BOSL2/joiners.scad

785 lines
33 KiB
OpenSCAD
Raw Normal View History

2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: joiners.scad
// Snap-together joiners.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/joiners.scad>
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
2020-03-29 03:50:04 +00:00
include <rounding.scad>
include <skin.scad>
2020-01-10 02:22:07 +00:00
// Section: Half Joiners
// Module: half_joiner_clear()
// Description:
// Creates a mask to clear an area so that a half_joiner can be placed there.
// Usage:
2019-05-26 20:45:22 +00:00
// half_joiner_clear(h, w, [a], [clearance], [overlap])
// Arguments:
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// half_joiner_clear(spin=-90);
module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
2017-08-30 00:00:16 +00:00
{
dmnd_height = h*1.0;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
attachable(anchor,spin,orient, size=[w, guide_width, h]) {
union() {
ycopies(overlap, n=overlap>0? 2 : 1) {
difference() {
// Diamonds.
scale([w+clearance, dmnd_width/2, dmnd_height/2]) {
xrot(45) cube(size=[1,sqrt(2),sqrt(2)], center=true);
}
// Blunt point of tab.
ycopies(guide_width+4) {
cube(size=[(w+clearance)*1.05, 4, h*0.99], center=true);
}
}
}
if (overlap>0) cube([w+clearance, overlap+0.001, h], center=true);
2017-08-30 00:00:16 +00:00
}
children();
2017-08-30 00:00:16 +00:00
}
}
// Module: half_joiner()
// Usage:
2019-07-18 01:54:35 +00:00
// half_joiner(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a half_joiner object that can be attached to half_joiner2 object.
// Arguments:
// h = Height of the half_joiner.
// w = Width of the half_joiner.
// l = Length of the backing to the half_joiner.
// a = Overhang angle of the half_joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-07-18 01:54:35 +00:00
// $slop = Printer specific slop value to make parts fit more closely.
// Example:
// half_joiner(screwsize=3, spin=-90);
2019-07-18 01:54:35 +00:00
module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
2017-08-30 00:00:16 +00:00
{
dmnd_height = h*1.0;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
render(convexity=12)
attachable(anchor,spin,orient, size=[w, 2*l, h]) {
difference() {
union() {
// Make base.
difference() {
// Solid backing base.
fwd(l/2) cube(size=[w, l, h], center=true);
// Clear diamond for tab
xcopies(2*w*2/3) {
2019-07-18 01:54:35 +00:00
half_joiner_clear(h=h+0.01, w=w, clearance=$slop*2, a=a);
}
2017-08-30 00:00:16 +00:00
}
difference() {
// Make tab
2019-07-18 01:54:35 +00:00
scale([w/3-$slop*2, dmnd_width/2, dmnd_height/2]) xrot(45)
cube(size=[1,sqrt(2),sqrt(2)], center=true);
2017-08-30 00:00:16 +00:00
// Blunt point of tab.
back(guide_width/2+2)
cube(size=[w*0.99,4,guide_size*2], center=true);
}
2017-08-30 00:00:16 +00:00
// Guide ridges.
if (guides == true) {
xcopies(w/3-$slop*2) {
// Guide ridge.
fwd(0.05/2) {
scale([0.75, 1, 2]) yrot(45)
cube(size=[guide_size/sqrt(2), guide_width+0.05, guide_size/sqrt(2)], center=true);
}
2017-08-30 00:00:16 +00:00
// Snap ridge.
scale([0.25, 0.5, 1]) zrot(45)
cube(size=[guide_size/sqrt(2), guide_size/sqrt(2), dmnd_width], center=true);
}
2017-08-30 00:00:16 +00:00
}
}
// Make screwholes, if needed.
if (screwsize != undef) {
yrot(90) cylinder(r=screwsize*1.1/2, h=w+1, center=true, $fn=12);
}
2017-08-30 00:00:16 +00:00
}
children();
2017-08-30 00:00:16 +00:00
}
}
//half_joiner(screwsize=3);
// Module: half_joiner2()
// Usage:
2019-05-26 20:45:22 +00:00
// half_joiner2(h, w, l, [a], [screwsize], [guides])
// Description:
// Creates a half_joiner2 object that can be attached to half_joiner object.
// Arguments:
// h = Height of the half_joiner.
// w = Width of the half_joiner.
// l = Length of the backing to the half_joiner.
// a = Overhang angle of the half_joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// half_joiner2(screwsize=3, spin=-90);
module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
2017-08-30 00:00:16 +00:00
{
dmnd_height = h*1.0;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
render(convexity=12)
attachable(anchor,spin,orient, size=[w, 2*l, h]) {
difference() {
union () {
fwd(l/2) cube(size=[w, l, h], center=true);
cube([w, guide_width, h], center=true);
}
2017-08-30 00:00:16 +00:00
// Subtract mated half_joiner.
2019-07-18 01:54:35 +00:00
zrot(180) half_joiner(h=h+0.01, w=w+0.01, l=guide_width+0.01, a=a, screwsize=undef, guides=guides, $slop=0.0);
2017-08-30 00:00:16 +00:00
// Make screwholes, if needed.
if (screwsize != undef) {
xcyl(r=screwsize*1.1/2, l=w+1, $fn=12);
}
2017-08-30 00:00:16 +00:00
}
children();
2017-08-30 00:00:16 +00:00
}
}
// Section: Full Joiners
// Module: joiner_clear()
// Description:
// Creates a mask to clear an area so that a joiner can be placed there.
// Usage:
2019-05-26 20:45:22 +00:00
// joiner_clear(h, w, [a], [clearance], [overlap])
// Arguments:
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// joiner_clear(spin=-90);
module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
2017-08-30 00:00:16 +00:00
{
dmnd_height = h*0.5;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
attachable(anchor,spin,orient, size=[w, guide_width, h]) {
union() {
up(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=clearance);
down(h/4) half_joiner_clear(h=h/2.0-0.01, w=w, a=a, overlap=overlap, clearance=-0.01);
}
children();
2017-08-30 00:00:16 +00:00
}
}
// Module: joiner()
// Usage:
2019-07-18 01:54:35 +00:00
// joiner(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a joiner object that can be attached to another joiner object.
// Arguments:
// h = Height of the joiner.
// w = Width of the joiner.
// l = Length of the backing to the joiner.
// a = Overhang angle of the joiner.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-07-18 01:54:35 +00:00
// $slop = Printer specific slop value to make parts fit more closely.
// Examples:
// joiner(screwsize=3, spin=-90);
// joiner(w=10, l=10, h=40, spin=-90) cuboid([10, 10*2, 40], anchor=RIGHT);
2019-07-18 01:54:35 +00:00
module joiner(h=40, w=10, l=10, a=30, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
2017-08-30 00:00:16 +00:00
{
attachable(anchor,spin,orient, size=[w, 2*l, h]) {
union() {
2019-07-18 01:54:35 +00:00
up(h/4) half_joiner(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
down(h/4) half_joiner2(h=h/2, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
}
children();
}
2017-08-30 00:00:16 +00:00
}
// Section: Full Joiners Pairs/Sets
// Module: joiner_pair_clear()
// Description:
// Creates a mask to clear an area so that a pair of joiners can be placed there.
// Usage:
2019-05-26 20:45:22 +00:00
// joiner_pair_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// n = Number of joiners (2 by default) to clear for.
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// joiner_pair_clear(spacing=50, n=2);
// joiner_pair_clear(spacing=50, n=3);
module joiner_pair_clear(spacing=100, h=40, w=10, a=30, n=2, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
2017-08-30 00:00:16 +00:00
{
dmnd_height = h*0.5;
dmnd_width = dmnd_height*tan(a);
guide_size = w/3;
guide_width = 2*(dmnd_height/2-guide_size)*tan(a);
attachable(anchor,spin,orient, size=[spacing+w, guide_width, h]) {
xcopies(spacing, n=n) {
joiner_clear(h=h, w=w, a=a, clearance=clearance, overlap=overlap);
2017-08-30 00:00:16 +00:00
}
children();
2017-08-30 00:00:16 +00:00
}
}
// Module: joiner_pair()
// Usage:
2019-07-18 01:54:35 +00:00
// joiner_pair(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a joiner_pair object that can be attached to other joiner_pairs .
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiners.
// w = Width of the joiners.
// l = Length of the backing to the joiners.
// a = Overhang angle of the joiners.
// n = Number of joiners in a row. Default: 2
// alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
2019-07-18 01:54:35 +00:00
// $slop = Printer specific slop value to make parts fit more closely.
