2019-04-20 00:02:17 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: coords.scad
// Coordinate transformations and coordinate system conversions.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: Coordinate Manipulation
// Function: point2d()
// Description:
// Returns a 2D vector/point from a 2D or 3D vector.
// If given a 3D point, removes the Z coordinate.
// Arguments:
// p = The coordinates to force into a 2D vector/point.
2019-05-26 21:25:55 +00:00
// fill = Value to fill missing values in vector with.
function point2d ( p , fill = 0 ) = [ for ( i = [ 0 : 1 ] ) ( p [ i ] = = undef ) ? fill : p [ i ] ] ;
2019-04-20 00:02:17 +00:00
// Function: path2d()
// Description:
2020-03-03 02:39:57 +00:00
// Returns a list of 2D vectors/points from a list of 2D, 3D or higher
// dimensional vectors/points. Removes the extra coordinates from
// higher dimensional points. The input must be a path, where
// every vector has the same length.
2019-04-20 00:02:17 +00:00
// Arguments:
// points = A list of 2D or 3D points/vectors.
2019-05-26 21:25:55 +00:00
// fill = Value to fill missing values in vectors with.
2020-03-03 02:39:57 +00:00
function path2d ( points ) =
2020-03-03 05:48:54 +00:00
assert ( is_path ( points , dim = undef , fast = true ) , "Input to path2d is not a path" )
2020-03-05 04:22:39 +00:00
let ( result = points * concat ( ident ( 2 ) , repeat ( [ 0 , 0 ] , len ( points [ 0 ] ) - 2 ) ) )
2020-03-03 05:48:54 +00:00
assert ( is_def ( result ) , "Invalid input to path2d" )
result ;
2019-04-20 00:02:17 +00:00
// Function: point3d()
// Description:
// Returns a 3D vector/point from a 2D or 3D vector.
// Arguments:
// p = The coordinates to force into a 3D vector/point.
2019-05-26 21:25:55 +00:00
// fill = Value to fill missing values in vector with.
function point3d ( p , fill = 0 ) = [ for ( i = [ 0 : 2 ] ) ( p [ i ] = = undef ) ? fill : p [ i ] ] ;
2019-04-20 00:02:17 +00:00
// Function: path3d()
// Description:
2020-03-03 02:39:57 +00:00
// Returns a list of 3D vectors/points from a list of 2D or higher dimensional vectors/points
// by removing extra coordinates or adding the z coordinate.
2019-04-20 00:02:17 +00:00
// Arguments:
2020-03-03 02:39:57 +00:00
// points = A list of 2D, 3D or higher dimensional points/vectors.
// fill = Value to fill missing values in vectors with (in the 2D case)
function path3d ( points , fill = 0 ) =
2020-03-03 05:48:54 +00:00
assert ( is_num ( fill ) )
assert ( is_path ( points , dim = undef , fast = true ) , "Input to path3d is not a path" )
let (
change = len ( points [ 0 ] ) - 3 ,
M = change < 0 ? [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] ] :
2020-03-05 04:22:39 +00:00
concat ( ident ( 3 ) , repeat ( [ 0 , 0 , 0 ] , change ) ) ,
2020-03-03 05:48:54 +00:00
result = points * M
)
assert ( is_def ( result ) , "Input to path3d is invalid" )
2020-03-05 04:22:39 +00:00
fill = = 0 || change >= 0 ? result : result + repeat ( [ 0 , 0 , fill ] , len ( result ) ) ;
2019-05-26 21:25:55 +00:00
// Function: point4d()
// Description:
// Returns a 4D vector/point from a 2D or 3D vector.
// Arguments:
// p = The coordinates to force into a 4D vector/point.
// fill = Value to fill missing values in vector with.
function point4d ( p , fill = 0 ) = [ for ( i = [ 0 : 3 ] ) ( p [ i ] = = undef ) ? fill : p [ i ] ] ;
// Function: path4d()
// Description:
// Returns a list of 4D vectors/points from a list of 2D or 3D vectors/points.
// Arguments:
// points = A list of 2D or 3D points/vectors.
// fill = Value to fill missing values in vectors with.
2020-03-03 02:39:57 +00:00
function path4d ( points , fill = 0 ) =
assert ( is_num ( fill ) || is_vector ( fill ) )
assert ( is_path ( points , dim = undef , fast = true ) , "Input to path4d is not a path" )
let (
change = len ( points [ 0 ] ) - 4 ,
M = change < 0 ? select ( ident ( 4 ) , 0 , len ( points [ 0 ] ) - 1 ) :
2020-03-05 04:22:39 +00:00
concat ( ident ( 4 ) , repeat ( [ 0 , 0 , 0 , 0 ] , change ) ) ,
2020-03-03 02:39:57 +00:00
result = points * M
)
assert ( is_def ( result ) , "Input to path4d is invalid" )
fill = = 0 || change >= 0 ? result :
let (
addition = is_list ( fill ) ? concat ( 0 * points [ 0 ] , fill ) :
2020-03-05 04:22:39 +00:00
concat ( 0 * points [ 0 ] , repeat ( fill , - change ) )
2020-03-03 02:39:57 +00:00
)
assert ( len ( addition ) = = 4 , "Fill is the wrong length" )
2020-03-05 04:22:39 +00:00
result + repeat ( addition , len ( result ) ) ;
2019-04-20 00:02:17 +00:00
// Section: Coordinate Systems
// Function: polar_to_xy()
// Usage:
// polar_to_xy(r, theta);
// polar_to_xy([r, theta]);
// Description:
// Convert polar coordinates to 2D cartesian coordinates.
// Returns [X,Y] cartesian coordinates.
// Arguments:
// r = distance from the origin.
// theta = angle in degrees, counter-clockwise of X+.
// Examples:
2019-10-24 05:51:22 +00:00
// xy = polar_to_xy(20,45); // Returns: ~[14.1421365, 14.1421365]
// xy = polar_to_xy(40,30); // Returns: ~[34.6410162, 15]
// xy = polar_to_xy([40,30]); // Returns: ~[34.6410162, 15]
2019-04-20 00:02:17 +00:00
function polar_to_xy ( r , theta = undef ) = let (
rad = theta = = undef ? r [ 0 ] : r ,
t = theta = = undef ? r [ 1 ] : theta
) rad * [ cos ( t ) , sin ( t ) ] ;
// Function: xy_to_polar()
// Usage:
// xy_to_polar(x,y);
// xy_to_polar([X,Y]);
// Description:
// Convert 2D cartesian coordinates to polar coordinates.
// Returns [radius, theta] where theta is the angle counter-clockwise of X+.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// Examples:
// plr = xy_to_polar(20,30);
// plr = xy_to_polar([40,60]);
function xy_to_polar ( x , y = undef ) = let (
xx = y = = undef ? x [ 0 ] : x ,
yy = y = = undef ? x [ 1 ] : y
) [ norm ( [ xx , yy ] ) , atan2 ( yy , xx ) ] ;
2019-05-27 19:25:13 +00:00
// Function: project_plane()
2020-04-30 05:45:41 +00:00
// Usage: With 3 Points
// xyz = project_plane(point, a, b, c);
// Usage: With Pointlist
// xyz = project_plane(point, POINTLIST);
// Usage: With Plane Definition [A,B,C,D] Where Ax+By+Cz=D
// xyz = project_plane(point, PLANE);
2019-04-20 00:02:17 +00:00
// Description:
2020-04-30 05:45:41 +00:00
// Converts the given 3D point from global coordinates to the 2D planar coordinates of the closest
// point on the plane. This coordinate system can be useful in taking a set of nearly coplanar
// points, and converting them to a pure XY set of coordinates for manipulation, before converting
// them back to the original 3D plane.
// Can be called one of three ways:
// - Given three points, `a`, `b`, and `c`, the planar coordinate system will have `[0,0]` at point `a`, and the Y+ axis will be towards point `b`.
// - Given a list of points, finds three reasonably spaced non-collinear points in the list and uses them as points `a`, `b`, and `c` as above.
// - Given a plane definition `[A,B,C,D]` where `Ax+By+Cz=D`, the closest point on that plane to the global origin at `[0,0,0]` will be the planar coordinate origin `[0,0]`.
2019-10-25 22:16:48 +00:00
// Arguments:
// point = The 3D point, or list of 3D points to project into the plane's 2D coordinate system.
// a = A 3D point that the plane passes through. Used to define the plane.
// b = A 3D point that the plane passes through. Used to define the plane.
// c = A 3D point that the plane passes through. Used to define the plane.
// Example:
// pt = [5,-5,5];
// a=[0,0,0]; b=[10,-10,0]; c=[10,0,10];
// xy = project_plane(pt, a, b, c);
// xy2 = project_plane(pt, [a,b,c]);
2019-05-27 19:25:13 +00:00
function project_plane ( point , a , b , c ) =
2019-10-25 22:16:48 +00:00
is_undef ( b ) && is_undef ( c ) && is_list ( a ) ? let (
2020-04-30 05:45:41 +00:00
mat = is_vector ( a , 4 ) ? plane_transform ( a ) :
assert ( is_path ( a ) && len ( a ) >= 3 )
plane_transform ( plane_from_points ( a ) ) ,
pts = is_vector ( point ) ? point2d ( apply ( mat , point ) ) :
is_path ( point ) ? path2d ( apply ( mat , point ) ) :
is_region ( point ) ? [ for ( x = point ) path2d ( apply ( mat , x ) ) ] :
assert ( false , "point must be a 3D point, path, or region." )
) pts :
2019-10-25 22:16:48 +00:00
assert ( is_vector ( a ) )
assert ( is_vector ( b ) )
assert ( is_vector ( c ) )
assert ( is_vector ( point ) || is_path ( point ) )
2019-05-01 06:45:05 +00:00
let (
2020-03-03 03:30:20 +00:00
u = unit ( b - a ) ,
v = unit ( c - a ) ,
n = unit ( cross ( u , v ) ) ,
w = unit ( cross ( n , u ) ) ,
2020-03-21 22:24:49 +00:00
relpoint = apply ( move ( - a ) , point )
2019-05-27 19:25:13 +00:00
) relpoint * transpose ( [ w , u ] ) ;
2019-04-20 00:02:17 +00:00
2019-05-27 19:27:33 +00:00
// Function: lift_plane()
2020-04-30 05:45:41 +00:00
// Usage: With 3 Points
2019-10-25 22:16:48 +00:00
// xyz = lift_plane(point, a, b, c);
2020-04-30 05:45:41 +00:00
// Usage: With Pointlist
// xyz = lift_plane(point, POINTLIST);
// Usage: With Plane Definition [A,B,C,D] Where Ax+By+Cz=D
// xyz = lift_plane(point, PLANE);
2019-04-20 00:02:17 +00:00
// Description:
2020-04-30 05:45:41 +00:00
// Converts the given 2D point from planar coordinates to the global 3D coordinates of the point on the plane.
// Can be called one of three ways:
// - Given three points, `a`, `b`, and `c`, the planar coordinate system will have `[0,0]` at point `a`, and the Y+ axis will be towards point `b`.
// - Given a list of points, finds three non-collinear points in the list and uses them as points `a`, `b`, and `c` as above.
// - Given a plane definition `[A,B,C,D]` where `Ax+By+Cz=D`, the closest point on that plane to the global origin at `[0,0,0]` will be the planar coordinate origin `[0,0]`.
2019-10-25 22:16:48 +00:00
// Arguments:
// point = The 2D point, or list of 2D points in the plane's coordinate system to get the 3D position of.
// a = A 3D point that the plane passes through. Used to define the plane.
// b = A 3D point that the plane passes through. Used to define the plane.
// c = A 3D point that the plane passes through. Used to define the plane.
2019-05-27 19:25:13 +00:00
function lift_plane ( point , a , b , c ) =
2019-10-25 22:16:48 +00:00
is_undef ( b ) && is_undef ( c ) && is_list ( a ) ? let (
2020-04-30 05:45:41 +00:00
mat = is_vector ( a , 4 ) ? plane_transform ( a ) :
assert ( is_path ( a ) && len ( a ) >= 3 )
plane_transform ( plane_from_points ( a ) ) ,
imat = matrix_inverse ( mat ) ,
pts = is_vector ( point ) ? apply ( imat , point3d ( point ) ) :
is_path ( point ) ? apply ( imat , path3d ( point ) ) :
is_region ( point ) ? [ for ( x = point ) apply ( imat , path3d ( x ) ) ] :
assert ( false , "point must be a 2D point, path, or region." )
) pts :
2019-10-25 22:16:48 +00:00
assert ( is_vector ( a ) )
assert ( is_vector ( b ) )
assert ( is_vector ( c ) )
assert ( is_vector ( point ) || is_path ( point ) )
2019-05-27 19:25:13 +00:00
let (
2020-03-03 03:30:20 +00:00
u = unit ( b - a ) ,
v = unit ( c - a ) ,
n = unit ( cross ( u , v ) ) ,
w = unit ( cross ( n , u ) ) ,
2019-05-27 19:25:13 +00:00
remapped = point * [ w , u ]
2020-03-21 22:24:49 +00:00
) apply ( move ( a ) , remapped ) ;
2019-04-20 00:02:17 +00:00
// Function: cylindrical_to_xyz()
// Usage:
// cylindrical_to_xyz(r, theta, z)
// cylindrical_to_xyz([r, theta, z])
// Description:
// Convert cylindrical coordinates to 3D cartesian coordinates. Returns [X,Y,Z] cartesian coordinates.
// Arguments:
// r = distance from the Z axis.
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
// z = Height above XY plane.
// Examples:
// xyz = cylindrical_to_xyz(20,30,40);
// xyz = cylindrical_to_xyz([40,60,50]);
function cylindrical_to_xyz ( r , theta = undef , z = undef ) = let (
rad = theta = = undef ? r [ 0 ] : r ,
t = theta = = undef ? r [ 1 ] : theta ,
zed = theta = = undef ? r [ 2 ] : z
) [ rad * cos ( t ) , rad * sin ( t ) , zed ] ;
// Function: xyz_to_cylindrical()
// Usage:
// xyz_to_cylindrical(x,y,z)
// xyz_to_cylindrical([X,Y,Z])
// Description:
// Convert 3D cartesian coordinates to cylindrical coordinates.
// Returns [radius,theta,Z]. Theta is the angle counter-clockwise
// of X+ on the XY plane. Z is height above the XY plane.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Examples:
// cyl = xyz_to_cylindrical(20,30,40);
// cyl = xyz_to_cylindrical([40,50,70]);
function xyz_to_cylindrical ( x , y = undef , z = undef ) = let (
p = is_num ( x ) ? [ x , default ( y , 0 ) , default ( z , 0 ) ] : point3d ( x )
) [ norm ( [ p . x , p . y ] ) , atan2 ( p . y , p . x ) , p . z ] ;
// Function: spherical_to_xyz()
// Usage:
// spherical_to_xyz(r, theta, phi);
// spherical_to_xyz([r, theta, phi]);
// Description:
// Convert spherical coordinates to 3D cartesian coordinates.
// Returns [X,Y,Z] cartesian coordinates.
// Arguments:
// r = distance from origin.
// theta = angle in degrees, counter-clockwise of X+ on the XY plane.
// phi = angle in degrees from the vertical Z+ axis.
// Examples:
// xyz = spherical_to_xyz(20,30,40);
// xyz = spherical_to_xyz([40,60,50]);
function spherical_to_xyz ( r , theta = undef , phi = undef ) = let (
rad = theta = = undef ? r [ 0 ] : r ,
t = theta = = undef ? r [ 1 ] : theta ,
p = theta = = undef ? r [ 2 ] : phi
) rad * [ sin ( p ) * cos ( t ) , sin ( p ) * sin ( t ) , cos ( p ) ] ;
// Function: xyz_to_spherical()
// Usage:
// xyz_to_spherical(x,y,z)
// xyz_to_spherical([X,Y,Z])
// Description:
// Convert 3D cartesian coordinates to spherical coordinates.
// Returns [r,theta,phi], where phi is the angle from the Z+ pole,
// and theta is degrees counter-clockwise of X+ on the XY plane.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Examples:
// sph = xyz_to_spherical(20,30,40);
// sph = xyz_to_spherical([40,50,70]);
function xyz_to_spherical ( x , y = undef , z = undef ) = let (
p = is_num ( x ) ? [ x , default ( y , 0 ) , default ( z , 0 ) ] : point3d ( x )
) [ norm ( p ) , atan2 ( p . y , p . x ) , atan2 ( norm ( [ p . x , p . y ] ) , p . z ) ] ;
// Function: altaz_to_xyz()
// Usage:
// altaz_to_xyz(alt, az, r);
// altaz_to_xyz([alt, az, r]);
// Description:
// Convert altitude/azimuth/range coordinates to 3D cartesian coordinates.
// Returns [X,Y,Z] cartesian coordinates.
// Arguments:
// alt = altitude angle in degrees above the XY plane.
// az = azimuth angle in degrees clockwise of Y+ on the XY plane.
// r = distance from origin.
// Examples:
// xyz = altaz_to_xyz(20,30,40);
// xyz = altaz_to_xyz([40,60,50]);
function altaz_to_xyz ( alt , az = undef , r = undef ) = let (
p = az = = undef ? alt [ 0 ] : alt ,
t = 90 - ( az = = undef ? alt [ 1 ] : az ) ,
rad = az = = undef ? alt [ 2 ] : r
) rad * [ cos ( p ) * cos ( t ) , cos ( p ) * sin ( t ) , sin ( p ) ] ;
// Function: xyz_to_altaz()
// Usage:
// xyz_to_altaz(x,y,z);
// xyz_to_altaz([X,Y,Z]);
// Description:
// Convert 3D cartesian coordinates to altitude/azimuth/range coordinates.
// Returns [altitude,azimuth,range], where altitude is angle above the
// XY plane, azimuth is degrees clockwise of Y+ on the XY plane, and
// range is the distance from the origin.
// Arguments:
// x = X coordinate.
// y = Y coordinate.
// z = Z coordinate.
// Examples:
// aa = xyz_to_altaz(20,30,40);
// aa = xyz_to_altaz([40,50,70]);
function xyz_to_altaz ( x , y = undef , z = undef ) = let (
p = is_num ( x ) ? [ x , default ( y , 0 ) , default ( z , 0 ) ] : point3d ( x )
) [ atan2 ( p . z , norm ( [ p . x , p . y ] ) ) , atan2 ( p . x , p . y ) , norm ( p ) ] ;
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap