BOSL2/screw_drive.scad

317 lines
8.9 KiB
OpenSCAD
Raw Normal View History

//////////////////////////////////////////////////////////////////////
// LibFile: screw_drive.scad
// Recess masks for screw heads
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/screw_drive.scad>
//////////////////////////////////////////////////////////////////////
// Section: Phillips Drive
// Module: phillips_mask()
// Description: Creates a mask for creating a Phillips drive recess given the Phillips size.
// Arguments:
// size = The size of the bit as a number or string. "#0", "#1", "#2", "#3", or "#4"
// shaft = The diameter of the drive bit's shaft.
// l = The length of the drive bit.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example:
// xdistribute(10) {
// phillips_mask(size="#1", l=20);
// phillips_mask(size="#2", l=20);
// phillips_mask(size=3, l=20);
// phillips_mask(size=4, l=20);
// }
// Specs for phillips recess here:
// https://www.fasteners.eu/tech-info/ISO/4757/
module phillips_mask(size="#2", shaft, l=20, $fn=36, anchor=BOTTOM, spin=0, orient=UP) {
assert(in_list(size,["#0","#1","#2","#3","#4",0,1,2,3,4]));
num = is_num(size) ? size : ord(size[1]) - ord("0");
defshaft = [3,4.5,6,8,10][num];
shaft = first_defined([defshaft,shaft,defshaft]);
b = [0.61, 0.97, 1.47, 2.41, 3.48][num];
e = [0.31, 0.435, 0.815, 2.005, 2.415][num];
// e = [0.31, 0.435, 0.815, 2.1505, 2.415][num];
g = [0.81, 1.27, 2.29, 3.81, 5.08][num];
//f = [0.33, 0.53, 0.70, 0.82, 1.23][num];
//r = [0.30, 0.50, 0.60, 0.80, 1.00][num];
alpha = [ 136, 138, 140, 146, 153][num];
beta = [7.00, 7.00, 5.75, 5.75, 7.00][num];
gamma = 92.0;
ang1 = 28.0;
ang2 = 26.5;
h1 = adj_ang_to_opp(g/2, ang1); // height of the small conical tip
h2 = adj_ang_to_opp((shaft-g)/2, 90-ang2); // height of larger cone
h3 = adj_ang_to_opp(b/2, ang1); // height where cutout starts
p0 = [0,0];
p1 = [adj_ang_to_opp(e/2, 90-alpha/2), -e/2];
p2 = p1 + [adj_ang_to_opp((shaft-e)/2, 90-gamma/2),-(shaft-e)/2];
attachable(anchor,spin,orient, d=shaft, l=l) {
down(l/2) {
difference() {
rotate_extrude()
polygon([[0,0],[g/2,h1],[shaft/2,h1+h2],[shaft/2,l],[0,l]]);
zrot(45)
zrot_copies(n=4, r=b/2) {
up(h3) {
yrot(beta) {
linear_extrude(height=(h1+h2)*20, convexity=4, center=false) {
path = [p0, p1, p2, [p2.x,-p2.y], [p1.x,-p1.y]];
polygon(path);
}
}
}
}
}
}
children();
}
}
// Function: phillips_depth()
// Usage:
// depth = phillips_depth(size, d);
// Description:
// Returns the depth of the Phillips recess required to produce the specified diameter, or
// undef if not possible.
// Arguments:
// size = size as a number or text string like "#2"
// d = desired diameter
function phillips_depth(size, d) =
assert(in_list(size,["#0","#1","#2","#3","#4",0,1,2,3,4]))
let(
num = is_num(size) ? size : ord(size[1]) - ord("0"),
shaft = [3,4.5,6,8,10][num],
g = [0.81, 1.27, 2.29, 3.81, 5.08][num],
ang1 = 28.0,
ang2 = 26.5,
h1 = adj_ang_to_opp(g/2, ang1), // height of the small conical tip
h2 = adj_ang_to_opp((shaft-g)/2, 90-ang2) // height of larger cone
)
d>shaft ? undef :
d<g ? undef :
(d-g) / 2 / tan(ang2) + h1;
// Function: phillips_diam()
// Usage:
// diam = phillips_diam(size, depth);
// Description:
// Returns the diameter at the top of the Phillips recess when constructed at the specified depth.
// Arguments:
// size = size as number or text string like "#2"
// depth = depth of recess to find the diameter of
function phillips_diam(size, depth) =
assert(in_list(size,["#0","#1","#2","#3","#4",0,1,2,3,4]))
let(
num = is_num(size) ? size : ord(size[1]) - ord("0"),
shaft = [3,4.5,6,8,10][num],
ang1 = 28.0,
ang2 = 26.5,
g = [0.81, 1.27, 2.29, 3.81, 5.08][num],
h1 = adj_ang_to_opp(g/2, ang1), // height of the small conical tip
h2 = adj_ang_to_opp((shaft-g)/2, 90-ang2) // height of larger cone
)
depth<h1 ? undef :
depth>h1+h2 ? shaft :
2 * tan(ang2)*(depth-h1) + g;
// Section: Torx Drive
// Function: torx_outer_diam()
// Description: Get the typical outer diameter of Torx profile.
// Arguments:
// size = Torx size.
function torx_outer_diam(size) = lookup(size, [
[ 6, 1.75],
[ 8, 2.40],
[ 10, 2.80],
[ 15, 3.35],
[ 20, 3.95],
[ 25, 4.50],
[ 30, 5.60],
[ 40, 6.75],
[ 45, 7.93],
[ 50, 8.95],
[ 55, 11.35],
[ 60, 13.45],
[ 70, 15.70],
[ 80, 17.75],
[ 90, 20.20],
[100, 22.40]
]);
// Function: torx_inner_diam()
// Description: Get typical inner diameter of Torx profile.
// Arguments:
// size = Torx size.
function torx_inner_diam(size) = lookup(size, [
[ 6, 1.27],
[ 8, 1.75],
[ 10, 2.05],
[ 15, 2.40],
[ 20, 2.85],
[ 25, 3.25],
[ 30, 4.05],
[ 40, 4.85],
[ 45, 5.64],
[ 50, 6.45],
[ 55, 8.05],
[ 60, 9.60],
[ 70, 11.20],
[ 80, 12.80],
[ 90, 14.40],
[100, 16.00]
]);
// Function: torx_depth()
// Description: Gets typical drive hole depth.
// Arguments:
// size = Torx size.
function torx_depth(size) = lookup(size, [
[ 6, 1.82],
[ 8, 3.05],
[ 10, 3.56],
[ 15, 3.81],
[ 20, 4.07],
[ 25, 4.45],
[ 30, 4.95],
[ 40, 5.59],
[ 45, 6.22],
[ 50, 6.48],
[ 55, 6.73],
[ 60, 8.17],
[ 70, 8.96],
[ 80, 9.90],
[ 90, 10.56],
[100, 11.35]
]);
// Function: torx_tip_radius()
// Description: Gets minor rounding radius of Torx profile.
// Arguments:
// size = Torx size.
function torx_tip_radius(size) = lookup(size, [
[ 6, 0.132],
[ 8, 0.190],
[ 10, 0.229],
[ 15, 0.267],
[ 20, 0.305],
[ 25, 0.375],
[ 30, 0.451],
[ 40, 0.546],
[ 45, 0.574],
[ 50, 0.775],
[ 55, 0.867],
[ 60, 1.067],
[ 70, 1.194],
[ 80, 1.526],
[ 90, 1.530],
[100, 1.720]
]);
// Function: torx_rounding_radius()
// Description: Gets major rounding radius of Torx profile.
// Arguments:
// size = Torx size.
function torx_rounding_radius(size) = lookup(size, [
[ 6, 0.383],
[ 8, 0.510],
[ 10, 0.598],
[ 15, 0.716],
[ 20, 0.859],
[ 25, 0.920],
[ 30, 1.194],
[ 40, 1.428],
[ 45, 1.796],
[ 50, 1.816],
[ 55, 2.667],
[ 60, 2.883],
[ 70, 3.477],
[ 80, 3.627],
[ 90, 4.468],
[100, 4.925]
]);
// Module: torx_mask2d()
// Description: Creates a torx bit 2D profile.
// Arguments:
// size = Torx size.
// Example(2D):
// torx_mask2d(size=30, $fa=1, $fs=1);
module torx_mask2d(size) {
od = torx_outer_diam(size);
id = torx_inner_diam(size);
tip = torx_tip_radius(size);
rounding = torx_rounding_radius(size);
base = od - 2*tip;
$fn = quantup(segs(od/2),12);
difference() {
union() {
circle(d=base);
zrot_copies(n=2) {
hull() {
zrot_copies(n=3) {
translate([base/2,0,0]) {
circle(r=tip, $fn=$fn/2);
}
}
}
}
}
zrot_copies(n=6) {
zrot(180/6) {
translate([id/2+rounding,0,0]) {
circle(r=rounding);
}
}
}
}
}
// Module: torx_mask()
// Description: Creates a torx bit tip.
// Arguments:
// size = Torx size.
// l = Length of bit.
// center = If true, centers bit vertically.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Examples:
// torx_mask(size=30, l=10, $fa=1, $fs=1);
module torx_mask(size, l=5, center, anchor, spin=0, orient=UP) {
anchor = get_anchor(anchor, center, BOT, BOT);
od = torx_outer_diam(size);
attachable(anchor,spin,orient, d=od, l=l) {
linear_extrude(height=l, convexity=4, center=true) {
torx_mask2d(size);
}
children();
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap