsumedMods2(key Keycode, mode ConsumedMode) ModMask {
return ModMask(C.xkb_state_key_get_consumed_mods2(s.value(),
C.xkb_keycode_t(key), C.enum_xkb_consumed_mode(mode)))
}
// Same as xkb_state_key_get_consumed_mods2() with mode XKB_CONSUMED_MODE_XKB.
//
// @memberof xkb_state
// @since 0.4.1
func (s *State) KeyGetConsumedMods(key Keycode) ModMask {
return ModMask(C.xkb_state_key_get_consumed_mods(s.value(), C.xkb_keycode_t(key)))
}