BOSL2/wiring.scad

107 lines
3.5 KiB
OpenSCAD
Raw Normal View History

2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: wiring.scad
// Rendering for wiring bundles
// To use, include the following line at the top of your file:
// ```
// include <BOSL2/std.scad>
// include <BOSL2/wiring.scad>
// ```
2017-08-30 00:00:16 +00:00
//////////////////////////////////////////////////////////////////////
include <beziers.scad>
2017-08-30 00:00:16 +00:00
// Section: Functions
// Function: hex_offset_ring()
// Description:
// Returns a hexagonal ring of points, with a spacing of `d`.
// If `lev=0`, returns a single point at `[0,0]`. All greater
// levels return 6 times `lev` points.
// Usage:
// hex_offset_ring(d, lev)
// Arguments:
// d = Base unit diameter to build rings upon.
// lev = How many rings to produce.
// Example:
// hex_offset_ring(d=1, lev=3); // Returns a hex ring of 18 points.
function hex_offset_ring(d, lev=0) =
(lev == 0)? [[0,0]] : [
for (
sideang = [0:60:359.999],
sidenum = [1:1:lev]
) [
lev*d*cos(sideang)+sidenum*d*cos(sideang+120),
lev*d*sin(sideang)+sidenum*d*sin(sideang+120)
]
];
2017-08-30 00:00:16 +00:00
// Function: hex_offsets()
// Description:
// Returns the centerpoints for the optimal hexagonal packing
// of at least `n` circular items, of diameter `d`. Will return
// enough points to fill out the last ring, even if that is more
// than `n` points.
// Usage:
// hex_offsets(n, d)
// Arguments:
// n = Number of items to bundle.
// d = How far to space each point away from others.
function hex_offsets(n, d, lev=0, arr=[]) =
(len(arr) >= n)? arr :
hex_offsets(
n=n,
d=d,
lev=lev+1,
arr=concat(arr, hex_offset_ring(d, lev=lev))
);
2017-08-30 00:00:16 +00:00
// Section: Modules
// Module: wiring()
// Description:
// Returns a 3D object representing a bundle of wires that follow a given path,
2019-04-25 02:42:38 +00:00
// with the corners rounded to a given radius. There are 17 base wire colors.
// If you have more than 17 wires, colors will get re-used.
2017-08-30 00:00:16 +00:00
// Usage:
2019-04-25 02:42:38 +00:00
// wiring(path, wires, [wirediam], [rounding], [wirenum], [bezsteps]);
// Arguments:
// path = The 3D polyline path that the wire bundle should follow.
// wires = The number of wires in the wiring bundle.
// wirediam = The diameter of each wire in the bundle.
2019-04-25 02:42:38 +00:00
// rounding = The radius that the path corners will be rounded to.
// wirenum = The first wire's offset into the color table.
2019-04-25 02:42:38 +00:00
// bezsteps = The corner roundings in the path will be converted into this number of segments.
// Example:
2019-04-25 02:42:38 +00:00
// wiring([[50,0,-50], [50,50,-50], [0,50,-50], [0,0,-50], [0,0,0]], rounding=10, wires=13);
module wiring(path, wires, wirediam=2, rounding=10, wirenum=0, bezsteps=12) {
colors = [
[0.2, 0.2, 0.2], [1.0, 0.2, 0.2], [0.0, 0.8, 0.0], [1.0, 1.0, 0.2],
[0.3, 0.3, 1.0], [1.0, 1.0, 1.0], [0.7, 0.5, 0.0], [0.5, 0.5, 0.5],
[0.2, 0.9, 0.9], [0.8, 0.0, 0.8], [0.0, 0.6, 0.6], [1.0, 0.7, 0.7],
[1.0, 0.5, 1.0], [0.5, 0.6, 0.0], [1.0, 0.7, 0.0], [0.7, 1.0, 0.5],
[0.6, 0.6, 1.0],
];
offsets = hex_offsets(wires, wirediam);
bezpath = fillet_path(path, rounding);
poly = simplify_path(path3d(bezier_polyline(bezpath, bezsteps)));
n = max(segs(wirediam), 8);
r = wirediam/2;
for (i = [0:1:wires-1]) {
extpath = [for (j = [0:1:n-1]) let(a=j*360/n) [r*cos(a)+offsets[i][0], r*sin(a)+offsets[i][1]]];
color(colors[(i+wirenum)%len(colors)]) {
path_sweep(extpath, poly);
}
}
2017-08-30 00:00:16 +00:00
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap