2024-11-03 12:10:47 +00:00
/////////////////////////////////////////////////////////////////////
2024-11-04 11:17:11 +00:00
// LibFile: nurbs.scad
2024-11-03 12:10:47 +00:00
// B-Splines and Non-uniform Rational B-Splines (NURBS) are a way to represent smooth curves and smoothly curving
// surfaces with a set of control points. The curve or surface is defined by
// the control points and a set of "knot" points. The NURBS can be "clamped" in which case the curve passes through
// the first and last point, or they can be "closed" in which case the first and last point are coincident. Also possible
// are "open" curves which do not necessarily pass through any of their control points. Unlike Bezier curves, a NURBS
// can have an unlimited number of control points and changes to the control points only affect the curve locally.
//
// Includes:
// include <BOSL2/std.scad>
// include <BOSL2/nurbs.scad>
// FileGroup: Advanced Modeling
// FileSummary: NURBS and B-spline curves and surfaces.
//////////////////////////////////////////////////////////////////////
include < BOSL2 / std . scad >
include < BOSL2 / beziers . scad >
// Section: NURBS Curves
// Function: nurbs_curve()
// Synopsis: Computes one more more points on a NURBS curve.
// SynTags: Path
// Topics: NURBS Curves
// See Also: debug_nurbs()
// Usage:
// pts = nurbs_curve(control, degree, splinesteps, [mult=], [weights=], [type=], [knots=]);
// pts = nurbs_curve(control, degree, u=, [mult=], [weights=], [type=], [knots=]);
// Description:
// Compute the points specified by a NURBS curve. You specify the NURBS by supplying the control points, knots and weights. and knots.
// Only the control points are required. The knots and weights default to uniform, in which case you get a uniform B-spline.
// You can specify endpoint behavior using the `type` parameter. The default, "clamped", gives a curve which starts and
// ends at the first and last control points and moves in the tangent direction to the first and last control point segments.
// If you request an "open" spline you get a curve which starts somewhere in the middle of the control points.
// Finally, a "closed" curve is a one that starts where it ends. Note that each of these types of curve require
// a different number of knots.
// .
// The control points are the most important control over the shape
// of the curve. You must have at least p+1 control points for clamped and open NURBS. Unlike a bezier, there is no maximum
// number of control points. A single NURBS is more like a bezier **path** than like a single bezier spline.
// .
// A NURBS or B-spline is a curve made from a moving average of several Bezier curves. The knots specify when one Bezier fades
// away to be replaced by the next one. At generic points, the curves are differentiable, but by increasing knot multiplicity, you
// can decrease smoothness, or even produce a sharp corner. The knots must be an ascending sequence of values, but repeating values
// is OK and controls the smoothness at the knots. The easiest way to specify the knots is to take the default of uniform knots,
// and simply set the multiplicity to create repeated knots as needed. The total number of knots is then the sum of the multiplicity
// vector. Alternatively you can simply list the knots yourself. Note that regardless of knot values, the domain of evaluation
// for u is always the interval [0,1], and it will be scaled to give the entire valid portion of the curve you have chosen.
// If you give both a knot vector and multiplicity then the multiplicity vector is appled to the provided knots.
// For an open spline the number of knots must be `len(control)+p+1`. For a clamped spline the number of knots is `len(control)-p+1`,
// and for a closed spline you need `len(control)+1` knots. If you are using the default uniform knots then the way to
// ensure that you have the right number is to check that `sum(mult)` is either not set or equal to the correct value.
// .
// You can use this function to evaluate the NURBS at `u`, which can be a single point or a list of points. You can also
// use it to evaluate the NURBS over its entire domain by giving a splinesteps value. This specifies the number of segments
// to use between each knot and guarantees a point exactly at each knot. This may be important if you set the knot multiplicity
// to the degree somewhere in your curve, which creates a corner at the knot, because it guarantees a sharp corner regardless
// of the number of points.
// Arguments:
// control = list of control points in any dimension
// degree = degree of NURBS
// splinesteps = evaluate whole spline with this number of segments between each pair of knots
// ---
// u = list of values or range in the interval [0,1] where the NURBS should be evaluated
// mult = list of multiplicities of the knots. Default: all 1
// weights = vector whose length is the same as control giving weights at each control point. Default: all 1
// type = One of "clamped", "closed" or "open" to define end point handling of the spline. Default: "clamped"
// knots = List of knot values. Default: uniform
// Example(2D,NoAxes): Simple quadratic uniform clamped b-spline with some points computed using splinesteps.
// pts = [[13,43],[30,52],[49,22],[24,3]];
// debug_nurbs(pts,2);
// npts = nurbs_curve(pts, 2, splinesteps=3);
// color("red")move_copies(npts) circle(r=1);
// Example(2D,NoAxes): Simple quadratic uniform clamped b-spline with some points computed using the u parameter. Note that a uniform u parameter doesn't necessarily sample the curve uniformly.
// pts = [[13,43],[30,52],[49,22],[24,3]];
// debug_nurbs(pts,2);
// npts = nurbs_curve(pts, 2, u=[0:.2:1]);
// color("red")move_copies(npts) circle(r=1);
// Example(2D,NoAxes): Same control points, but cubic
// pts = [[13,43],[30,52],[49,22],[24,3]];
// debug_nurbs(pts,3);
// Example(2D,NoAxes): Same control points, quadratic and closed
// pts = [[13,43],[30,52],[49,22],[24,3]];
// debug_nurbs(pts,2,type="closed");
// Example(2D,NoAxes): Same control points, cubic and closed
// pts = [[13,43],[30,52],[49,22],[24,3]];
// debug_nurbs(pts,3,type="closed");
// Example(2D,NoAxes): Ten control points, quadratic, clamped
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,2);
// Example(2D,NoAxes): Same thing, degree 4
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,4);
// Example(2D,NoAxes): Same control points, degree 2, open. Note it doesn't reach the ends
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,2, type="open");
// Example(2D,NoAxes): Same control points, degree 4, open. Note it starts farther from the ends
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,4,type="open");
// Example(2D,NoAxes): Same control points, degree 2, closed
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,2,type="closed");
// Example(2D,NoAxes): Same control points, degree 4, closed
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// debug_nurbs(pts,4,type="closed");
2024-11-06 03:00:02 +00:00
// Example(2D,Med,NoAxes): Adding weights
2024-11-03 12:10:47 +00:00
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// weights = [1,1,1,3,1,1,3,1,1,1];
// debug_nurbs(pts,4,type="clamped",weights=weights);
// Example(2D,NoAxes): Using knot multiplicity with quadratic clamped case. Knot count is len(control)-degree+1 = 9. The multiplicity 2 knot creates a corner for a quadratic.
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// mult = [1,1,1,2,1,1,1,1];
// debug_nurbs(pts,2,mult=mult,show_knots=true);
// Example(2D,NoAxes): Using knot multiplicity with quadratic clamped case. Two knots of multiplicity 2 gives two corners
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// mult = [1,1,1,2,2,1,1];
// debug_nurbs(pts,2,mult=mult,show_knots=true);
// Example(2D,NoAxes): Using knot multiplicity with cubic clamped case. Knot count is now 8. We need multiplicity equal to degree (3) to create a corner.
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// mult = [1,3,1,1,1,1];
// debug_nurbs(pts,3,mult=mult,show_knots=true);
// Example(2D,NoAxes): Using knot multiplicity with cubic closed case. Knot count is now len(control)+1=11. Here are three corners.
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// mult = [1,3,1,3,3];
// debug_nurbs(pts,3,mult=mult,type="closed",show_knots=true);
// Example(2D,NoAxes): Explicitly specified knots only change the quadratic clamped curve slightly. Knot count is len(control)-degree+1 = 9.
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// knots = [0,1,3,5,9,13,14,19,21];
// debug_nurbs(pts,2);
// Example(2D,NoAxes): Combining explicit knots with mult for the quadratic curve to add a corner
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// knots = [0,1,3,9,13,14,19,21];
// mult = [1,1,1,2,1,1,1,1];
// debug_nurbs(pts,2,knots=knots,mult=mult);
// Example(2D,NoAxes): Directly repeating a knot in the knot list to create a corner for a cubic spline
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// knots = [0,1,3,13,13,13,19,21];
// debug_nurbs(pts,3,knots=knots);
// Example(2D,NoAxes): Open cubic spline with explicit knots
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// knots = [0,1,3,13,13,13,19,21,27,28,29,40,42,44];
// debug_nurbs(pts,3,knots=knots,type="open");
// Example(2D,NoAxes): Closed quintic spline with explicit knots
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// knots = [0,1,3,13,13,13,19,21,27,28,33];
// debug_nurbs(pts,5,knots=knots,type="closed");
2024-11-06 03:00:02 +00:00
// Example(2D,Med,NoAxes): Closed quintic spline with explicit knots and weights
2024-11-03 12:10:47 +00:00
// pts = [[5,0],[0,20],[33,43],[37,88],[60,62],[44,22],[77,44],[79,22],[44,3],[22,7]];
// weights = [1,2,3,4,5,6,7,6,5,4];
// knots = [0,1,3,13,13,13,19,21,27,28,33];
// debug_nurbs(pts,5,knots=knots,weights=weights,type="closed");
// Example(2D,NoAxes): Circular arcs are possible with NURBS. This example gives a semi-circle
// control = [[1,0],[1,2],[-1,2],[-1,0]];
// w = [1,1/3,1/3,1];
// debug_nurbs(control, 3, weights=w, width=0.1, size=.2);
// Example(2D,NoAxes): Gluing two semi-circles together gives a whole circle. Note that this is a clamped not closed NURBS. The interface uses a knot of multiplicity 3 where the clamped ends of the semi-circles meet.
// control = [[1,0],[1,2],[-1,2],[-1,0],[-1,-2],[1,-2],[1,0]];
// w = [1,1/3,1/3,1,1/3,1/3,1];
// debug_nurbs(control, 3, splinesteps=16,weights=w,mult=[1,3,1],width=.1,size=.2);
// Example(2D,NoAxes): Circle constructed with type="closed"
// control = [[1,0],[1,2],[-1,2],[-1,0],[-1,-2],[1,-2]];
// w = [1,1/3,1/3,1,1/3,1/3];
// debug_nurbs(control, 3, splinesteps=16,weights=w,mult=[1,3,3],width=.1,size=.2,type="closed",show_knots=true);
function nurbs_curve ( control , degree , splinesteps , u , mult , weights , type = "clamped" , knots ) =
assert ( num_defined ( [ splinesteps , u ] ) = = 1 , "Must define exactly one of u and splinesteps" )
is_finite ( u ) ? nurbs_curve ( control , degree , [ u ] , mult , weights , type = type ) [ 0 ]
: assert ( is_undef ( splinesteps ) || ( is_int ( splinesteps ) || splinesteps > 0 ) , "splinesteps must be a positive integer" )
let ( u = is_range ( u ) ? list ( u ) : u , f = echo ( u = u ) )
assert ( is_undef ( u ) || ( is_vector ( u ) && min ( u ) >= 0 && max ( u ) < = 1 ) , "u must be a list of points on the interval [0,1] or a range contained in that interval" )
is_def ( weights ) ? assert ( is_vector ( weights , len ( control ) ) , "Weights should be a vector whose length is the number of control points" )
let (
dim = len ( control [ 0 ] ) ,
control = [ for ( i = idx ( control ) ) [ each control [ i ] * weights [ i ] , weights [ i ] ] ] ,
curve = nurbs_curve ( control , degree , u = u , splinesteps = splinesteps , mult = mult , type = type )
)
[ for ( pt = curve ) select ( pt , 0 , - 2 ) / last ( pt ) ]
:
let (
uniform = is_undef ( knots ) ,
dum = assert ( in_list ( type , [ "closed" , "open" , "clamped" ] ) , str ( "Unknown nurbs spline type" , type ) )
assert ( type = = "closed" || len ( control ) >= degree + 1 , str ( type , " nurbs requires at least degree+1 control points" ) )
assert ( is_undef ( mult ) || is_vector ( mult ) , "mult must be a vector" ) ,
badmult = is_undef ( mult ) ? [ ]
: [ for ( i = idx ( mult ) ) if ( ! (
is_int ( mult [ i ] )
&& mult [ i ] > 0
&& ( mult [ i ] < = degree
|| ( type ! = "closed"
&& mult [ i ] = = degree + 1
&& ( i = = 0 || i = = len ( mult ) - 1 )
)
)
) ) i ] ,
dummy0 = assert ( badmult = = [ ] , str ( "mult vector should contain positive integers no larger than the degree, except at ends of open splines, " ,
"where degree+1 is allowed. The mult vector has bad values at indices: " , badmult ) )
assert ( is_undef ( knots ) || is_undef ( mult ) || len ( mult ) = = len ( knots ) , "If both mult and knots are given they must be vectors of the same length" )
assert ( is_undef ( mult ) || type ! = "clamped" || sum ( mult ) = = len ( control ) - degree + 1 ,
str ( "For " , type , " spline knot count (sum of multiplicity vector) must be " , len ( control ) - degree + 1 , " but is instead " , mult ? sum ( mult ) : 0 ) )
assert ( is_undef ( mult ) || type ! = "closed" || sum ( mult ) = = len ( control ) + 1 ,
str ( "For closed spline knot count (sum of multiplicity vector) must be " , len ( control ) + 1 , " but is instead " , mult ? sum ( mult ) : 0 ) )
assert ( is_undef ( mult ) || type ! = "open" || sum ( mult ) = = len ( control ) + degree + 1 ,
str ( "For closed spline knot count (sum of multiplicity vector) must be " , len ( control ) + degree + 1 , " but is instead " , mult ? sum ( mult ) : 0 ) ) ,
control = type = = "open" ? control
: type = = "clamped" ? control //concat(repeat(control[0], degree),control, repeat(last(control),degree))
: /*type=="closed"*/ concat ( control , select ( control , count ( degree ) ) ) ,
// n = len(control)-1, // number of control pts -1
// m = n+p+1, // number of knots - 1
mult = ! uniform ? mult
: type = = "clamped" ? assert ( is_undef ( mult ) || mult [ 0 ] = = 1 && last ( mult ) = = 1 , "For clamped b-splines, first and last multiplicity must be 1" )
[ degree + 1 , each slice ( default ( mult , repeat ( 1 , len ( control ) - degree + 1 ) ) , 1 , - 2 ) , degree + 1 ]
: is_undef ( mult ) ? repeat ( 1 , len ( control ) + degree + 1 )
: type = = "open" ? mult
: /* type=="closed" */
let ( // Closed spline requires that we identify first and last knots and then step at same
// interval spacing periodically through the knot vector. This means we pick up the first
// multiplicity minus 1 and have to add it to the last multiplicity.
lastmult = last ( mult ) + mult [ 0 ] - 1 ,
dummy = assert ( lastmult < = degree , "For closed spline, first and last knot multiplicity cannot total more than the degree+1" ) ,
adjlast = [
each select ( mult , 0 , - 2 ) ,
lastmult
]
)
_extend_knot_mult ( adjlast , 1 , len ( control ) + degree + 1 ) ,
knot = uniform && is_undef ( mult ) ? lerpn ( 0 , 1 , len ( control ) + degree + 1 )
: uniform ? [ for ( i = idx ( mult ) ) each repeat ( i / ( len ( mult ) - 1 ) , mult [ i ] ) ]
: let (
xknots = is_undef ( mult ) ? knots
: assert ( len ( mult ) = = len ( knots ) , "If knot vector and mult vector must be the same length" )
[ for ( i = idx ( mult ) ) each repeat ( knots [ i ] , mult [ i ] ) ]
)
type = = "open" ? assert ( len ( xknots ) = = len ( control ) + degree + 1 , str ( "For open spline, knot vector with multiplicity must have length " ,
len ( control ) + degree + 1 , " but has length " , len ( xknots ) ) )
xknots
: type = = "clamped" ? assert ( len ( xknots ) = = len ( control ) + 1 - degree , str ( "For clamped spline, knot vector with multiplicity must have length " ,
len ( control ) + 1 - degree , " but has length " , len ( xknots ) ) )
assert ( xknots [ 0 ] ! = xknots [ 1 ] && last ( xknots ) ! = select ( xknots , - 2 ) ,
"For clamped splint, first and last knots cannot repeat (must have multiplicity one" )
concat ( repeat ( xknots [ 0 ] , degree ) , xknots , repeat ( last ( xknots ) , degree ) )
: /*type=="closed"*/ assert ( len ( xknots ) = = len ( control ) + 1 - degree , str ( "For closed spline, knot vector (including multiplicity) must have length " ,
len ( control ) + 1 - degree , " but has length " , len ( xknots ) , control ) )
let ( gmult = _calc_mult ( xknots ) )
assert ( gmult [ 0 ] + last ( gmult ) < = degree + 1 , "For closed spline, first and last knot multiplicity together cannot total more than the degree+1" )
_extend_knot_vector ( xknots , 0 , len ( control ) + degree + 1 ) ,
bound = type = = "clamped" ? undef
: [ knot [ degree ] , knot [ len ( control ) ] ] ,
adjusted_u = ! is_undef ( splinesteps ) ?
[ for ( i = [ degree : 1 : len ( control ) - 1 ] )
each
if ( knot [ i ] ! = knot [ i + 1 ] )
lerpn ( knot [ i ] , knot [ i + 1 ] , splinesteps , endpoint = false ) ,
if ( type ! = "closed" ) knot [ len ( control ) ]
]
: is_undef ( bound ) ? u
: add_scalar ( ( bound [ 1 ] - bound [ 0 ] ) * u , bound [ 0 ] )
)
uniform ?
let (
2024-11-03 13:53:02 +00:00
msum = cumsum ( mult )
2024-11-03 12:10:47 +00:00
)
[ for ( uval = adjusted_u )
let (
mind = floor ( uval * ( len ( mult ) - 1 ) ) ,
knotidxR = msum [ mind ] - 1 ,
knotidx = knotidxR < len ( control ) ? knotidxR : knotidxR - mult [ mind ]
)
bspline_pt_recurse ( knot , select ( control , knotidx - degree , knotidx ) , uval , 1 , degree , 0 , degree , knotidx )
]
: let (
kmult = _calc_mult ( knot ) ,
knotidx =
[ for (
kind = kmult [ 0 ] - 1 ,
uind = 0 ,
kmultind = 1 ,
output = undef ,
done = false
;
! done
;
output = ( uind < len ( adjusted_u ) && approx ( adjusted_u [ uind ] , knot [ kind ] ) && ( ( kmultind >= len ( kmult ) - 1 || kind + kmult [ kmultind ] >= len ( control ) ) ) ) ? kind - kmult [ kmultind - 1 ]
: ( uind < len ( adjusted_u ) && adjusted_u [ uind ] >= knot [ kind ] && adjusted_u [ uind ] >= knot [ kind ] && adjusted_u [ uind ] < knot [ kind + kmult [ kmultind ] ] ) ? kind
: undef ,
done = uind = = len ( adjusted_u ) ,
uind = is_def ( output ) ? uind + 1 : uind ,
inc_k = uind < len ( adjusted_u ) && adjusted_u [ uind ] >= knot [ kind + kmult [ kmultind ] ] ,
kind = inc_k ? kind + kmult [ kmultind ] : kind ,
kmultind = inc_k ? kmultind + 1 : kmultind
)
if ( is_def ( output ) ) output ]
)
[ for ( i = idx ( adjusted_u ) )
bspline_pt_recurse ( knot , select ( control , knotidx [ i ] - degree , knotidx [ i ] ) , adjusted_u [ i ] , 1 , degree , 0 , degree , knotidx [ i ] )
] ;
function bspline_pt_recurse ( knot , control , u , r , h , s , p , k ) =
r > h ? control [ 0 ]
:
let (
ctrl_new = [ for ( i = [ k - p + r : 1 : k - s ] )
let (
alpha = ( u - knot [ i ] ) / ( knot [ i + p - r + 1 ] - knot [ i ] )
)
( 1 - alpha ) * control [ i - 1 - ( k - p ) - r + 1 ] + alpha * control [ i - ( k - p ) - r + 1 ]
]
)
bspline_pt_recurse ( knot , ctrl_new , u , r + 1 , h , s , p , k ) ;
function _extend_knot_mult ( mult , next , len ) =
let ( total = sum ( mult ) )
total = = len ? mult
: total > len ? [ each select ( mult , 0 , - 2 ) , last ( mult ) - ( total - len ) ]
: _extend_knot_mult ( [ each mult , mult [ next ] ] , next + 1 , len ) ;
function _extend_knot_vector ( knots , next , len ) =
len ( knots ) = = len ? knots
: _extend_knot_vector ( [ each knots , last ( knots ) + knots [ next + 1 ] - knots [ next ] ] , next + 1 , len ) ;
function _calc_mult ( knots ) =
let (
ind = [ 0 ,
for ( i = [ 1 : len ( knots ) - 1 ] )
if ( knots [ i ] ! = knots [ i - 1 ] ) i ,
len ( knots )
]
)
deltas ( ind ) ;
// Module: debug_nurbs()
// Synopsis: Shows a NURBS curve and its control points, knots and weights
// SynTags: Geom
// Topics: NURBS, Debugging
// See Also: nurbs_curve()
// Usage:
// debug_nurbs(control, degree, [width], [splinesteps=], [type=], [mult=], [knots=], [size=], [show_weights=], [show_knots=], [show_idx=]);
// Description:
// Displays a 2D or 3D NURBS and the associated control points to help debug NURBS curves. You can display the
// control point indices and weights, and can also display the knot points.
// Arguments:
// control = control points for NURBS
// degree = degree of NURBS
// splinesteps = number of segments between each pair of knots. Default: 16
// width = width of the line. Default: 1
// size = size of text annotations. Default: 3 times the width
// mult = multiplicity vector for NURBS
// weights = weight vector for NURBS
// type = NURBS type, one of "clamped", "open" or "closed". Default: "clamped"
// show_index = if true then display index of each control point vertex. Default: true
// show_weights = if true then display any non-unity weights. Default: true if weights vector is supplied, false otherwise
// show_knots = If true then show the knots on the spline curve. Default: false
module debug_nurbs ( control , degree , splinesteps = 16 , width = 1 , size , mult , weights , type = "clamped" , knots , show_weights , show_knots = false , show_index = true )
{
$fn = 8 ;
size = default ( size , 3 * width ) ;
show_weights = default ( show_weights , is_def ( weights ) ) ;
N = len ( control ) ;
twodim = len ( control [ 0 ] ) = = 2 ;
curve = nurbs_curve ( control = control , degree = degree , splinesteps = splinesteps , mult = mult , weights = weights , type = type , knots = knots ) ;
stroke ( curve , width = width , closed = type = = "closed" ) ; //, color="green");
stroke ( control , width = width / 2 , color = "lightblue" , closed = type = = "closed" ) ;
if ( show_knots ) {
knotpts = nurbs_curve ( control = control , degree = degree , splinesteps = 1 , mult = mult , weights = weights , type = type , knots = knots ) ;
color ( "green" )
move_copies ( knotpts )
if ( twodim ) circle ( r = width ) ;
else sphere ( r = width ) ;
}
color ( "blue" )
if ( show_index )
move_copies ( control ) {
let ( label = str ( $ idx ) ,
anch = show_weights && is_def ( weights [ $ idx ] ) && weights [ $ idx ] ! = 1 ? FWD : CENTER )
if ( twodim ) text ( text = label , size = size , anchor = anch ) ;
else rot ( $vpr ) text3d ( text = label , size = size , anchor = anch ) ;
}
color ( "blue" )
if ( show_weights )
move_copies ( control ) {
if ( is_def ( weights [ $ idx ] ) && weights [ $ idx ] ! = 1 )
let ( label = str ( "w=" , weights [ $ idx ] ) ,
anch = show_index ? BACK : CENTER
)
if ( twodim ) fwd ( size / 2 * 0 ) text ( text = label , size = size , anchor = anch ) ;
else rot ( $vpr ) text3d ( text = label , size = size , anchor = anch ) ;
}
}
// Section: NURBS Surfaces
// Function: is_nurbs_patch()
// Synopsis: Returns true if the given item looks like a NURBS patch.
// Topics: NURBS Patches, Type Checking
// Usage:
// bool = is_nurbs_patch(x);
// Description:
// Returns true if the given item looks like a NURBS patch. (a 2D array of 3D points.)
// Arguments:
// x = The value to check the type of.
function is_nurbs_patch ( x ) =
is_list ( x ) && is_list ( x [ 0 ] ) && is_vector ( x [ 0 ] [ 0 ] ) && len ( x [ 0 ] ) = = len ( x [ len ( x ) - 1 ] ) ;
// Function: nurbs_patch_points()
// Synopsis: Computes specifies point(s) on a NURBS surface patch
// Topics: NURBS Patches
// See Also: nurbs_vnf(), nurbs_curve()
// Usage:
// pointgrid = nurbs_patch_points(patch, degree, [splinesteps], [u=], [v=], [weights=], [type=], [mult=], [knots=]);
// Description:
// Sample a NURBS patch on a point set. If you give splinesteps then it will sampled uniformly in the spline
// parameter between the knots, ensuring that a sample appears at every knot. If you instead give u and v then
// the values at those points in parameter space will be returned. The various NURBS parameters can all be
// single values, if the NURBS has the same parameters in both directions, or pairs listing the value for the
// two directions.
// Arguments:
// patch = rectangular list of control points in any dimension
// degree = a scalar or 2-vector giving the degree of the NURBS in the two directions
// splinesteps = a scalar or 2-vector giving the number of segments between each knot in the two directions
// ---
// u = evaluation points in the u direction of the patch
// v = evaluation points in the v direction of the patch
// mult = a single list or pair of lists giving the knot multiplicity in the two directions. Default: all 1
// knots = a single list of pair of lists giving the knot vector in each of the two directions. Default: uniform
// weights = a single list or pair of lists giving the weight at each control point in the patch. Default: all 1
// type = a single string or pair of strings giving the NURBS type, where each entry is one of "clamped", "open" or "closed". Default: "clamped"
2024-11-06 03:00:02 +00:00
// Example(3D,NoScale): Computing points on a patch using ranges
2024-11-03 12:10:47 +00:00
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// pts = nurbs_patch_points(patch, 3, u=[0:.1:1], v=[0:.3:1]);
// move_copies(flatten(pts)) sphere(r=2,$fn=16);
2024-11-06 03:00:02 +00:00
// Example(3D,NoScale): Computing points using splinesteps
2024-11-03 12:10:47 +00:00
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// pts = nurbs_patch_points(patch, 3, splinesteps=5);
// move_copies(flatten(pts)) sphere(r=2,$fn=16);
function nurbs_patch_points ( patch , degree , splinesteps , u , v , weights , type = [ "clamped" , "clamped" ] , mult = [ undef , undef ] , knots = [ undef , undef ] ) =
assert ( is_undef ( splinesteps ) || ! any_defined ( [ u , v ] ) , "Cannot combine splinesteps with u and v" )
is_def ( weights ) ?
assert ( is_matrix ( weights , len ( patch ) , len ( patch [ 0 ] ) ) , "The weights parameter must be a matrix that matches the size of the patch array" )
let (
patch = [ for ( i = idx ( patch ) ) [ for ( j = idx ( patch [ 0 ] ) ) [ each patch [ i ] [ j ] * weights [ i ] [ j ] , weights [ i ] [ j ] ] ] ] ,
pts = nurbs_patch_points ( patch = patch , degree = degree , splinesteps = splinesteps , u = u , v = v , type = type , mult = mult , knots = knots )
)
[ for ( row = pts ) [ for ( pt = row ) select ( pt , 0 , - 2 ) / last ( pt ) ] ]
:
assert ( is_undef ( u ) || is_range ( u ) || is_vector ( u ) || is_finite ( u ) , "Input u is invalid" )
assert ( is_undef ( v ) || is_range ( v ) || is_vector ( v ) || is_finite ( v ) , "Input v is invalid" )
assert ( num_defined ( [ u , v ] ) ! = 1 , "Must define both u and v (when using)" )
let (
u = is_range ( u ) ? list ( u ) : u ,
v = is_range ( v ) ? list ( v ) : v ,
degree = force_list ( degree , 2 ) ,
type = force_list ( type , 2 ) ,
splinesteps = is_undef ( splinesteps ) ? [ undef , undef ] : force_list ( splinesteps , 2 ) ,
mult = is_vector ( mult ) || is_undef ( mult ) ? [ mult , mult ]
: assert ( ( is_undef ( mult [ 0 ] ) || is_vector ( mult [ 0 ] ) ) && ( is_undef ( mult [ 1 ] ) || is_vector ( mult [ 1 ] ) ) , "mult must be a vector or list of two vectors" )
mult ,
knots = is_vector ( knots ) || is_undef ( knots ) ? [ knots , knots ]
: assert ( ( is_undef ( knots [ 0 ] ) || is_vector ( knots [ 0 ] ) ) && ( is_undef ( knots [ 1 ] ) || is_vector ( knots [ 1 ] ) ) , "knots must be a vector or list of two vectors" )
2024-11-03 14:29:50 +00:00
knots
2024-11-03 12:10:47 +00:00
)
is_num ( u ) && is_num ( v ) ? nurbs_curve ( [ for ( control = patch ) nurbs_curve ( control , degree [ 1 ] , u = v , type = type [ 1 ] , mult = mult [ 1 ] , knots = knots [ 1 ] ) ] ,
degree [ 0 ] , u = u , type = type [ 0 ] , mult = mult [ 0 ] , knots = knots [ 0 ] )
: is_num ( u ) ? nurbs_patch_points ( patch , degree , u = [ u ] , v = v , knots = knots , mult = mult , type = type ) [ 0 ]
: is_num ( v ) ? column ( nurbs_patch_points ( patch , degree , u = u , v = [ v ] , knots = knots , mult = mult , type = type ) , 0 )
:
let (
vsplines = [ for ( i = idx ( patch [ 0 ] ) ) nurbs_curve ( column ( patch , i ) , degree [ 0 ] , splinesteps = splinesteps [ 0 ] , u = u , type = type [ 0 ] , mult = mult [ 0 ] , knots = knots [ 0 ] ) ]
)
[ for ( i = idx ( vsplines [ 0 ] ) ) nurbs_curve ( column ( vsplines , i ) , degree [ 1 ] , splinesteps = splinesteps [ 1 ] , u = v , mult = mult [ 1 ] , knots = knots [ 1 ] , type = type [ 1 ] ) ] ;
// Function: nurbs_vnf()
// Synopsis: Generates a (possibly non-manifold) VNF for a single NURBS surface patch.
// SynTags: VNF
// Topics: NURBS Patches
// See Also: nurbs_patch_points()
// Usage:
// vnf = nurbs_vnf(patch, degree, [splinesteps], [mult=], [knots=], [weights=], [type=], [style=]);
// Description:
// Compute a (possibly non-manifold) VNF for a NURBS. The input patch must be an array of control points. If weights is given it
// must be an array of weights that matches the size of the control points. The style parameter
// gives the {{vnf_vertex_array()}} style to use. The other parameters may specify the NURBS parameters in the two directions
// by giving a single value, which applies to both directions, or a list of two values to specify different values in each direction.
// You can specify undef for for a direction to keep the default, such as `mult=[undef,v_multiplicity]`.
// Arguments:
// patch = rectangular list of control points in any dimension
// degree = a scalar or 2-vector giving the degree of the NURBS in the two directions
// splinesteps = a scalar or 2-vector giving the number of segments between each knot in the two directions
// ---
// mult = a single list or pair of lists giving the knot multiplicity in the two directions. Default: all 1
// knots = a single list of pair of lists giving the knot vector in each of the two directions. Default: uniform
// weights = a single list or pair of lists giving the weight at each control point in the. Default: all 1
// type = a single string or pair of strings giving the NURBS type, where each entry is one of "clamped", "open" or "closed". Default: "clamped"
// style = {{vnf_vertex_array ()}} style to use for triangulating the surface. Default: "default"
2024-11-06 03:00:02 +00:00
// Example(3D): Quadratic B-spline surface
2024-11-03 12:10:47 +00:00
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// vnf = nurbs_vnf(patch, 2);
// vnf_polyhedron(vnf);
2024-11-06 03:00:02 +00:00
// Example(3D): Cubic B-spline surface
2024-11-03 12:10:47 +00:00
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// vnf = nurbs_vnf(patch, 3);
// vnf_polyhedron(vnf);
2024-11-06 03:00:02 +00:00
// Example(3D): Cubic B-spline surface, closed in one direction
2024-11-03 12:10:47 +00:00
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// vnf = nurbs_vnf(patch, 3, type=["closed","clamped"]);
// vnf_polyhedron(vnf);
2024-11-06 03:00:02 +00:00
// Example(3D): B-spline surface cubic in one direction, quadratic in the other
2024-11-03 12:10:47 +00:00
// patch = [
// [[-50, 50, 0], [-16, 50, 20], [ 16, 50, 20], [50, 50, 0]],
// [[-50, 16, 20], [-16, 16, 40], [ 16, 16, 40], [50, 16, 20]],
// [[-50,-16, 20], [-16,-16, 40], [ 16,-16, 40], [50,-16, 20]],
// [[-50,-50, 0], [-16,-50, 20], [ 16,-50, 20], [50,-50, 0]],
// ];
// vnf = nurbs_vnf(patch, [3,2],type=["closed","clamped"]);
// vnf_polyhedron(vnf);
2024-11-06 03:00:02 +00:00
// Example(3D): The sphere can be represented using NURBS
2024-11-03 12:10:47 +00:00
// patch = [
// [[0,0,1], [0,0,1], [0,0,1], [0,0,1], [0,0,1], [0,0,1], [0,0,1]],
// [[2,0,1], [2,4,1], [-2,4,1], [-2,0,1], [-2,-4,1], [2,-4,1], [2,0,1]],
// [[2,0,-1],[2,4,-1],[-2,4,-1],[-2,0,-1],[-2,-4,-1], [2,-4,-1],[2,0,-1]],
// [[0,0,-1],[0,0,-1],[0,0,-1], [0,0,-1], [0,0,-1], [0,0,-1], [0,0,-1]]
// ];
// weights = [
// [9,3,3,9,3,3,9],
// [3,1,1,3,1,1,3],
// [3,1,1,3,1,1,3],
// [9,3,3,9,3,3,9],
// ]/9;
// vknots = [0, 1/2, 1/2, 1/2, 1];
// vnf = nurbs_vnf(patch, 3,weights=weights, knots=[undef,vknots]);
// vnf_polyhedron(vnf);
function nurbs_vnf ( patch , degree , splinesteps = 16 , weights , type = "clamped" , mult , knots , style = "default" ) =
assert ( is_nurbs_patch ( patch ) , "Input patch is not a rectangular aray of points" )
let (
2024-11-03 14:29:50 +00:00
pts = nurbs_patch_points ( patch = patch , degree = degree , splinesteps = splinesteps , type = type , mult = mult , knots = knots , weights = weights )
2024-11-03 12:10:47 +00:00
)
vnf_vertex_array ( pts , style = style , row_wrap = type [ 0 ] = = "closed" , col_wrap = type [ 1 ] = = "closed" ) ;