mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-19 19:09:36 +00:00
253 lines
8.9 KiB
OpenSCAD
253 lines
8.9 KiB
OpenSCAD
|
include <../std.scad>
|
||
|
|
||
|
module test_qr_factor() {
|
||
|
// Check that R is upper triangular
|
||
|
function is_ut(R) =
|
||
|
let(bad = [for(i=[1:1:len(R)-1], j=[0:min(i-1, len(R[0])-1)]) if (!approx(R[i][j],0)) 1])
|
||
|
bad == [];
|
||
|
|
||
|
// Test the R is upper trianglar, Q is orthogonal and qr=M
|
||
|
function qrok(qr,M) =
|
||
|
is_ut(qr[1]) && approx(qr[0]*transpose(qr[0]), ident(len(qr[0]))) && approx(qr[0]*qr[1],M) && qr[2]==ident(len(qr[2]));
|
||
|
|
||
|
// Test the R is upper trianglar, Q is orthogonal, R diagonal non-increasing and qrp=M
|
||
|
function qrokpiv(qr,M) =
|
||
|
is_ut(qr[1])
|
||
|
&& approx(qr[0]*transpose(qr[0]), ident(len(qr[0])))
|
||
|
&& approx(qr[0]*qr[1]*transpose(qr[2]),M)
|
||
|
&& is_decreasing([for(i=[0:1:min(len(qr[1]),len(qr[1][0]))-1]) abs(qr[1][i][i])]);
|
||
|
|
||
|
|
||
|
M = [[1,2,9,4,5],
|
||
|
[6,7,8,19,10],
|
||
|
[11,12,13,14,15],
|
||
|
[1,17,18,19,20],
|
||
|
[21,22,10,24,25]];
|
||
|
|
||
|
assert(qrok(qr_factor(M),M));
|
||
|
assert(qrok(qr_factor(select(M,0,3)),select(M,0,3)));
|
||
|
assert(qrok(qr_factor(transpose(select(M,0,3))),transpose(select(M,0,3))));
|
||
|
|
||
|
A = [[1,2,9,4,5],
|
||
|
[6,7,8,19,10],
|
||
|
[0,0,0,0,0],
|
||
|
[1,17,18,19,20],
|
||
|
[21,22,10,24,25]];
|
||
|
assert(qrok(qr_factor(A),A));
|
||
|
|
||
|
B = [[1,2,0,4,5],
|
||
|
[6,7,0,19,10],
|
||
|
[0,0,0,0,0],
|
||
|
[1,17,0,19,20],
|
||
|
[21,22,0,24,25]];
|
||
|
|
||
|
assert(qrok(qr_factor(B),B));
|
||
|
assert(qrok(qr_factor([[7]]), [[7]]));
|
||
|
assert(qrok(qr_factor([[1,2,3]]), [[1,2,3]]));
|
||
|
assert(qrok(qr_factor([[1],[2],[3]]), [[1],[2],[3]]));
|
||
|
|
||
|
|
||
|
assert(qrokpiv(qr_factor(M,pivot=true),M));
|
||
|
assert(qrokpiv(qr_factor(select(M,0,3),pivot=true),select(M,0,3)));
|
||
|
assert(qrokpiv(qr_factor(transpose(select(M,0,3)),pivot=true),transpose(select(M,0,3))));
|
||
|
assert(qrokpiv(qr_factor(B,pivot=true),B));
|
||
|
assert(qrokpiv(qr_factor([[7]],pivot=true), [[7]]));
|
||
|
assert(qrokpiv(qr_factor([[1,2,3]],pivot=true), [[1,2,3]]));
|
||
|
assert(qrokpiv(qr_factor([[1],[2],[3]],pivot=true), [[1],[2],[3]]));
|
||
|
}
|
||
|
test_qr_factor();
|
||
|
|
||
|
|
||
|
module test_matrix_inverse() {
|
||
|
assert_approx(matrix_inverse(rot([20,30,40])), [[0.663413948169,0.556670399226,-0.5,0],[-0.47302145844,0.829769465589,0.296198132726,0],[0.579769465589,0.0400087565481,0.813797681349,0],[0,0,0,1]]);
|
||
|
}
|
||
|
test_matrix_inverse();
|
||
|
|
||
|
|
||
|
module test_det2() {
|
||
|
assert_equal(det2([[6,-2], [1,8]]), 50);
|
||
|
assert_equal(det2([[4,7], [3,2]]), -13);
|
||
|
assert_equal(det2([[4,3], [3,4]]), 7);
|
||
|
}
|
||
|
test_det2();
|
||
|
|
||
|
|
||
|
module test_det3() {
|
||
|
M = [ [6,4,-2], [1,-2,8], [1,5,7] ];
|
||
|
assert_equal(det3(M), -334);
|
||
|
}
|
||
|
test_det3();
|
||
|
|
||
|
|
||
|
module test_determinant() {
|
||
|
M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ];
|
||
|
assert_equal(determinant(M), 2267);
|
||
|
}
|
||
|
test_determinant();
|
||
|
|
||
|
|
||
|
module test_matrix_trace() {
|
||
|
M = [ [6,4,-2,9], [1,-2,8,3], [1,5,7,6], [4,2,5,1] ];
|
||
|
assert_equal(matrix_trace(M), 6-2+7+1);
|
||
|
}
|
||
|
test_matrix_trace();
|
||
|
|
||
|
|
||
|
|
||
|
module test_norm_fro(){
|
||
|
assert_approx(norm_fro([[2,3,4],[4,5,6]]), 10.29563014098700);
|
||
|
|
||
|
} test_norm_fro();
|
||
|
|
||
|
|
||
|
module test_linear_solve(){
|
||
|
M = [[-2,-5,-1,3],
|
||
|
[3,7,6,2],
|
||
|
[6,5,-1,-6],
|
||
|
[-7,1,2,3]];
|
||
|
assert_approx(linear_solve(M, [-3,43,-11,13]), [1,2,3,4]);
|
||
|
assert_approx(linear_solve(M, [[-5,8],[18,-61],[4,7],[-1,-12]]), [[1,-2],[1,-3],[1,-4],[1,-5]]);
|
||
|
assert_approx(linear_solve([[2]],[4]), [2]);
|
||
|
assert_approx(linear_solve([[2]],[[4,8]]), [[2, 4]]);
|
||
|
assert_approx(linear_solve(select(M,0,2), [2,4,4]), [ 2.254871220604705e+00,
|
||
|
-8.378819388897780e-01,
|
||
|
2.330507118860985e-01,
|
||
|
8.511278195488737e-01]);
|
||
|
assert_approx(linear_solve(submatrix(M,idx(M),[0:2]), [2,4,4,4]),
|
||
|
[-2.457142857142859e-01,
|
||
|
5.200000000000000e-01,
|
||
|
7.428571428571396e-02]);
|
||
|
assert_approx(linear_solve([[1,2,3,4]], [2]), [0.066666666666666, 0.13333333333, 0.2, 0.266666666666]);
|
||
|
assert_approx(linear_solve([[1],[2],[3],[4]], [4,3,2,1]), [2/3]);
|
||
|
rd = [[-2,-5,-1,3],
|
||
|
[3,7,6,2],
|
||
|
[3,7,6,2],
|
||
|
[-7,1,2,3]];
|
||
|
assert_equal(linear_solve(rd,[1,2,3,4]),[]);
|
||
|
assert_equal(linear_solve(select(rd,0,2), [2,4,4]), []);
|
||
|
assert_equal(linear_solve(transpose(select(rd,0,2)), [2,4,3,4]), []);
|
||
|
}
|
||
|
test_linear_solve();
|
||
|
|
||
|
|
||
|
|
||
|
module test_null_space(){
|
||
|
assert_equal(null_space([[3,2,1],[3,6,3],[3,9,-3]]),[]);
|
||
|
|
||
|
function nullcheck(A,dim) =
|
||
|
let(v=null_space(A))
|
||
|
len(v)==dim && all_zero(A*transpose(v),eps=1e-12);
|
||
|
|
||
|
A = [[-1, 2, -5, 2],[-3,-1,3,-3],[5,0,5,0],[3,-4,11,-4]];
|
||
|
assert(nullcheck(A,1));
|
||
|
|
||
|
B = [
|
||
|
[ 4, 1, 8, 6, -2, 3],
|
||
|
[ 10, 5, 10, 10, 0, 5],
|
||
|
[ 8, 1, 8, 8, -6, 1],
|
||
|
[ -8, -8, 6, -1, -8, -1],
|
||
|
[ 2, 2, 0, 1, 2, 1],
|
||
|
[ 2, -3, 10, 6, -8, 1],
|
||
|
];
|
||
|
assert(nullcheck(B,3));
|
||
|
}
|
||
|
test_null_space();
|
||
|
|
||
|
|
||
|
module test_column() {
|
||
|
v = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
|
||
|
assert(column(v,2) == [3, 7, 11, 15]);
|
||
|
data = [[1,[3,4]], [3, [9,3]], [4, [3,1]]]; // Matrix with non-numeric entries
|
||
|
assert_equal(column(data,0), [1,3,4]);
|
||
|
assert_equal(column(data,1), [[3,4],[9,3],[3,1]]);
|
||
|
}
|
||
|
test_column();
|
||
|
|
||
|
|
||
|
// Need decision about behavior for out of bounds ranges, empty ranges
|
||
|
module test_submatrix(){
|
||
|
M = [[1,2,3,4,5],
|
||
|
[6,7,8,9,10],
|
||
|
[11,12,13,14,15],
|
||
|
[16,17,18,19,20],
|
||
|
[21,22,23,24,25]];
|
||
|
assert_equal(submatrix(M,[1:2], [3:4]), [[9,10],[14,15]]);
|
||
|
assert_equal(submatrix(M,[1], [3,4]), [[9,10]]);
|
||
|
assert_equal(submatrix(M,1, [3,4]), [[9,10]]);
|
||
|
assert_equal(submatrix(M, [3,4],1), [[17],[22]]);
|
||
|
assert_equal(submatrix(M, [1,3],[2,4]), [[8,10],[18,20]]);
|
||
|
assert_equal(submatrix(M, 1,3), [[9]]);
|
||
|
A = [[true, 17, "test"],
|
||
|
[[4,2], 91, false],
|
||
|
[6, [3,4], undef]];
|
||
|
assert_equal(submatrix(A,[0,2],[1,2]),[[17, "test"], [[3, 4], undef]]);
|
||
|
}
|
||
|
test_submatrix();
|
||
|
|
||
|
|
||
|
|
||
|
module test_hstack() {
|
||
|
M = ident(3);
|
||
|
v1 = [2,3,4];
|
||
|
v2 = [5,6,7];
|
||
|
v3 = [8,9,10];
|
||
|
a = hstack(v1,v2);
|
||
|
b = hstack(v1,v2,v3);
|
||
|
c = hstack([M,v1,M]);
|
||
|
d = hstack(column(M,0), submatrix(M,idx(M),[1,2]));
|
||
|
assert_equal(a,[[2, 5], [3, 6], [4, 7]]);
|
||
|
assert_equal(b,[[2, 5, 8], [3, 6, 9], [4, 7, 10]]);
|
||
|
assert_equal(c,[[1, 0, 0, 2, 1, 0, 0], [0, 1, 0, 3, 0, 1, 0], [0, 0, 1, 4, 0, 0, 1]]);
|
||
|
assert_equal(d,M);
|
||
|
strmat = [["three","four"], ["five","six"]];
|
||
|
assert_equal(hstack(strmat,strmat), [["three", "four", "three", "four"], ["five", "six", "five", "six"]]);
|
||
|
strvec = ["one","two"];
|
||
|
assert_equal(hstack(strvec,strmat),[["o", "n", "e", "three", "four"], ["t", "w", "o", "five", "six"]]);
|
||
|
}
|
||
|
test_hstack();
|
||
|
|
||
|
|
||
|
module test_block_matrix() {
|
||
|
A = [[1,2],[3,4]];
|
||
|
B = ident(2);
|
||
|
assert_equal(block_matrix([[A,B],[B,A],[A,B]]), [[1,2,1,0],[3,4,0,1],[1,0,1,2],[0,1,3,4],[1,2,1,0],[3,4,0,1]]);
|
||
|
assert_equal(block_matrix([[A,B],ident(4)]), [[1,2,1,0],[3,4,0,1],[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]);
|
||
|
text = [["aa","bb"],["cc","dd"]];
|
||
|
assert_equal(block_matrix([[text,B]]), [["aa","bb",1,0],["cc","dd",0,1]]);
|
||
|
}
|
||
|
test_block_matrix();
|
||
|
|
||
|
|
||
|
module test_diagonal_matrix() {
|
||
|
assert_equal(diagonal_matrix([1,2,3]), [[1,0,0],[0,2,0],[0,0,3]]);
|
||
|
assert_equal(diagonal_matrix([1,"c",2]), [[1,0,0],[0,"c",0],[0,0,2]]);
|
||
|
assert_equal(diagonal_matrix([1,"c",2],"X"), [[1,"X","X"],["X","c","X"],["X","X",2]]);
|
||
|
assert_equal(diagonal_matrix([[1,1],[2,2],[3,3]], [0,0]), [[ [1,1],[0,0],[0,0]], [[0,0],[2,2],[0,0]], [[0,0],[0,0],[3,3]]]);
|
||
|
}
|
||
|
test_diagonal_matrix();
|
||
|
|
||
|
module test_submatrix_set() {
|
||
|
test = [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15], [16,17,18,19,20]];
|
||
|
ragged = [[1,2,3,4,5],[6,7,8,9,10],[11,12], [16,17]];
|
||
|
assert_equal(submatrix_set(test,[[9,8],[7,6]]), [[9,8,3,4,5],[7,6,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]);
|
||
|
assert_equal(submatrix_set(test,[[9,7],[8,6]],1),[[1,2,3,4,5],[9,7,8,9,10],[8,6,13,14,15], [16,17,18,19,20]]);
|
||
|
assert_equal(submatrix_set(test,[[9,8],[7,6]],n=1), [[1,9,8,4,5],[6,7,6,9,10],[11,12,13,14,15], [16,17,18,19,20]]);
|
||
|
assert_equal(submatrix_set(test,[[9,8],[7,6]],1,2), [[1,2,3,4,5],[6,7,9,8,10],[11,12,7,6,15], [16,17,18,19,20]]);
|
||
|
assert_equal(submatrix_set(test,[[9,8],[7,6]],-1,-1), [[6,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]);
|
||
|
assert_equal(submatrix_set(test,[[9,8],[7,6]],n=4), [[1,2,3,4,9],[6,7,8,9,7],[11,12,13,14,15], [16,17,18,19,20]]);
|
||
|
assert_equal(submatrix_set(test,[[9,8],[7,6]],7,7), [[1,2,3,4,5],[6,7,8,9,10],[11,12,13,14,15], [16,17,18,19,20]]);
|
||
|
assert_equal(submatrix_set(ragged, [["a","b"],["c","d"]], 1, 1), [[1,2,3,4,5],[6,"a","b",9,10],[11,"c"], [16,17]]);
|
||
|
assert_equal(submatrix_set(test, [[]]), test);
|
||
|
}
|
||
|
test_submatrix_set();
|
||
|
|
||
|
module test_transpose() {
|
||
|
assert(transpose([[1,2,3],[4,5,6],[7,8,9]]) == [[1,4,7],[2,5,8],[3,6,9]]);
|
||
|
assert(transpose([[1,2,3],[4,5,6]]) == [[1,4],[2,5],[3,6]]);
|
||
|
assert(transpose([[1,2,3],[4,5,6]],reverse=true) == [[6,3], [5,2], [4,1]]);
|
||
|
assert(transpose([3,4,5]) == [3,4,5]);
|
||
|
}
|
||
|
test_transpose();
|
||
|
|
||
|
|