// Examples:
// joiner_pair(spacing=50, l=10, spin=-90) cuboid([10, 50+10-0.1, 40], anchor=RIGHT);
// joiner_pair(spacing=50, l=10, n=2, spin=-90);
// joiner_pair(spacing=50, l=10, n=3, alternate=false, spin=-90);
// joiner_pair(spacing=50, l=10, n=3, alternate=true, spin=-90);
// joiner_pair(spacing=50, l=10, n=3, alternate="alt", spin=-90);
2019-07-18 01:54:35 +00:00
module joiner_pair(spacing=100, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
2017-08-30 00:00:16 +00:00
{
attachable(anchor,spin,orient, size=[spacing+w, 2*l, h]) {
left((n-1)*spacing/2) {
for (i=[0:1:n-1]) {
right(i*spacing) {
yrot(180 + (alternate? (i*180+(alternate=="alt"?180:0))%360 : 0)) {
2019-07-18 01:54:35 +00:00
joiner(h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
}
}
}
2017-08-30 00:00:16 +00:00
}
children();
2017-08-30 00:00:16 +00:00
}
}
// Section: Full Joiners Quads/Sets
// Module: joiner_quad_clear()
// Description:
// Creates a mask to clear an area so that a pair of joiners can be placed there.
// Usage:
2019-05-26 20:45:22 +00:00
// joiner_quad_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
// Arguments:
// spacing1 = Spacing between joiner centers.
// spacing2 = Spacing between back-to-back pairs/sets of joiners.
// h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for.
// a = Overhang angle of the joiner.
// n = Number of joiners in a row. Default: 2
// clearance = Extra width to clear.
// overlap = Extra depth to clear.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// joiner_quad_clear(spacing1=50, spacing2=50, n=2);
// joiner_quad_clear(spacing1=50, spacing2=50, n=3);
module joiner_quad_clear(xspacing=undef, yspacing=undef, spacing1=undef, spacing2=undef, n=2, h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER, spin=0, orient=UP)
2017-08-30 00:00:16 +00:00
{
spacing1 = first_defined([spacing1, xspacing, 100]);
spacing2 = first_defined([spacing2, yspacing, 50]);
attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) {
zrot_copies(n=2) {
back(spacing2/2) {
joiner_pair_clear(spacing=spacing1, n=n, h=h, w=w, a=a, clearance=clearance, overlap=overlap);
}
2017-08-30 00:00:16 +00:00
}
children();
2017-08-30 00:00:16 +00:00
}
}
// Module: joiner_quad()
// Usage:
2019-07-18 01:54:35 +00:00
// joiner_quad(h, w, l, [a], [screwsize], [guides], [$slop])
// Description:
// Creates a joiner_quad object that can be attached to other joiner_pairs .
// Arguments:
// spacing = Spacing between joiner centers.
// h = Height of the joiners.
// w = Width of the joiners.
// l = Length of the backing to the joiners.
// a = Overhang angle of the joiners.
// n = Number of joiners in a row. Default: 2
// alternate = If true (default), each joiner alternates it's orientation. If alternate is "alt", do opposite alternating orientations.
// screwsize = Diameter of screwhole.
// guides = If true, create sliding alignment guides.
2019-07-18 01:54:35 +00:00
// $slop = Printer specific slop value to make parts fit more closely.
2019-05-26 19:47:50 +00:00
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// joiner_quad(spacing1=50, spacing2=50, l=10, spin=-90) cuboid([50, 50+10-0.1, 40]);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=2, spin=-90);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=false, spin=-90);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate=true, spin=-90);
// joiner_quad(spacing1=50, spacing2=50, l=10, n=3, alternate="alt", spin=-90);
2019-07-18 01:54:35 +00:00
module joiner_quad(spacing1=undef, spacing2=undef, xspacing=undef, yspacing=undef, h=40, w=10, l=10, a=30, n=2, alternate=true, screwsize=undef, guides=true, anchor=CENTER, spin=0, orient=UP)
2017-08-30 00:00:16 +00:00
{
spacing1 = first_defined([spacing1, xspacing, 100]);
spacing2 = first_defined([spacing2, yspacing, 50]);
attachable(anchor,spin,orient, size=[w+spacing1, spacing2, h]) {
zrot_copies(n=2) {
back(spacing2/2) {
2019-07-18 01:54:35 +00:00
joiner_pair(spacing=spacing1, n=n, h=h, w=w, l=l, a=a, screwsize=screwsize, guides=guides);
}
2017-08-30 00:00:16 +00:00
}
children();
2017-08-30 00:00:16 +00:00
}
}
2020-01-11 03:30:20 +00:00
// Section: Dovetails
// Module: dovetail()
//
2020-01-11 03:30:20 +00:00
// Usage:
// dovetail(l|length, h|height, w|width, slope|angle, taper|back_width, [chamfer], [r|radius], [round], [$slop])
2020-01-11 03:30:20 +00:00
//
// Description:
// Produces a possibly tapered dovetail joint shape to attach to or subtract from two parts you wish to join together.
// The tapered dovetail is particularly advantageous for long joints because the joint assembles without binding until
// it is fully closed, and then wedges tightly. You can chamfer or round the corners of the dovetail shape for better
// printing and assembly, or choose a fully rounded joint that looks more like a puzzle piece. The dovetail appears
// parallel to the Y axis and projecting upwards, so in its default orientation it will slide together with a translation
// in the positive Y direction. The default anchor for dovetails is BOTTOM; the default orientation depends on the gender,
// with male dovetails oriented UP and female ones DOWN.
//
// Arguments:
// l / length = Length of the dovetail (amount the joint slides during assembly)
// h / height = Height of the dovetail
// w / width = Width (at the wider, top end) of the dovetail before tapering
// slope = slope of the dovetail. Standard woodworking slopes are 4, 6, or 8. Default: 6.
// angle = angle (in degrees) of the dovetail. Specify only one of slope and angle.
// taper = taper angle (in degrees). Dovetail gets narrower by this angle. Default: no taper
// back_width = width of right hand end of the dovetail. This alternate method of specifying the taper may be easier to manage. Specify only one of `taper` and `back_width`. Note that `back_width` should be smaller than `width` to taper in the customary direction, with the smaller end at the back.
// chamfer = amount to chamfer the corners of the joint (Default: no chamfer)
// r / radius = amount to round over the corners of the joint (Default: no rounding)
// round = true to round both corners of the dovetail and give it a puzzle piece look. Default: false.
// extra = amount of extra length and base extension added to dovetails for unions and differences. Default: 0.01
// Example: Ordinary straight dovetail, male version (sticking up) and female version (below the xy plane)
// dovetail("male", length=30, width=15, height=8);
// right(20) dovetail("female", length=30, width=15, height=8);
// Example: Adding a 6 degree taper (Such a big taper is usually not necessary, but easier to see for the example.)
2020-01-10 02:22:07 +00:00
// dovetail("male", length=30, width=15, height=8, taper=6);
// right(20) dovetail("female", length=30, width=15, height=8, taper=6);
// Example: A block that can link to itself
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,$tags="remove");
// }
// Example: Setting the dovetail angle. This is too extreme to be useful.
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8,angle=30);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,angle=30,$tags="remove");
// }
// Example: Adding a chamfer helps printed parts fit together without problems at the corners
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8,chamfer=1);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,chamfer=1,$tags="remove");
// }
// Example: Rounding the outside corners is another option
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1,$fn=32);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,radius=1,$tags="remove",$fn=32);
// }
// Example: Or you can make a fully rounded joint
// $fn=32;
// diff("remove")
// cuboid([50,30,10]){
// attach(BACK) dovetail("male", length=10, width=15, height=8,radius=1.5, round=true);
// attach(FRONT) dovetail("female", length=10, width=15, height=8,radius=1.5, round=true, $tags="remove");
// }
// Example: With a long joint like this, a taper makes the joint easy to assemble. It will go together easily and wedge tightly if you get the tolerances right. Specifying the taper with `back_width` may be easier than using a taper angle.
// cuboid([50,30,10])
// attach(TOP) dovetail("male", length=50, width=18, height=4, back_width=15, spin=90);
// fwd(35)
// diff("remove")
// cuboid([50,30,10])
// attach(TOP) dovetail("female", length=50, width=18, height=4, back_width=15, spin=90,$tags="remove");
// Example: A series of dovtails
// cuboid([50,30,10])
// attach(BACK) xcopies(10,5) dovetail("male", length=10, width=7, height=4);
// Example: Mating pin board for a right angle joint. Note that the anchor method and use of `spin` ensures that the joint works even with a taper.
// diff("remove")
// cuboid([50,30,10])
// position(TOP+BACK) xcopies(10,5) dovetail("female", length=10, width=7, taper=4, height=4, $tags="remove",anchor=BOTTOM+FRONT,spin=180);
module dovetail(gender, length, l, width, w, height, h, angle, slope, taper, back_width, chamfer, extra=0.01, r, radius, round=false, anchor=BOTTOM, spin=0, orient)
{
radius = get_radius(r1=radius,r2=r);
lcount = num_defined([l,length]);
hcount = num_defined([h,height]);
wcount = num_defined([w,width]);
assert(lcount==1, "Must define exactly one of l and length");
assert(wcount==1, "Must define exactly one of w and width");
assert(hcount==1, "Must define exactly one of h and height");
h = first_defined([h,height]);
w = first_defined([w,width]);
length = first_defined([l,length]);
orient = is_def(orient) ? orient :
gender == "female" ? DOWN : UP;
count = num_defined([angle,slope]);
assert(count<=1, "Do not specify both angle and slope");
count2 = num_defined([taper,back_width]);
assert(count2<=1, "Do not specify both taper and back_width");
count3 = num_defined([chamfer, radius]);
assert(count3<=1 || (radius==0 && chamfer==0), "Do not specify both chamfer and radius");
slope = is_def(slope) ? slope :
is_def(angle) ? 1/tan(angle) : 6;
2020-01-11 03:30:20 +00:00
width = gender == "male" ? w : w + 2*$slop;
height = h + (gender == "female" ? 2*$slop : 0);
front_offset = is_def(taper) ? -extra * tan(taper) :
is_def(back_width) ? extra * (back_width-width)/length/2 : 0;
size = is_def(chamfer) && chamfer>0 ? chamfer :
is_def(radius) && radius>0 ? radius : 0;
type = is_def(chamfer) && chamfer>0 ? "chamfer" : "circle";
fullsize = round ? [0,size,size] :
gender == "male" ? [0,size,0] : [0,0,size];
smallend_half = round_corners(
move(
[0,-length/2-extra,0],
p=[
[0 , 0, height],
[width/2-front_offset , 0, height],
[width/2 - height/slope - front_offset, 0, 0 ],
[width/2 - front_offset + height, 0, 0]
]
),
curve=type, size=fullsize, closed=false
);
smallend_points = concat(select(smallend_half, 1, -2), [down(extra,p=select(smallend_half, -2))]);
offset = is_def(taper) ? -(length+extra) * tan(taper) :
is_def(back_width) ? (back_width-width) / 2 : 0;
bigend_points = move([offset,length+2*extra,0], p=smallend_points);
adjustment = gender == "male" ? -0.01 : 0.01; // Adjustment for default overlap in attach()
attachable(anchor,spin,orient, size=[width+2*offset, length, height]) {
down(height/2+adjustment) {
skin(
[
reverse(concat(smallend_points, xflip(p=reverse(smallend_points)))),
reverse(concat(bigend_points, xflip(p=reverse(bigend_points))))
],
2020-03-01 00:45:49 +00:00
slices=0, convexity=4
);
}
children();
}
}
2020-03-04 03:52:19 +00:00
// h is total height above 0 of the nub
// nub extends below xy plane by distance nub/2
module _pin_nub(r, nub, h)
{
L = h / 4;
rotate_extrude(){
polygon(
[[ 0,-nub/2],
[-r,-nub/2],
[-r-nub, nub/2],
[-r-nub, nub/2+L],
[-r, h],
[0, h]]);
}
}
module _pin_slot(l, r, t, d, nub, depth, stretch) {
yscale(4)
intersection() {
translate([t, 0, d + t / 4])
_pin_nub(r = r + t, nub = nub, h = l - (d + t / 4));
translate([-t, 0, d + t / 4])
_pin_nub(r = r + t, nub = nub, h = l - (d + t / 4));
}
cube([2 * r, depth, 2 * l], center = true);
up(l)
zscale(stretch)
ycyl(r = r, h = depth);
}
module _pin_shaft(r, lStraight, nub, nubscale, stretch, d, pointed)
{
extra = 0.02;
rPoint = r / sqrt(2);
down(extra) cylinder(r = r, h = lStraight + extra);
up(lStraight) {
zscale(stretch) {
sphere(r = r);
if (pointed) up(rPoint) cylinder(r1 = rPoint, r2 = 0, h = rPoint);
}
}
up(d) yscale(nubscale) _pin_nub(r = r, nub = nub, h = lStraight - d);
}
function _pin_size(size) =
is_undef(size) ? [] :
let(sizeok = in_list(size,["tiny", "small","medium", "large", "standard"]))
assert(sizeok,"Pin size must be one of \"tiny\", \"small\", or \"standard\"")
size=="standard" || size=="large" ?
struct_set([], ["length", 10.8,
"diameter", 7,
"snap", 0.5,
"nub_depth", 1.8,
"thickness", 1.8,
"preload", 0.2]):
size=="medium" ?
struct_set([], ["length", 8,
"diameter", 4.6,
"snap", 0.45,
"nub_depth", 1.5,
"thickness", 1.4,
"preload", 0.2]) :
size=="small" ?
struct_set([], ["length", 6,
"diameter", 3.2,
"snap", 0.4,
"nub_depth", 1.2,
"thickness", 1.0,
"preload", 0.16]) :
size=="tiny" ?
struct_set([], ["length", 4,
"diameter", 2.5,
"snap", 0.25,
"nub_depth", 0.9,
"thickness", 0.8,
"preload", 0.1]):
undef;
// Module: snap_pin()
// Usage:
// snap_pin(size, [pointed], [anchor], [spin], [orient])
// snap_pin(r|radius|d|diameter, l|length, nub_depth, snap, thickness, [clearance], [preload], [pointed], [anchor], [spin], [orient])
// Description:
// Creates a snap pin that can be inserted into an appropriate socket to connect two objects together. You can choose from some standard
// pin dimensions by giving a size, or you can specify all the pin geometry parameters yourself. If you use a standard size you can
// override the standard parameters by specifying other ones. The pins have flat sides so they can
// be printed. When oriented UP the shaft of the pin runs in the Z direction and the flat sides are the front and back. The default
// orientation (FRONT) and anchor (FRONT) places the pin in a printable configuration, flat side down on the xy plane.
// The tightness of fit is determined by `preload` and `clearance`. To make pins tighter increase `preload` and/or decrease `clearance`.
//
// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
//
// This pin is based on https://www.thingiverse.com/thing:213310 by Emmett Lalishe
// and a modified version at https://www.thingiverse.com/thing:3218332 by acwest
// and distributed under the Creative Commons - Attribution - Share Alike License
// Arguments:
// size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny".
// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
// r|radius = radius of the pin
// d|diameter = diameter of the pin
// l|length = length of the pin
// nub_depth = the distance of the nub from the base of the pin
// snap = how much snap the pin provides (the nub projection)
// thickness = thickness of the pin walls
// pointed = if true the pin is pointed, otherwise it has a rounded tip. Default: true
// clearance = how far to shrink the pin away from the socket walls. Default: 0.2
// preload = amount to move the nub towards the pin base, which can create tension from the misalignment with the socket. Default: 0.2
// Example: Pin in native orientation
// snap_pin("standard", anchor=CENTER, orient=UP, thickness = 1, $fn=40);
// Example: Pins oriented for printing
// xcopies(spacing=10, n=4) snap_pin("standard", $fn=40);
2020-03-04 03:52:19 +00:00
module snap_pin(size,r,radius,d,diameter, l,length, nub_depth, snap, thickness, clearance=0.2, preload, pointed=true, anchor=FRONT, spin=0, orient=FRONT, center) {
preload_default = 0.2;
sizedat = _pin_size(size);
radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2);
length = first_defined([l,length,struct_val(sizedat,"length")]);
snap = first_defined([snap, struct_val(sizedat,"snap")]);
thickness = first_defined([thickness, struct_val(sizedat,"thickness")]);
nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]);
preload = first_defined([first_defined([preload, struct_val(sizedat, "preload")]),preload_default]);
nubscale = 0.9; // Mysterious arbitrary parameter
// The basic pin assumes a rounded cap of length sqrt(2)*r, which defines lStraight.
// If the point is enabled the cap length is instead 2*r
// preload shrinks the length, bringing the nubs closer together
rInner = radius - clearance;
stretch = sqrt(2)*radius/rInner; // extra stretch factor to make cap have proper length even though r is reduced.
lStraight = length - sqrt(2) * radius - clearance;
lPin = lStraight + (pointed ? 2*radius : sqrt(2)*radius);
attachable(anchor=anchor,spin=spin, orient=orient,
size=[nubscale*(2*rInner+2*snap + clearance),radius*sqrt(2)-2*clearance,2*lPin]){
zflip_copy()
difference() {
intersection() {
cube([3 * (radius + snap), radius * sqrt(2) - 2 * clearance, 2 * length + 3 * radius], center = true);
_pin_shaft(rInner, lStraight, snap+clearance/2, nubscale, stretch, nub_depth-preload, pointed);
}
_pin_slot(l = lStraight, r = rInner - thickness, t = thickness, d = nub_depth - preload, nub = snap, depth = 2 * radius + 0.02, stretch = stretch);
}
children();
}
}
// Module: snap_pin_socket()
// Usage:
// snap_pin_socket(size, [fixed], [fins], [pointed], [anchor], [spin], [orient]);
// snap_pin_socket(r|radius|d|diameter, l|length, nub_depth, snap, [fixed], [pointed], [fins], [anchor], [spin], [orient])
// Description:
// Constructs a socket suitable for a snap_pin with the same parameters. If `fixed` is true then the socket has flat walls and the
// pin will not rotate in the socket. If `fixed` is false then the socket is round and the pin will rotate, particularly well
// if you add a lubricant. If `pointed` is true the socket is pointed to receive a pointed pin, otherwise it has a rounded and and
// will be shorter. If `fins` is set to true then two fins are included inside the socket to act as supports (which may help when printing tip up,
// especially when `pointed=false`). The default orientation is DOWN with anchor BOTTOM so that you can difference() the socket away from an object.
//
// The "large" or "standard" size pin has a length of 10.8 and diameter of 7. The "medium" pin has a length of 8 and diameter of 4.6. The "small" pin
// has a length of 6 and diameter of 3.2. The "tiny" pin has a length of 4 and a diameter of 2.5.
// Arguments:
// size = text string to select from a list of predefined sizes, one of "standard", "small", or "tiny".
// pointed = set to true to get a pointed pin, false to get one with a rounded end. Default: true
// r|radius = radius of the pin
// d|diameter = diameter of the pin
// l|length = length of the pin
// nub_depth = the distance of the nub from the base of the pin
// snap = how much snap the pin provides (the nub projection)
// fixed = if true the pin cannot rotate, if false it can. Default: true
// pointed = if true the socket has a pointed tip. Default: true
// fins = if true supporting fins are included. Default: false
// Example: The socket shape itself in native orientation.
// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, $fn=40);
// Example: A spinning socket with fins:
// snap_pin_socket("standard", anchor=CENTER, orient=UP, fins=true, fixed=false, $fn=40);
// Example: A cube with a socket in the middle and one half-way off the front edge so you can see inside:
// $fn=40;
// diff("socket") cuboid([20,20,20]) {
// attach(TOP) snap_pin_socket("standard", $tags="socket");
// position(TOP+FRONT)snap_pin_socket("standard", $tags="socket");
// }
module snap_pin_socket(size, r, radius, l,length, d,diameter,nub_depth, snap, fixed=true, pointed=true, fins=false, anchor=BOTTOM, spin=0, orient=DOWN) {
sizedat = _pin_size(size);
radius = get_radius(r1=r,r2=radius,d1=d,d2=diameter,dflt=struct_val(sizedat,"diameter")/2);
length = first_defined([l,length,struct_val(sizedat,"length")]);
snap = first_defined([snap, struct_val(sizedat,"snap")]);
nub_depth = first_defined([nub_depth, struct_val(sizedat,"nub_depth")]);
tip = pointed ? sqrt(2) * radius : radius;
lPin = length + (pointed?(2-sqrt(2))*radius:0);
lStraight = lPin - (pointed?sqrt(2)*radius:radius);
attachable(anchor=anchor,spin=spin,orient=orient,
size=[2*(radius+snap),radius*sqrt(2),lPin])
{
down(lPin/2)
intersection() {
if (fixed)
cube([3 * (radius + snap), radius * sqrt(2), 3 * lPin + 3 * radius], center = true);
union() {
_pin_shaft(radius,lStraight,snap,1,1,nub_depth,pointed);
if (fins)
up(lStraight){
cube([2 * radius, 0.01, 2 * tip], center = true);
cube([0.01, 2 * radius, 2 * tip], center = true);
}
}
}
children();
}
}
2017-08-30 00:00:16 +00:00
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap