BOSL2/primitives.scad

279 lines
11 KiB
OpenSCAD
Raw Normal View History

2019-04-17 02:16:50 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: primitives.scad
// The basic built-in shapes, reworked to integrate better with
2019-04-19 06:45:46 +00:00
// other BOSL2 library shapes and utilities.
2019-04-17 02:16:50 +00:00
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
2019-04-17 02:16:50 +00:00
// ```
//////////////////////////////////////////////////////////////////////
2019-04-24 02:13:43 +00:00
// Section: 2D Primitives
// Function&Module: square()
2019-04-24 02:13:43 +00:00
// Usage:
// square(size, [center], [anchor])
// Description:
// When called as a module, creates a 2D square of the given size, with optional rounding or chamferring.
// When called as a function, returns a 2D path/list of points for a square/rectangle of the given size.
2019-04-24 02:13:43 +00:00
// Arguments:
// size = The size of the square to create. If given as a scalar, both X and Y will be the same size.
// rounding = The rounding radius for the corners. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
// chamfer = The chamfer size for the corners. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
2019-04-24 02:13:43 +00:00
// center = If given and true, overrides `anchor` to be `CENTER`. If given and false, overrides `anchor` to be `FRONT+LEFT`.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-04-24 10:33:22 +00:00
// Example(2D):
// square(40);
// Example(2D): Centered
// square([40,30], center=true);
// Example(2D): Anchored
2019-04-24 10:33:22 +00:00
// square([40,30], anchor=FRONT);
// Example(2D): Spun
2019-05-27 04:44:28 +00:00
// square([40,30], anchor=FRONT, spin=30);
// Example(2D): Chamferred Rect
2019-12-27 05:49:05 +00:00
// square([40,30], chamfer=5, center=true);
// Example(2D): Rounded Rect
2019-12-27 05:49:05 +00:00
// square([40,30], rounding=5, center=true);
// Example(2D): Mixed Chamferring and Rounding
// square([40,30],center=true,rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
// Example(2D): Called as Function
// path = square([40,30], chamfer=5, anchor=FRONT, spin=30);
// stroke(path, closed=true);
2019-12-27 21:37:22 +00:00
// place_copies(path) color("blue") circle(d=2,$fn=8);
module square(size=1, rounding=0, chamfer=0, center, anchor=FRONT+LEFT, spin=0) {
2019-04-24 02:13:43 +00:00
size = is_num(size)? [size,size] : point2d(size);
pts = square(size=size, rounding=rounding, center=false, chamfer=chamfer);
orient_and_anchor(point3d(size), UP, anchor, spin=spin, center=center, noncentered=FRONT+LEFT, two_d=true, chain=true) {
translate(-size/2) polygon(pts);
2019-04-24 02:13:43 +00:00
children();
}
}
function square(size=1, rounding=0, chamfer=0, center, anchor=FRONT+LEFT, spin=0) =
assert(is_num(chamfer) || len(chamfer)==4)
assert(is_num(rounding) || len(rounding)==4)
let(
chamfer = is_list(chamfer)? chamfer : [for (i=[0:3]) chamfer],
rounding = is_list(rounding)? rounding : [for (i=[0:3]) rounding],
2019-06-17 06:53:59 +00:00
anchor = center==true? CENTER : center==false? FRONT+LEFT : anchor,
size = is_num(size)? [size,size] : point2d(size),
quadorder = [3,2,1,0],
quadpos = [[1,1],[-1,1],[-1,-1],[1,-1]],
insets = [for (i=[0:3]) chamfer[i]>0? chamfer[i] : rounding[i]>0? rounding[i] : 0],
insets_x = max(insets[0]+insets[1],insets[2]+insets[3]),
insets_y = max(insets[0]+insets[3],insets[1]+insets[2])
)
assert(insets_x <= size.x, "Requested roundings and/or chamfers exceed the square width.")
assert(insets_y <= size.y, "Requested roundings and/or chamfers exceed the square height.")
