2019-04-26 09:15:53 +00:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// LibFile: walls.scad
|
|
|
|
// Various wall constructions.
|
|
|
|
// To use, add the following lines to the beginning of your file:
|
|
|
|
// ```
|
|
|
|
// include <BOSL2/std.scad>
|
|
|
|
// include <BOSL2/walls.scad>
|
|
|
|
// ```
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
// Section: Walls
|
|
|
|
|
|
|
|
|
|
|
|
// Module: narrowing_strut()
|
|
|
|
//
|
|
|
|
// Description:
|
|
|
|
// Makes a rectangular strut with the top side narrowing in a triangle.
|
|
|
|
// The shape created may be likened to an extruded home plate from baseball.
|
|
|
|
// This is useful for constructing parts that minimize the need to support
|
|
|
|
// overhangs.
|
|
|
|
//
|
|
|
|
// Usage:
|
|
|
|
// narrowing_strut(w, l, wall, [ang], [orient], [anchor]);
|
|
|
|
//
|
|
|
|
// Arguments:
|
|
|
|
// w = Width (thickness) of the strut.
|
|
|
|
// l = Length of the strut.
|
|
|
|
// wall = height of rectangular portion of the strut.
|
|
|
|
// ang = angle that the trianglar side will converge at.
|
|
|
|
// orient = Orientation of the length axis of the shape. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Y`.
|
|
|
|
// anchor = Alignment of the shape. Use the constants from `constants.scad`. Default: `FRONT`.
|
|
|
|
//
|
|
|
|
// Example:
|
|
|
|
// narrowing_strut(w=10, l=100, wall=5, ang=30);
|
2019-05-17 21:41:45 +00:00
|
|
|
module narrowing_strut(w=10, l=100, wall=5, ang=30, orient=ORIENT_Y, anchor=BOTTOM)
|
2019-04-26 09:15:53 +00:00
|
|
|
{
|
|
|
|
h = wall + w/2/tan(ang);
|
|
|
|
size = [w, h, l];
|
|
|
|
orient_and_anchor(size, orient, anchor, chain=true) {
|
|
|
|
fwd(h/2) {
|
|
|
|
linear_extrude(height=l, center=true, slices=2) {
|
|
|
|
back(wall/2) square([w, wall], center=true);
|
|
|
|
back(wall-0.001) {
|
|
|
|
yscale(1/tan(ang)) {
|
|
|
|
difference() {
|
|
|
|
zrot(45) square(w/sqrt(2), center=true);
|
|
|
|
fwd(w/2) square(w, center=true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
children();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Module: thinning_wall()
|
|
|
|
//
|
|
|
|
// Description:
|
|
|
|
// Makes a rectangular wall which thins to a smaller width in the center,
|
|
|
|
// with angled supports to prevent critical overhangs.
|
|
|
|
//
|
|
|
|
// Usage:
|
|
|
|
// thinning_wall(h, l, thick, [ang], [strut], [wall], [orient], [anchor]);
|
|
|
|
//
|
|
|
|
// Arguments:
|
|
|
|
// h = height of wall.
|
|
|
|
// l = length of wall. If given as a vector of two numbers, specifies bottom and top lengths, respectively.
|
|
|
|
// thick = thickness of wall.
|
|
|
|
// ang = maximum overhang angle of diagonal brace.
|
|
|
|
// strut = the width of the diagonal brace.
|
|
|
|
// wall = the thickness of the thinned portion of the wall.
|
|
|
|
// orient = Orientation of the length axis of the wall. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_X`.
|
|
|
|
// anchor = Alignment of the shape. Use the constants from `constants.scad`. Default: `CENTER`.
|
|
|
|
//
|
|
|
|
// Example: Typical Shape
|
|
|
|
// thinning_wall(h=50, l=80, thick=4);
|
|
|
|
// Example: Trapezoidal
|
|
|
|
// thinning_wall(h=50, l=[80,50], thick=4);
|
|
|
|
module thinning_wall(h=50, l=100, thick=5, ang=30, strut=5, wall=2, orient=ORIENT_Z, anchor=CENTER)
|
|
|
|
{
|
|
|
|
l1 = (l[0] == undef)? l : l[0];
|
|
|
|
l2 = (l[1] == undef)? l : l[1];
|
|
|
|
|
|
|
|
trap_ang = atan2((l2-l1)/2, h);
|
|
|
|
corr1 = 1 + sin(trap_ang);
|
|
|
|
corr2 = 1 - sin(trap_ang);
|
|
|
|
|
|
|
|
z1 = h/2;
|
|
|
|
z2 = max(0.1, z1 - strut);
|
|
|
|
z3 = max(0.05, z2 - (thick-wall)/2*sin(90-ang)/sin(ang));
|
|
|
|
|
|
|
|
x1 = l2/2;
|
|
|
|
x2 = max(0.1, x1 - strut*corr1);
|
|
|
|
x3 = max(0.05, x2 - (thick-wall)/2*sin(90-ang)/sin(ang)*corr1);
|
|
|
|
x4 = l1/2;
|
|
|
|
x5 = max(0.1, x4 - strut*corr2);
|
|
|
|
x6 = max(0.05, x5 - (thick-wall)/2*sin(90-ang)/sin(ang)*corr2);
|
|
|
|
|
|
|
|
y1 = thick/2;
|
|
|
|
y2 = y1 - min(z2-z3, x2-x3) * sin(ang);
|
|
|
|
|
|
|
|
size = [l1, thick, h];
|
|
|
|
orient_and_anchor(size, orient, anchor, size2=[l2,thick], chain=true) {
|
|
|
|
polyhedron(
|
|
|
|
points=[
|
|
|
|
[-x4, -y1, -z1],
|
|
|
|
[ x4, -y1, -z1],
|
|
|
|
[ x1, -y1, z1],
|
|
|
|
[-x1, -y1, z1],
|
|
|
|
|
|
|
|
[-x5, -y1, -z2],
|
|
|
|
[ x5, -y1, -z2],
|
|
|
|
[ x2, -y1, z2],
|
|
|
|
[-x2, -y1, z2],
|
|
|
|
|
|
|
|
[-x6, -y2, -z3],
|
|
|
|
[ x6, -y2, -z3],
|
|
|
|
[ x3, -y2, z3],
|
|
|
|
[-x3, -y2, z3],
|
|
|
|
|
|
|
|
[-x4, y1, -z1],
|
|
|
|
[ x4, y1, -z1],
|
|
|
|
[ x1, y1, z1],
|
|
|
|
[-x1, y1, z1],
|
|
|
|
|
|
|
|
[-x5, y1, -z2],
|
|
|
|
[ x5, y1, -z2],
|
|
|
|
[ x2, y1, z2],
|
|
|
|
[-x2, y1, z2],
|
|
|
|
|
|
|
|
[-x6, y2, -z3],
|
|
|
|
[ x6, y2, -z3],
|
|
|
|
[ x3, y2, z3],
|
|
|
|
[-x3, y2, z3],
|
|
|
|
],
|
|
|
|
faces=[
|
|
|
|
[ 4, 5, 1],
|
|
|
|
[ 5, 6, 2],
|
|
|
|
[ 6, 7, 3],
|
|
|
|
[ 7, 4, 0],
|
|
|
|
|
|
|
|
[ 4, 1, 0],
|
|
|
|
[ 5, 2, 1],
|
|
|
|
[ 6, 3, 2],
|
|
|
|
[ 7, 0, 3],
|
|
|
|
|
|
|
|
[ 8, 9, 5],
|
|
|
|
[ 9, 10, 6],
|
|
|
|
[10, 11, 7],
|
|
|
|
[11, 8, 4],
|
|
|
|
|
|
|
|
[ 8, 5, 4],
|
|
|
|
[ 9, 6, 5],
|
|
|
|
[10, 7, 6],
|
|
|
|
[11, 4, 7],
|
|
|
|
|
|
|
|
[11, 10, 9],
|
|
|
|
[20, 21, 22],
|
|
|
|
|
|
|
|
[11, 9, 8],
|
|
|
|
[20, 22, 23],
|
|
|
|
|
|
|
|
[16, 17, 21],
|
|
|
|
[17, 18, 22],
|
|
|
|
[18, 19, 23],
|
|
|
|
[19, 16, 20],
|
|
|
|
|
|
|
|
[16, 21, 20],
|
|
|
|
[17, 22, 21],
|
|
|
|
[18, 23, 22],
|
|
|
|
[19, 20, 23],
|
|
|
|
|
|
|
|
[12, 13, 17],
|
|
|
|
[13, 14, 18],
|
|
|
|
[14, 15, 19],
|
|
|
|
[15, 12, 16],
|
|
|
|
|
|
|
|
[12, 17, 16],
|
|
|
|
[13, 18, 17],
|
|
|
|
[14, 19, 18],
|
|
|
|
[15, 16, 19],
|
|
|
|
|
|
|
|
[ 0, 1, 13],
|
|
|
|
[ 1, 2, 14],
|
|
|
|
[ 2, 3, 15],
|
|
|
|
[ 3, 0, 12],
|
|
|
|
|
|
|
|
[ 0, 13, 12],
|
|
|
|
[ 1, 14, 13],
|
|
|
|
[ 2, 15, 14],
|
|
|
|
[ 3, 12, 15],
|
|
|
|
],
|
|
|
|
convexity=6
|
|
|
|
);
|
|
|
|
children();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Module: braced_thinning_wall()
|
|
|
|
//
|
|
|
|
// Description:
|
|
|
|
// Makes a rectangular wall with cross-bracing, which thins to a smaller width in the center,
|
|
|
|
// with angled supports to prevent critical overhangs.
|
|
|
|
//
|
|
|
|
// Usage:
|
|
|
|
// braced_thinning_wall(h, l, thick, [ang], [strut], [wall], [orient], [anchor]);
|
|
|
|
//
|
|
|
|
// Arguments:
|
|
|
|
// h = height of wall.
|
|
|
|
// l = length of wall.
|
|
|
|
// thick = thickness of wall.
|
|
|
|
// ang = maximum overhang angle of diagonal brace.
|
|
|
|
// strut = the width of the diagonal brace.
|
|
|
|
// wall = the thickness of the thinned portion of the wall.
|
|
|
|
// orient = Orientation of the length axis of the wall. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Y`.
|
|
|
|
// anchor = Alignment of the shape. Use the constants from `constants.scad`. Default: `CENTER`.
|
|
|
|
//
|
|
|
|
// Example: Typical Shape
|
|
|
|
// braced_thinning_wall(h=50, l=100, thick=5);
|
|
|
|
module braced_thinning_wall(h=50, l=100, thick=5, ang=30, strut=5, wall=2, orient=ORIENT_Y, anchor=CENTER)
|
|
|
|
{
|
|
|
|
dang = atan((h-2*strut)/(l-2*strut));
|
|
|
|
dlen = (h-2*strut)/sin(dang);
|
|
|
|
size = [l, thick, h];
|
|
|
|
orient_and_anchor(size, orient, anchor, orig_orient=ORIENT_Y, chain=true) {
|
|
|
|
union() {
|
|
|
|
xrot_copies([0, 180]) {
|
|
|
|
down(h/2) narrowing_strut(w=thick, l=l, wall=strut, ang=ang);
|
|
|
|
fwd(l/2) xrot(-90) narrowing_strut(w=thick, l=h-0.1, wall=strut, ang=ang);
|
|
|
|
intersection() {
|
|
|
|
cube(size=[thick, l, h], center=true);
|
|
|
|
xrot_copies([-dang,dang]) {
|
|
|
|
zspread(strut/2) {
|
|
|
|
scale([1,1,1.5]) yrot(45) {
|
|
|
|
cube(size=[thick/sqrt(2), dlen, thick/sqrt(2)], center=true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cube(size=[thick, dlen, strut/2], center=true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cube(size=[wall, l-0.1, h-0.1], center=true);
|
|
|
|
}
|
|
|
|
children();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Module: thinning_triangle()
|
|
|
|
//
|
|
|
|
// Description:
|
|
|
|
// Makes a triangular wall with thick edges, which thins to a smaller width in
|
|
|
|
// the center, with angled supports to prevent critical overhangs.
|
|
|
|
//
|
|
|
|
// Usage:
|
|
|
|
// thinning_triangle(h, l, thick, [ang], [strut], [wall], [diagonly], [orient], [anchor|center]);
|
|
|
|
//
|
|
|
|
// Arguments:
|
|
|
|
// h = height of wall.
|
|
|
|
// l = length of wall.
|
|
|
|
// thick = thickness of wall.
|
|
|
|
// ang = maximum overhang angle of diagonal brace.
|
|
|
|
// strut = the width of the diagonal brace.
|
|
|
|
// wall = the thickness of the thinned portion of the wall.
|
|
|
|
// diagonly = boolean, which denotes only the diagonal side (hypotenuse) should be thick.
|
|
|
|
// orient = Orientation of the length axis of the shape. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Y`.
|
|
|
|
// anchor = Alignment of the shape. Use the constants from `constants.scad`. Default: `CENTER`.
|
|
|
|
// center = If true, centers shape. If false, overrides `anchor` with `UP+BACK`.
|
|
|
|
//
|
|
|
|
// Example: Centered
|
|
|
|
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, center=true);
|
|
|
|
// Example: All Braces
|
|
|
|
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, center=false);
|
|
|
|
// Example: Diagonal Brace Only
|
|
|
|
// thinning_triangle(h=50, l=80, thick=4, ang=30, strut=5, wall=2, diagonly=true, center=false);
|
|
|
|
module thinning_triangle(h=50, l=100, thick=5, ang=30, strut=5, wall=3, diagonly=false, center=undef, orient=ORIENT_Y, anchor=CENTER)
|
|
|
|
{
|
|
|
|
dang = atan(h/l);
|
|
|
|
dlen = h/sin(dang);
|
|
|
|
size = [thick, h, l];
|
|
|
|
orient_and_anchor(size, orient, anchor, center=center, noncentered=BOTTOM+FRONT, orig_orient=ORIENT_Y, chain=true) {
|
|
|
|
difference() {
|
|
|
|
union() {
|
|
|
|
if (!diagonly) {
|
|
|
|
translate([0, 0, -h/2])
|
|
|
|
narrowing_strut(w=thick, l=l, wall=strut, ang=ang);
|
|
|
|
translate([0, -l/2, 0])
|
|
|
|
xrot(-90) narrowing_strut(w=thick, l=h-0.1, wall=strut, ang=ang);
|
|
|
|
}
|
|
|
|
intersection() {
|
|
|
|
cube(size=[thick, l, h], center=true);
|
|
|
|
xrot(-dang) yrot(180) {
|
|
|
|
narrowing_strut(w=thick, l=dlen*1.2, wall=strut, ang=ang);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cube(size=[wall, l-0.1, h-0.1], center=true);
|
|
|
|
}
|
|
|
|
xrot(-dang) {
|
|
|
|
translate([0, 0, h/2]) {
|
|
|
|
cube(size=[thick+0.1, l*2, h], center=true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
children();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Module: sparse_strut()
|
|
|
|
//
|
|
|
|
// Description:
|
|
|
|
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce
|
|
|
|
// the need for support material in 3D printing.
|
|
|
|
//
|
|
|
|
// Usage:
|
|
|
|
// sparse_strut(h, l, thick, [strut], [maxang], [max_bridge], [orient], [anchor])
|
|
|
|
//
|
|
|
|
// Arguments:
|
|
|
|
// h = height of strut wall.
|
|
|
|
// l = length of strut wall.
|
|
|
|
// thick = thickness of strut wall.
|
|
|
|
// maxang = maximum overhang angle of cross-braces.
|
|
|
|
// max_bridge = maximum bridging distance between cross-braces.
|
|
|
|
// strut = the width of the cross-braces.
|
|
|
|
// orient = Orientation of the length axis of the shape. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Y`.
|
|
|
|
// anchor = Alignment of the shape. Use the constants from `constants.scad`. Default: `CENTER`.
|
|
|
|
//
|
|
|
|
// Example: Typical Shape
|
|
|
|
// sparse_strut(h=40, l=100, thick=3);
|
|
|
|
// Example: Thinner Strut
|
|
|
|
// sparse_strut(h=40, l=100, thick=3, strut=2);
|
|
|
|
// Example: Larger maxang
|
|
|
|
// sparse_strut(h=40, l=100, thick=3, strut=2, maxang=45);
|
|
|
|
// Example: Longer max_bridge
|
|
|
|
// sparse_strut(h=40, l=100, thick=3, strut=2, maxang=45, max_bridge=30);
|
|
|
|
module sparse_strut(h=50, l=100, thick=4, maxang=30, strut=5, max_bridge=20, orient=ORIENT_Y, anchor=CENTER)
|
|
|
|
{
|
|
|
|
zoff = h/2 - strut/2;
|
2019-04-26 10:02:47 +00:00
|
|
|
yoff = l/2 - strut/2;
|
2019-04-26 09:15:53 +00:00
|
|
|
|
|
|
|
maxhyp = 1.5 * (max_bridge+strut)/2 / sin(maxang);
|
|
|
|
maxz = 2 * maxhyp * cos(maxang);
|
|
|
|
|
|
|
|
zreps = ceil(2*zoff/maxz);
|
|
|
|
zstep = 2*zoff / zreps;
|
|
|
|
|
|
|
|
hyp = zstep/2 / cos(maxang);
|
|
|
|
maxy = min(2 * hyp * sin(maxang), max_bridge+strut);
|
|
|
|
|
|
|
|
yreps = ceil(2*yoff/maxy);
|
|
|
|
ystep = 2*yoff / yreps;
|
|
|
|
|
|
|
|
ang = atan(ystep/zstep);
|
|
|
|
len = zstep / cos(ang);
|
|
|
|
|
|
|
|
size = [thick, l, h];
|
|
|
|
orient_and_anchor(size, orient, anchor, orig_orient=ORIENT_Y, chain=true) {
|
|
|
|
yrot(90)
|
|
|
|
linear_extrude(height=thick, convexity=4*yreps, center=true) {
|
|
|
|
difference() {
|
|
|
|
square([h, l], center=true);
|
|
|
|
square([h-2*strut, l-2*strut], center=true);
|
|
|
|
}
|
|
|
|
yspread(ystep, n=yreps) {
|
|
|
|
xspread(zstep, n=zreps) {
|
2019-04-26 10:02:47 +00:00
|
|
|
skew_xy(planar=true, ya=-ang) square([(h-strut)/zreps, strut], center=true);
|
|
|
|
skew_xy(planar=true, ya= ang) square([(h-strut)/zreps, strut], center=true);
|
2019-04-26 09:15:53 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
children();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Module: sparse_strut3d()
|
|
|
|
//
|
|
|
|
// Usage:
|
|
|
|
// sparse_strut3d(h, w, l, [thick], [maxang], [max_bridge], [strut], [orient], [anchor]);
|
|
|
|
//
|
|
|
|
// Description:
|
|
|
|
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce the
|
|
|
|
// need for support material in 3D printing.
|
|
|
|
//
|
|
|
|
// Arguments:
|
|
|
|
// h = Z size of strut.
|
|
|
|
// w = X size of strut.
|
|
|
|
// l = Y size of strut.
|
|
|
|
// thick = thickness of strut walls.
|
|
|
|
// maxang = maximum overhang angle of cross-braces.
|
|
|
|
// max_bridge = maximum bridging distance between cross-braces.
|
|
|
|
// strut = the width of the cross-braces.
|
|
|
|
// orient = Orientation of the length axis of the shape. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Y`.
|
|
|
|
// anchor = Alignment of the shape. Use the constants from `constants.scad`. Default: `CENTER`.
|
|
|
|
//
|
2019-04-26 10:05:47 +00:00
|
|
|
// Example(Med): Typical Shape
|
2019-04-26 09:15:53 +00:00
|
|
|
// sparse_strut3d(h=30, w=30, l=100);
|
2019-04-26 10:05:47 +00:00
|
|
|
// Example(Med): Thinner strut
|
2019-04-26 09:15:53 +00:00
|
|
|
// sparse_strut3d(h=30, w=30, l=100, strut=2);
|
2019-04-26 10:05:47 +00:00
|
|
|
// Example(Med): Larger maxang
|
2019-04-26 09:15:53 +00:00
|
|
|
// sparse_strut3d(h=30, w=30, l=100, strut=2, maxang=50);
|
2019-04-26 10:05:47 +00:00
|
|
|
// Example(Med): Smaller max_bridge
|
2019-04-26 09:15:53 +00:00
|
|
|
// sparse_strut3d(h=30, w=30, l=100, strut=2, maxang=50, max_bridge=20);
|
|
|
|
module sparse_strut3d(h=50, l=100, w=50, thick=3, maxang=40, strut=3, max_bridge=30, orient=ORIENT_Y, anchor=CENTER)
|
|
|
|
{
|
|
|
|
|
|
|
|
xoff = w - thick;
|
|
|
|
yoff = l - thick;
|
|
|
|
zoff = h - thick;
|
|
|
|
|
|
|
|
xreps = ceil(xoff/yoff);
|
|
|
|
yreps = ceil(yoff/xoff);
|
|
|
|
zreps = ceil(zoff/min(xoff, yoff));
|
|
|
|
|
|
|
|
xstep = xoff / xreps;
|
|
|
|
ystep = yoff / yreps;
|
|
|
|
zstep = zoff / zreps;
|
|
|
|
|
|
|
|
cross_ang = atan2(xstep, ystep);
|
|
|
|
cross_len = hypot(xstep, ystep);
|
|
|
|
|
|
|
|
supp_ang = min(maxang, min(atan2(max_bridge, zstep), atan2(cross_len/2, zstep)));
|
|
|
|
supp_reps = floor(cross_len/2/(zstep*sin(supp_ang)));
|
|
|
|
supp_step = cross_len/2/supp_reps;
|
|
|
|
|
|
|
|
size = [w, l, h];
|
|
|
|
orient_and_anchor(size, orient, anchor, orig_orient=ORIENT_Y, chain=true) {
|
|
|
|
intersection() {
|
|
|
|
union() {
|
|
|
|
ybridge = (l - (yreps+1) * strut) / yreps;
|
|
|
|
xspread(xoff) sparse_strut(h=h, l=l, thick=thick, maxang=maxang, strut=strut, max_bridge=ybridge/ceil(ybridge/max_bridge));
|
|
|
|
yspread(yoff) zrot(90) sparse_strut(h=h, l=w, thick=thick, maxang=maxang, strut=strut, max_bridge=max_bridge);
|
|
|
|
for(zs = [0:zreps-1]) {
|
|
|
|
for(xs = [0:xreps-1]) {
|
|
|
|
for(ys = [0:yreps-1]) {
|
|
|
|
translate([(xs+0.5)*xstep-xoff/2, (ys+0.5)*ystep-yoff/2, (zs+0.5)*zstep-zoff/2]) {
|
|
|
|
zflip_copy(offset=-(zstep-strut)/2) {
|
|
|
|
xflip_copy() {
|
|
|
|
zrot(cross_ang) {
|
|
|
|
down(strut/2) {
|
|
|
|
cube([strut, cross_len, strut], center=true);
|
|
|
|
}
|
|
|
|
if (zreps>1) {
|
|
|
|
back(cross_len/2) {
|
|
|
|
zrot(-cross_ang) {
|
|
|
|
down(strut) cube([strut, strut, zstep+strut], anchor=BOTTOM);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (soff = [0 : supp_reps-1] ) {
|
|
|
|
yflip_copy() {
|
|
|
|
back(soff*supp_step) {
|
|
|
|
skew_xy(ya=supp_ang) {
|
|
|
|
cube([strut, strut, zstep], anchor=BOTTOM);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cube([w,l,h], center=true);
|
|
|
|
}
|
|
|
|
children();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Module: corrugated_wall()
|
|
|
|
//
|
|
|
|
// Description:
|
|
|
|
// Makes a corrugated wall which relieves contraction stress while still
|
|
|
|
// providing support strength. Designed with 3D printing in mind.
|
|
|
|
//
|
|
|
|
// Usage:
|
|
|
|
// corrugated_wall(h, l, thick, [strut], [wall], [orient], [anchor]);
|
|
|
|
//
|
|
|
|
// Arguments:
|
|
|
|
// h = height of strut wall.
|
|
|
|
// l = length of strut wall.
|
|
|
|
// thick = thickness of strut wall.
|
|
|
|
// strut = the width of the cross-braces.
|
|
|
|
// wall = thickness of corrugations.
|
|
|
|
// orient = Orientation of the length axis of the shape. Use the `ORIENT_` constants from `constants.scad`. Default: `ORIENT_Y`.
|
|
|
|
// anchor = Alignment of the shape. Use the constants from `constants.scad`. Default: `CENTER`.
|
|
|
|
//
|
|
|
|
// Example: Typical Shape
|
|
|
|
// corrugated_wall(h=50, l=100);
|
|
|
|
// Example: Wider Strut
|
|
|
|
// corrugated_wall(h=50, l=100, strut=8);
|
|
|
|
// Example: Thicker Wall
|
|
|
|
// corrugated_wall(h=50, l=100, strut=8, wall=3);
|
|
|
|
module corrugated_wall(h=50, l=100, thick=5, strut=5, wall=2, orient=ORIENT_Y, anchor=CENTER)
|
|
|
|
{
|
|
|
|
amplitude = (thick - wall) / 2;
|
|
|
|
period = min(15, thick * 2);
|
|
|
|
steps = quantup(segs(thick/2),4);
|
|
|
|
step = period/steps;
|
|
|
|
il = l - 2*strut + 2*step;
|
|
|
|
size = [thick, l, h];
|
|
|
|
orient_and_anchor(size, orient, anchor, orig_orient=ORIENT_Y, chain=true) {
|
|
|
|
union() {
|
|
|
|
linear_extrude(height=h-2*strut+0.1, slices=2, convexity=ceil(2*il/period), center=true) {
|
|
|
|
polygon(
|
|
|
|
points=concat(
|
|
|
|
[for (y=[-il/2:step:il/2]) [amplitude*sin(y/period*360)-wall/2, y] ],
|
|
|
|
[for (y=[il/2:-step:-il/2]) [amplitude*sin(y/period*360)+wall/2, y] ]
|
|
|
|
)
|
|
|
|
);
|
|
|
|
}
|
|
|
|
difference() {
|
|
|
|
cube([thick, l, h], center=true);
|
|
|
|
cube([thick+0.5, l-2*strut, h-2*strut], center=true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
children();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|