2019-04-20 00:02:17 +00:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// LibFile: coords.scad
|
|
|
|
// Coordinate transformations and coordinate system conversions.
|
|
|
|
// To use, add the following lines to the beginning of your file:
|
|
|
|
// ```
|
|
|
|
// use <BOSL2/std.scad>
|
|
|
|
// ```
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
// Section: Coordinate Manipulation
|
|
|
|
|
|
|
|
// Function: point2d()
|
|
|
|
// Description:
|
|
|
|
// Returns a 2D vector/point from a 2D or 3D vector.
|
|
|
|
// If given a 3D point, removes the Z coordinate.
|
|
|
|
// Arguments:
|
|
|
|
// p = The coordinates to force into a 2D vector/point.
|
|
|
|
function point2d(p) = [for (i=[0:1]) (p[i]==undef)? 0 : p[i]];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: path2d()
|
|
|
|
// Description:
|
|
|
|
// Returns a list of 2D vectors/points from a list of 2D or 3D vectors/points.
|
|
|
|
// If given a 3D point list, removes the Z coordinates from each point.
|
|
|
|
// Arguments:
|
|
|
|
// points = A list of 2D or 3D points/vectors.
|
|
|
|
function path2d(points) = [for (point = points) point2d(point)];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: point3d()
|
|
|
|
// Description:
|
|
|
|
// Returns a 3D vector/point from a 2D or 3D vector.
|
|
|
|
// Arguments:
|
|
|
|
// p = The coordinates to force into a 3D vector/point.
|
|
|
|
function point3d(p) = [for (i=[0:2]) (p[i]==undef)? 0 : p[i]];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: path3d()
|
|
|
|
// Description:
|
|
|
|
// Returns a list of 3D vectors/points from a list of 2D or 3D vectors/points.
|
|
|
|
// Arguments:
|
|
|
|
// points = A list of 2D or 3D points/vectors.
|
|
|
|
function path3d(points) = [for (point = points) point3d(point)];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: translate_points()
|
|
|
|
// Usage:
|
|
|
|
// translate_points(pts, v);
|
|
|
|
// Description:
|
|
|
|
// Moves each point in an array by a given amount.
|
|
|
|
// Arguments:
|
|
|
|
// pts = List of points to translate.
|
|
|
|
// v = Amount to translate points by.
|
|
|
|
function translate_points(pts, v=[0,0,0]) = [for (pt = pts) pt+v];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: scale_points()
|
|
|
|
// Usage:
|
|
|
|
// scale_points(pts, v, [cp]);
|
|
|
|
// Description:
|
|
|
|
// Scales each point in an array by a given amount, around a given centerpoint.
|
|
|
|
// Arguments:
|
|
|
|
// pts = List of points to scale.
|
|
|
|
// v = A vector with a scaling factor for each axis.
|
|
|
|
// cp = Centerpoint to scale around.
|
|
|
|
function scale_points(pts, v=[0,0,0], cp=[0,0,0]) = [for (pt = pts) [for (i = [0:len(pt)-1]) (pt[i]-cp[i])*v[i]+cp[i]]];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: rotate_points2d()
|
|
|
|
// Usage:
|
|
|
|
// rotate_points2d(pts, ang, [cp]);
|
|
|
|
// Description:
|
|
|
|
// Rotates each 2D point in an array by a given amount, around an optional centerpoint.
|
|
|
|
// Arguments:
|
|
|
|
// pts = List of 3D points to rotate.
|
|
|
|
// ang = Angle to rotate by.
|
|
|
|
// cp = 2D Centerpoint to rotate around. Default: `[0,0]`
|
|
|
|
function rotate_points2d(pts, ang, cp=[0,0]) = let(
|
|
|
|
m = matrix3_zrot(ang)
|
|
|
|
) [for (pt = pts) m*point3d(pt-cp)+cp];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: rotate_points3d()
|
|
|
|
// Usage:
|
|
|
|
// rotate_points3d(pts, a, [cp], [reverse]);
|
|
|
|
// rotate_points3d(pts, a, v, [cp], [reverse]);
|
|
|
|
// rotate_points3d(pts, from, to, [a], [cp], [reverse]);
|
|
|
|
// Description:
|
|
|
|
// Rotates each 3D point in an array by a given amount, around a given centerpoint.
|
|
|
|
// Arguments:
|
|
|
|
// pts = List of points to rotate.
|
|
|
|
// a = Rotation angle(s) in degrees.
|
|
|
|
// v = If given, axis vector to rotate around.
|
|
|
|
// cp = Centerpoint to rotate around.
|
|
|
|
// from = If given, the vector to rotate something from. Used with `to`.
|
|
|
|
// to = If given, the vector to rotate something to. Used with `from`.
|
|
|
|
// reverse = If true, performs an exactly reversed rotation.
|
|
|
|
function rotate_points3d(pts, a=0, v=undef, cp=[0,0,0], from=undef, to=undef, reverse=false) =
|
|
|
|
assert(is_undef(from)==is_undef(to), "`from` and `to` must be given together.")
|
|
|
|
let(
|
|
|
|
mrot = reverse? (
|
|
|
|
!is_undef(from)? (
|
|
|
|
let (
|
|
|
|
from = from / norm(from),
|
|
|
|
to = to / norm(from),
|
|
|
|
ang = vector_angle(from, to),
|
|
|
|
v = vector_axis(from, to)
|
|
|
|
)
|
|
|
|
matrix4_rot_by_axis(from, -a) * matrix4_rot_by_axis(v, -ang)
|
|
|
|
) : !is_undef(v)? (
|
|
|
|
matrix4_rot_by_axis(v, -a)
|
|
|
|
) : is_num(a)? (
|
|
|
|
matrix4_zrot(-a)
|
|
|
|
) : (
|
|
|
|
matrix4_xrot(-a.x) * matrix4_yrot(-a.y) * matrix4_zrot(-a.z)
|
|
|
|
)
|
|
|
|
) : (
|
|
|
|
!is_undef(from)? (
|
|
|
|
let (
|
|
|
|
from = from / norm(from),
|
|
|
|
to = to / norm(from),
|
|
|
|
ang = vector_angle(from, to),
|
|
|
|
v = vector_axis(from, to)
|
|
|
|
)
|
|
|
|
matrix4_rot_by_axis(v, ang) * matrix4_rot_by_axis(from, a)
|
|
|
|
) : !is_undef(v)? (
|
|
|
|
matrix4_rot_by_axis(v, a)
|
|
|
|
) : is_num(a)? (
|
|
|
|
matrix4_zrot(a)
|
|
|
|
) : (
|
|
|
|
matrix4_zrot(a.z) * matrix4_yrot(a.y) * matrix4_xrot(a.x)
|
|
|
|
)
|
|
|
|
),
|
|
|
|
m = matrix4_translate(cp) * mrot * matrix4_translate(-cp)
|
|
|
|
) [for (pt = pts) point3d(m*concat(point3d(pt),[1]))];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Section: Coordinate Systems
|
|
|
|
|
|
|
|
// Function: polar_to_xy()
|
|
|
|
// Usage:
|
|
|
|
// polar_to_xy(r, theta);
|
|
|
|
// polar_to_xy([r, theta]);
|
|
|
|
// Description:
|
|
|
|
// Convert polar coordinates to 2D cartesian coordinates.
|
|
|
|
// Returns [X,Y] cartesian coordinates.
|
|
|
|
// Arguments:
|
|
|
|
// r = distance from the origin.
|
|
|
|
// theta = angle in degrees, counter-clockwise of X+.
|
|
|
|
// Examples:
|
|
|
|
// xy = polar_to_xy(20,30);
|
|
|
|
// xy = polar_to_xy([40,60]);
|
|
|
|
function polar_to_xy(r,theta=undef) = let(
|
|
|
|
rad = theta==undef? r[0] : r,
|
|
|
|
t = theta==undef? r[1] : theta
|
|
|
|
) rad*[cos(t), sin(t)];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: xy_to_polar()
|
|
|
|
// Usage:
|
|
|
|
// xy_to_polar(x,y);
|
|
|
|
// xy_to_polar([X,Y]);
|
|
|
|
// Description:
|
|
|
|
// Convert 2D cartesian coordinates to polar coordinates.
|
|
|
|
// Returns [radius, theta] where theta is the angle counter-clockwise of X+.
|
|
|
|
// Arguments:
|
|
|
|
// x = X coordinate.
|
|
|
|
// y = Y coordinate.
|
|
|
|
// Examples:
|
|
|
|
// plr = xy_to_polar(20,30);
|
|
|
|
// plr = xy_to_polar([40,60]);
|
|
|
|
function xy_to_polar(x,y=undef) = let(
|
|
|
|
xx = y==undef? x[0] : x,
|
|
|
|
yy = y==undef? x[1] : y
|
|
|
|
) [norm([xx,yy]), atan2(yy,xx)];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: xyz_to_planar()
|
|
|
|
// Usage:
|
|
|
|
// xyz_to_planar(point, a, b, c);
|
|
|
|
// Description:
|
|
|
|
// Given three points defining a plane, returns the projected planar
|
|
|
|
// [X,Y] coordinates of the closest point to a 3D `point`. The origin
|
|
|
|
// of the planar coordinate system [0,0] will be at point `a`, and the
|
|
|
|
// Y+ axis direction will be towards point `b`. This coordinate system
|
|
|
|
// can be useful in taking a set of nearly coplanar points, and converting
|
|
|
|
// them to a pure XY set of coordinates for manipulation, before convering
|
|
|
|
// them back to the original 3D plane.
|
2019-05-01 06:45:05 +00:00
|
|
|
function xyz_to_planar(point, a, b, c) =
|
|
|
|
let(
|
|
|
|
u = normalize(b-a),
|
|
|
|
v = normalize(c-a),
|
|
|
|
n = normalize(cross(u,v)),
|
|
|
|
w = normalize(cross(n,u)),
|
|
|
|
relpoint = point-a
|
|
|
|
) [relpoint * w, relpoint * u];
|
2019-04-20 00:02:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
// Function: planar_to_xyz()
|
|
|
|
// Usage:
|
|
|
|
// planar_to_xyz(point, a, b, c);
|
|
|
|
// Description:
|
|
|
|
// Given three points defining a plane, converts a planar [X,Y]
|
|
|
|
// coordinate to the actual corresponding 3D point on the plane.
|
|
|
|
// The origin of the planar coordinate system [0,0] will be at point
|
|
|
|
// `a`, and the Y+ axis direction will be towards point `b`.
|
|
|
|
function planar_to_xyz(point, a, b, c) = let(
|
|
|
|
u = normalize(b-a),
|
|
|
|
v = normalize(c-a),
|
|
|
|
n = normalize(cross(u,v)),
|
|
|
|
w = normalize(cross(n,u))
|
|
|
|
) a + point.x * w + point.y * u;
|
|
|
|
|
|
|
|
|
|
|
|
// Function: cylindrical_to_xyz()
|
|
|
|
// Usage:
|
|
|
|
// cylindrical_to_xyz(r, theta, z)
|
|
|
|
// cylindrical_to_xyz([r, theta, z])
|
|
|
|
// Description:
|
|
|
|
// Convert cylindrical coordinates to 3D cartesian coordinates. Returns [X,Y,Z] cartesian coordinates.
|
|
|
|
// Arguments:
|
|
|
|
// r = distance from the Z axis.
|
|
|
|
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
|
|
|
|
// z = Height above XY plane.
|
|
|
|
// Examples:
|
|
|
|
// xyz = cylindrical_to_xyz(20,30,40);
|
|
|
|
// xyz = cylindrical_to_xyz([40,60,50]);
|
|
|
|
function cylindrical_to_xyz(r,theta=undef,z=undef) = let(
|
|
|
|
rad = theta==undef? r[0] : r,
|
|
|
|
t = theta==undef? r[1] : theta,
|
|
|
|
zed = theta==undef? r[2] : z
|
|
|
|
) [rad*cos(t), rad*sin(t), zed];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: xyz_to_cylindrical()
|
|
|
|
// Usage:
|
|
|
|
// xyz_to_cylindrical(x,y,z)
|
|
|
|
// xyz_to_cylindrical([X,Y,Z])
|
|
|
|
// Description:
|
|
|
|
// Convert 3D cartesian coordinates to cylindrical coordinates.
|
|
|
|
// Returns [radius,theta,Z]. Theta is the angle counter-clockwise
|
|
|
|
// of X+ on the XY plane. Z is height above the XY plane.
|
|
|
|
// Arguments:
|
|
|
|
// x = X coordinate.
|
|
|
|
// y = Y coordinate.
|
|
|
|
// z = Z coordinate.
|
|
|
|
// Examples:
|
|
|
|
// cyl = xyz_to_cylindrical(20,30,40);
|
|
|
|
// cyl = xyz_to_cylindrical([40,50,70]);
|
|
|
|
function xyz_to_cylindrical(x,y=undef,z=undef) = let(
|
|
|
|
p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x)
|
|
|
|
) [norm([p.x,p.y]), atan2(p.y,p.x), p.z];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: spherical_to_xyz()
|
|
|
|
// Usage:
|
|
|
|
// spherical_to_xyz(r, theta, phi);
|
|
|
|
// spherical_to_xyz([r, theta, phi]);
|
|
|
|
// Description:
|
|
|
|
// Convert spherical coordinates to 3D cartesian coordinates.
|
|
|
|
// Returns [X,Y,Z] cartesian coordinates.
|
|
|
|
// Arguments:
|
|
|
|
// r = distance from origin.
|
|
|
|
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
|
|
|
|
// phi = angle in degrees from the vertical Z+ axis.
|
|
|
|
// Examples:
|
|
|
|
// xyz = spherical_to_xyz(20,30,40);
|
|
|
|
// xyz = spherical_to_xyz([40,60,50]);
|
|
|
|
function spherical_to_xyz(r,theta=undef,phi=undef) = let(
|
|
|
|
rad = theta==undef? r[0] : r,
|
|
|
|
t = theta==undef? r[1] : theta,
|
|
|
|
p = theta==undef? r[2] : phi
|
|
|
|
) rad*[sin(p)*cos(t), sin(p)*sin(t), cos(p)];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: xyz_to_spherical()
|
|
|
|
// Usage:
|
|
|
|
// xyz_to_spherical(x,y,z)
|
|
|
|
// xyz_to_spherical([X,Y,Z])
|
|
|
|
// Description:
|
|
|
|
// Convert 3D cartesian coordinates to spherical coordinates.
|
|
|
|
// Returns [r,theta,phi], where phi is the angle from the Z+ pole,
|
|
|
|
// and theta is degrees counter-clockwise of X+ on the XY plane.
|
|
|
|
// Arguments:
|
|
|
|
// x = X coordinate.
|
|
|
|
// y = Y coordinate.
|
|
|
|
// z = Z coordinate.
|
|
|
|
// Examples:
|
|
|
|
// sph = xyz_to_spherical(20,30,40);
|
|
|
|
// sph = xyz_to_spherical([40,50,70]);
|
|
|
|
function xyz_to_spherical(x,y=undef,z=undef) = let(
|
|
|
|
p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x)
|
|
|
|
) [norm(p), atan2(p.y,p.x), atan2(norm([p.x,p.y]),p.z)];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: altaz_to_xyz()
|
|
|
|
// Usage:
|
|
|
|
// altaz_to_xyz(alt, az, r);
|
|
|
|
// altaz_to_xyz([alt, az, r]);
|
|
|
|
// Description:
|
|
|
|
// Convert altitude/azimuth/range coordinates to 3D cartesian coordinates.
|
|
|
|
// Returns [X,Y,Z] cartesian coordinates.
|
|
|
|
// Arguments:
|
|
|
|
// alt = altitude angle in degrees above the XY plane.
|
|
|
|
// az = azimuth angle in degrees clockwise of Y+ on the XY plane.
|
|
|
|
// r = distance from origin.
|
|
|
|
// Examples:
|
|
|
|
// xyz = altaz_to_xyz(20,30,40);
|
|
|
|
// xyz = altaz_to_xyz([40,60,50]);
|
|
|
|
function altaz_to_xyz(alt,az=undef,r=undef) = let(
|
|
|
|
p = az==undef? alt[0] : alt,
|
|
|
|
t = 90 - (az==undef? alt[1] : az),
|
|
|
|
rad = az==undef? alt[2] : r
|
|
|
|
) rad*[cos(p)*cos(t), cos(p)*sin(t), sin(p)];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: xyz_to_altaz()
|
|
|
|
// Usage:
|
|
|
|
// xyz_to_altaz(x,y,z);
|
|
|
|
// xyz_to_altaz([X,Y,Z]);
|
|
|
|
// Description:
|
|
|
|
// Convert 3D cartesian coordinates to altitude/azimuth/range coordinates.
|
|
|
|
// Returns [altitude,azimuth,range], where altitude is angle above the
|
|
|
|
// XY plane, azimuth is degrees clockwise of Y+ on the XY plane, and
|
|
|
|
// range is the distance from the origin.
|
|
|
|
// Arguments:
|
|
|
|
// x = X coordinate.
|
|
|
|
// y = Y coordinate.
|
|
|
|
// z = Z coordinate.
|
|
|
|
// Examples:
|
|
|
|
// aa = xyz_to_altaz(20,30,40);
|
|
|
|
// aa = xyz_to_altaz([40,50,70]);
|
|
|
|
function xyz_to_altaz(x,y=undef,z=undef) = let(
|
|
|
|
p = is_num(x)? [x, default(y,0), default(z,0)] : point3d(x)
|
|
|
|
) [atan2(p.z,norm([p.x,p.y])), atan2(p.x,p.y), norm(p)];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|