let(
path = [
for(i = [0:3])
let(
quad = quadorder[i],
inset = insets[quad],
cverts = quant(segs(inset),4)/4,
cp = vmul(size/2-[inset,inset], quadpos[quad]),
step = 90/cverts,
angs =
chamfer[quad] > 0? [0,-90]-90*[i,i] :
rounding[quad] > 0? [for (j=[0:1:cverts]) 360-j*step-i*90] :
[0]
)
each [for (a = angs) cp + inset*[cos(a),sin(a)]]
]
) rot(spin, p=move(-vmul(anchor,size/2), p=path));
2019-04-24 02:13:43 +00:00
// Function&Module: circle()
2019-04-24 02:13:43 +00:00
// Usage:
// circle(r|d, [anchor])
// Description:
// When called as a module, creates a 2D polygon that approximates a circle of the given size.
// When called as a function, returns a 2D list of points (path) for a polygon that approximates a circle of the given size.
2019-04-24 02:13:43 +00:00
// Arguments:
// r = The radius of the circle to create.
// d = The diameter of the circle to create.
// realign = If true, rotates the polygon that approximates the circle by half of one size.
// circum = If true, the polygon that approximates the circle will be upsized slightly to circumscribe the theoretical circle. If false, it inscribes the theoretical circle. Default: false
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
2019-04-24 10:33:22 +00:00
// Example(2D): By Radius
// circle(r=25);
// Example(2D): By Diameter
// circle(d=50);
// Example(2D): Anchoring
// circle(d=50, anchor=FRONT);
2019-05-27 04:44:28 +00:00
// Example(2D): Spin
// circle(d=50, anchor=FRONT, spin=45);
// Example(NORENDER): Called as Function
// path = circle(d=50, anchor=FRONT, spin=45);
module circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) {
2019-04-24 02:13:43 +00:00
r = get_radius(r=r, d=d, dflt=1);
sides = segs(r);
rr = circum? r/cos(180/sides) : r;
pts = circle(r=rr, realign=realign, $fn=sides);
orient_and_anchor([2*rr,2*rr,0], UP, anchor, spin=spin, geometry="cylinder", two_d=true, chain=true) {
2019-04-24 02:13:43 +00:00
polygon(pts);
children();
}
}
function circle(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
let(
r = get_radius(r=r, d=d, dflt=1),
sides = segs(r),
offset = realign? 180/sides : 0,
rr = r / (circum? cos(180/sides) : 1),
pts = [for (i=[0:1:sides-1]) let(a=360-offset-i*360/sides) rr*[cos(a),sin(a)]]
) rot(spin, p=move(-normalize(anchor)*rr, p=pts));
2019-04-24 02:13:43 +00:00
// Section: Primitive 3D Shapes
2019-04-17 02:16:50 +00:00
// Module: cube()
//
// Description:
2019-04-23 03:55:03 +00:00
// Creates a cube object, with support for anchoring and attachments.
2019-04-17 02:16:50 +00:00
// This is a drop-in replacement for the built-in `cube()` module.
//
// Arguments:
// size = The size of the cube.
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=ALLNEG`.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-17 02:16:50 +00:00
//
// Example: Simple cube.
2019-04-17 02:16:50 +00:00
// cube(40);
// Example: Rectangular cube.
2019-05-27 04:44:28 +00:00
// cube([20,40,50]);
// Example: Anchoring.
// cube([20,40,50], anchor=BOTTOM+FRONT);
// Example: Spin.
// cube([20,40,50], anchor=BOTTOM+FRONT, spin=30);
// Example: Orientation.
// cube([20,40,50], anchor=BOTTOM+FRONT, spin=30, orient=FWD);
// Example: Standard Connectors.
2019-04-23 03:55:03 +00:00
// cube(40, center=true) show_anchors();
module cube(size=1, center, anchor=ALLNEG, spin=0, orient=UP)
2019-04-17 02:16:50 +00:00
{
size = scalar_vec3(size);
orient_and_anchor(size, orient, anchor, center, spin=spin, noncentered=ALLNEG, chain=true) {
2019-04-17 02:16:50 +00:00
linear_extrude(height=size.z, convexity=2, center=true) {
square([size.x, size.y], center=true);
}
children();
}
}
// Module: cylinder()
// Usage:
2019-05-26 20:45:22 +00:00
// cylinder(h, r|d, [center]);
// cylinder(h, r1/d1, r2/d2, [center]);
2019-04-17 02:16:50 +00:00
// Description:
2019-04-23 03:55:03 +00:00
// Creates a cylinder object, with support for anchoring and attachments.
2019-04-17 02:16:50 +00:00
// This is a drop-in replacement for the built-in `cylinder()` module.
// Arguments:
// l / h = The height of the cylinder.
// r1 = The bottom radius of the cylinder. (Before orientation.)
// r2 = The top radius of the cylinder. (Before orientation.)
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
2019-04-17 02:16:50 +00:00
// d1 = The bottom diameter of the cylinder. (Before orientation.)
// d2 = The top diameter of the cylinder. (Before orientation.)
// r = The radius of the cylinder.
// d = The diameter of the cylinder.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-04-17 02:16:50 +00:00
// Example: By Radius
// xdistribute(30) {
// cylinder(h=40, r=10);
// cylinder(h=40, r1=10, r2=5);
// }
// Example: By Diameter
// xdistribute(30) {
// cylinder(h=40, d=25);
// cylinder(h=40, d1=25, d2=10);
// }
2019-05-27 04:44:28 +00:00
// Example(Med): Anchoring
// cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT);
// Example(Med): Spin
// cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT, spin=45);
// Example(Med): Orient
// cylinder(h=40, r1=10, r2=5, anchor=BOTTOM+FRONT, spin=45, orient=FWD);
// Example(Big): Standard Connectors
// xdistribute(40) {
2019-04-23 03:55:03 +00:00
// cylinder(h=30, d=25) show_anchors();
// cylinder(h=30, d1=25, d2=10) show_anchors();
// }
module cylinder(h, r1, r2, center, l, r, d, d1, d2, anchor=BOTTOM, spin=0, orient=UP)
2019-04-17 02:16:50 +00:00
{
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=1);
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=1);
l = first_defined([h, l, 1]);
2019-06-20 06:33:33 +00:00
hh = l/2;
2019-04-17 02:16:50 +00:00
sides = segs(max(r1,r2));
size = [r1*2, r1*2, l];
2019-06-20 06:33:33 +00:00
path = [[0,hh],[r2,hh],[r1,-hh],[0,-hh]];
orient_and_anchor(size, orient, anchor, center, spin=spin, size2=[r2*2,r2*2], noncentered=BOTTOM, geometry="cylinder", chain=true) {
2019-06-12 04:47:48 +00:00
rotate_extrude(convexity=2, $fn=sides) {
2019-06-20 06:33:33 +00:00
polygon(path);
2019-04-17 02:16:50 +00:00
}
children();
}
}
// Module: sphere()
// Usage:
2019-05-26 20:45:22 +00:00
// sphere(r|d)
2019-04-17 02:16:50 +00:00
// Description:
2019-04-23 03:55:03 +00:00
// Creates a sphere object, with support for anchoring and attachments.
2019-04-17 02:16:50 +00:00
// This is a drop-in replacement for the built-in `sphere()` module.
// Arguments:
// r = Radius of the sphere.
// d = Diameter of the sphere.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: By Radius
// sphere(r=50);
// Example: By Diameter
// sphere(d=100);
2019-05-27 04:44:28 +00:00
// Example: Anchoring
// sphere(d=100, anchor=FRONT);
// Example: Spin
// sphere(d=100, anchor=FRONT, spin=45);
// Example: Orientation
// sphere(d=100, anchor=FRONT, spin=45, orient=FWD);
// Example: Standard Connectors
2019-04-23 03:55:03 +00:00
// sphere(d=50) show_anchors();
module sphere(r, d, anchor=CENTER, spin=0, orient=UP)
2019-04-17 02:16:50 +00:00
{
r = get_radius(r=r, d=d, dflt=1);
sides = segs(r);
size = [r*2, r*2, r*2];
orient_and_anchor(size, orient, anchor, spin=spin, geometry="sphere", chain=true) {
2019-04-17 02:16:50 +00:00
rotate_extrude(convexity=2) {
difference() {
circle(r=r, $fn=sides);
left(r+0.1) square(r*2+0.2, center=true);
}
}
children();
}
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap