2021-10-27 03:12:51 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: comparisons.scad
// Functions for comparisons with lists, ordering and sorting
// Includes:
// include <BOSL2/std.scad>
//////////////////////////////////////////////////////////////////////
2021-10-30 21:47:17 +00:00
// Section: List comparison operations
2021-10-27 03:12:51 +00:00
// Function: approx()
// Usage:
// test = approx(a, b, [eps])
// Description:
2021-11-04 01:52:51 +00:00
// Compares two numbers, vectors, or matrices. Returns true if they are closer than `eps` to each other.
// Results are undefined if `a` and `b` are of different types, or if vectors or matrices contain non-numbers.
2021-10-27 03:12:51 +00:00
// Arguments:
// a = First value.
// b = Second value.
// eps = The maximum allowed difference between `a` and `b` that will return true.
// Example:
// test1 = approx(-0.3333333333,-1/3); // Returns: true
// test2 = approx(0.3333333333,1/3); // Returns: true
// test3 = approx(0.3333,1/3); // Returns: false
2021-11-04 01:52:51 +00:00
// test4 = approx(0.3333,1/3,eps=1e-3); // Returns: true
2021-10-27 03:12:51 +00:00
// test5 = approx(PI,3.1415926536); // Returns: true
2021-11-04 01:52:51 +00:00
// test6 = approx([0,0,sin(45)],[0,0,sqrt(2)/2]); // Returns: true
2021-10-27 03:12:51 +00:00
function approx ( a , b , eps = EPSILON ) =
2021-11-04 01:52:51 +00:00
a = = b ? is_bool ( a ) = = is_bool ( b ) :
is_num ( a ) && is_num ( b ) ? abs ( a - b ) < = eps :
is_list ( a ) && is_list ( b ) && len ( a ) = = len ( b ) ? (
2021-11-05 04:13:50 +00:00
[ ] = = [
for ( i = idx ( a ) )
let ( aa = a [ i ] , bb = b [ i ] )
if (
is_num ( aa ) && is_num ( bb ) ? abs ( aa - bb ) > eps :
! approx ( aa , bb , eps = eps )
) 1
]
2021-11-04 01:52:51 +00:00
) : false ;
2021-10-27 03:12:51 +00:00
// Function: all_zero()
// Usage:
// x = all_zero(x, [eps]);
// Description:
// Returns true if the finite number passed to it is approximately zero, to within `eps`.
2021-10-30 21:47:17 +00:00
// If passed a list returns true if all its entries are approximately zero.
2021-10-27 03:12:51 +00:00
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = The maximum allowed variance. Default: `EPSILON` (1e-9)
// Example:
// a = all_zero(0); // Returns: true.
// b = all_zero(1e-3); // Returns: false.
// c = all_zero([0,0,0]); // Returns: true.
// d = all_zero([0,0,1e-3]); // Returns: false.
function all_zero ( x , eps = EPSILON ) =
2021-10-30 21:47:17 +00:00
is_finite ( x ) ? abs ( x ) < eps :
is_vector ( x ) && [ for ( xx = x ) if ( abs ( xx ) > eps ) 1 ] = = [ ] ;
2021-10-27 03:12:51 +00:00
// Function: all_nonzero()
// Usage:
// test = all_nonzero(x, [eps]);
// Description:
2021-10-30 21:47:17 +00:00
// Returns true if the finite number passed to it is different from zero by `eps`.
// If passed a list returns true if all the entries of the list are different from zero by `eps`.
2021-10-27 03:12:51 +00:00
// Otherwise, returns false.
// Arguments:
// x = The value to check.
// eps = The maximum allowed variance. Default: `EPSILON` (1e-9)
// Example:
// a = all_nonzero(0); // Returns: false.
// b = all_nonzero(1e-3); // Returns: true.
// c = all_nonzero([0,0,0]); // Returns: false.
// d = all_nonzero([0,0,1e-3]); // Returns: false.
// e = all_nonzero([1e-3,1e-3,1e-3]); // Returns: true.
function all_nonzero ( x , eps = EPSILON ) =
2021-10-30 21:47:17 +00:00
is_finite ( x ) ? abs ( x ) > eps :
is_vector ( x ) && [ for ( xx = x ) if ( abs ( xx ) < eps ) 1 ] = = [ ] ;
2021-10-27 03:12:51 +00:00
// Function: all_positive()
// Usage:
2021-10-30 21:47:17 +00:00
// test = all_positive(x,[eps]);
2021-10-27 03:12:51 +00:00
// Description:
// Returns true if the finite number passed to it is greater than zero.
2021-10-30 21:47:17 +00:00
// If passed a list returns true if all the entries are positive.
2021-10-27 03:12:51 +00:00
// Otherwise, returns false.
// Arguments:
// x = The value to check.
2021-10-30 21:47:17 +00:00
// eps = Tolerance. Default: 0
2021-10-27 03:12:51 +00:00
// Example:
// a = all_positive(-2); // Returns: false.
// b = all_positive(0); // Returns: false.
// c = all_positive(2); // Returns: true.
// d = all_positive([0,0,0]); // Returns: false.
// e = all_positive([0,1,2]); // Returns: false.
// f = all_positive([3,1,2]); // Returns: true.
// g = all_positive([3,-1,2]); // Returns: false.
2021-10-30 21:47:17 +00:00
function all_positive ( x , eps = 0 ) =
is_num ( x ) ? x > eps :
is_vector ( x ) && [ for ( xx = x ) if ( xx < = 0 ) 1 ] = = [ ] ;
2021-10-27 03:12:51 +00:00
// Function: all_negative()
// Usage:
2021-10-30 21:47:17 +00:00
// test = all_negative(x, [eps]);
2021-10-27 03:12:51 +00:00
// Description:
// Returns true if the finite number passed to it is less than zero.
// If passed a list, recursively checks if all items in the list are negative.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
2021-10-30 21:47:17 +00:00
// eps = tolerance. Default: 0
2021-10-27 03:12:51 +00:00
// Example:
// a = all_negative(-2); // Returns: true.
// b = all_negative(0); // Returns: false.
// c = all_negative(2); // Returns: false.
// d = all_negative([0,0,0]); // Returns: false.
// e = all_negative([0,1,2]); // Returns: false.
// f = all_negative([3,1,2]); // Returns: false.
// g = all_negative([3,-1,2]); // Returns: false.
// h = all_negative([-3,-1,-2]); // Returns: true.
2021-10-30 21:47:17 +00:00
function all_negative ( x , eps = 0 ) =
is_num ( x ) ? x < - eps :
is_vector ( x ) && [ for ( xx = x ) if ( xx >= - eps ) 1 ] = = [ ] ;
2021-10-27 03:12:51 +00:00
// Function: all_nonpositive()
// Usage:
2021-10-30 21:47:17 +00:00
// all_nonpositive(x, [eps]);
2021-10-27 03:12:51 +00:00
// Description:
// Returns true if the finite number passed to it is less than or equal to zero.
// If passed a list, recursively checks if all items in the list are nonpositive.
2021-10-30 21:47:17 +00:00
// Otherwise, returns false.
2021-10-27 03:12:51 +00:00
// Arguments:
// x = The value to check.
2021-10-30 21:47:17 +00:00
// eps = tolerance. Default: 0
2021-10-27 03:12:51 +00:00
// Example:
// a = all_nonpositive(-2); // Returns: true.
// b = all_nonpositive(0); // Returns: true.
// c = all_nonpositive(2); // Returns: false.
// d = all_nonpositive([0,0,0]); // Returns: true.
// e = all_nonpositive([0,1,2]); // Returns: false.
// f = all_nonpositive([3,1,2]); // Returns: false.
// g = all_nonpositive([3,-1,2]); // Returns: false.
// h = all_nonpositive([-3,-1,-2]); // Returns: true.
2021-10-30 21:47:17 +00:00
function all_nonpositive ( x , eps = 0 ) =
is_num ( x ) ? x < = eps :
is_vector ( x ) && [ for ( xx = x ) if ( xx > eps ) 1 ] = = [ ] ;
2021-10-27 03:12:51 +00:00
// Function: all_nonnegative()
// Usage:
2021-10-30 21:47:17 +00:00
// all_nonnegative(x, [eps]);
2021-10-27 03:12:51 +00:00
// Description:
// Returns true if the finite number passed to it is greater than or equal to zero.
// If passed a list, recursively checks if all items in the list are nonnegative.
// Otherwise, returns false.
// Arguments:
// x = The value to check.
2021-10-30 21:47:17 +00:00
// eps = tolerance. Default: 0
2021-10-27 03:12:51 +00:00
// Example:
// a = all_nonnegative(-2); // Returns: false.
// b = all_nonnegative(0); // Returns: true.
// c = all_nonnegative(2); // Returns: true.
// d = all_nonnegative([0,0,0]); // Returns: true.
// e = all_nonnegative([0,1,2]); // Returns: true.
// f = all_nonnegative([0,-1,-2]); // Returns: false.
// g = all_nonnegative([3,1,2]); // Returns: true.
// h = all_nonnegative([3,-1,2]); // Returns: false.
// i = all_nonnegative([-3,-1,-2]); // Returns: false.
2021-10-30 21:47:17 +00:00
function all_nonnegative ( x , eps = 0 ) =
is_num ( x ) ? x >= - eps :
is_vector ( x ) && [ for ( xx = x ) if ( xx < - eps ) 1 ] = = [ ] ;
2021-10-27 03:12:51 +00:00
// Function: all_equal()
// Usage:
// b = all_equal(vec, [eps]);
// Description:
// Returns true if all of the entries in vec are equal to each other, or approximately equal to each other if eps is set.
// Arguments:
// vec = vector to check
// eps = Set to tolerance for approximate equality. Default: 0
function all_equal ( vec , eps = 0 ) =
eps = = 0 ? [ for ( v = vec ) if ( v ! = vec [ 0 ] ) v ] = = [ ]
2021-11-12 00:34:16 +00:00
: [ for ( v = vec ) if ( ! approx ( v , vec [ 0 ] , eps ) ) v ] = = [ ] ;
2021-10-27 03:12:51 +00:00
// Function: is_increasing()
// Usage:
// bool = is_increasing(list);
// Topics: List Handling
// See Also: max_index(), min_index(), is_decreasing()
// Description:
// Returns true if the list is (non-strictly) increasing, or strictly increasing if strict is set to true.
// The list can be a list of any items that OpenSCAD can compare, or it can be a string which will be
// evaluated character by character.
// Arguments:
// list = list (or string) to check
// strict = set to true to test that list is strictly increasing
// Example:
// a = is_increasing([1,2,3,4]); // Returns: true
// b = is_increasing([1,3,2,4]); // Returns: false
// c = is_increasing([1,3,3,4]); // Returns: true
// d = is_increasing([1,3,3,4],strict=true); // Returns: false
// e = is_increasing([4,3,2,1]); // Returns: false
function is_increasing ( list , strict = false ) =
assert ( is_list ( list ) || is_string ( list ) )
strict ? len ( [ for ( p = pair ( list ) ) if ( p . x >= p . y ) true ] ) = = 0
: len ( [ for ( p = pair ( list ) ) if ( p . x > p . y ) true ] ) = = 0 ;
// Function: is_decreasing()
// Usage:
// bool = is_decreasing(list);
// Topics: List Handling
// See Also: max_index(), min_index(), is_increasing()
// Description:
// Returns true if the list is (non-strictly) decreasing, or strictly decreasing if strict is set to true.
// The list can be a list of any items that OpenSCAD can compare, or it can be a string which will be
// evaluated character by character.
// Arguments:
// list = list (or string) to check
// strict = set to true to test that list is strictly decreasing
// Example:
// a = is_decreasing([1,2,3,4]); // Returns: false
// b = is_decreasing([4,2,3,1]); // Returns: false
// c = is_decreasing([4,3,2,1]); // Returns: true
function is_decreasing ( list , strict = false ) =
assert ( is_list ( list ) || is_string ( list ) )
strict ? len ( [ for ( p = pair ( list ) ) if ( p . x < = p . y ) true ] ) = = 0
: len ( [ for ( p = pair ( list ) ) if ( p . x < p . y ) true ] ) = = 0 ;
function _type_num ( x ) =
is_undef ( x ) ? 0 :
is_bool ( x ) ? 1 :
is_num ( x ) ? 2 :
is_nan ( x ) ? 3 :
is_string ( x ) ? 4 :
is_list ( x ) ? 5 : 6 ;
// Function: compare_vals()
// Usage:
// test = compare_vals(a, b);
// Description:
// Compares two values. Lists are compared recursively.
// Returns <0 if a<b. Returns >0 if a>b. Returns 0 if a==b.
// If types are not the same, then undef < bool < nan < num < str < list < range.
// Arguments:
// a = First value to compare.
// b = Second value to compare.
function compare_vals ( a , b ) =
( a = = b ) ? 0 :
let ( t1 = _type_num ( a ) , t2 = _type_num ( b ) ) ( t1 ! = t2 ) ? ( t1 - t2 ) :
is_list ( a ) ? compare_lists ( a , b ) :
is_nan ( a ) ? 0 :
( a < b ) ? - 1 : ( a > b ) ? 1 : 0 ;
// Function: compare_lists()
// Usage:
// test = compare_lists(a, b)
// Description:
// Compare contents of two lists using `compare_vals()`.
// Returns <0 if `a`<`b`.
// Returns 0 if `a`==`b`.
// Returns >0 if `a`>`b`.
// Arguments:
// a = First list to compare.
// b = Second list to compare.
function compare_lists ( a , b ) =
a = = b ? 0 :
let (
cmps = [
for ( i = [ 0 : 1 : min ( len ( a ) , len ( b ) ) - 1 ] )
let ( cmp = compare_vals ( a [ i ] , b [ i ] ) )
if ( cmp ! = 0 ) cmp
]
)
cmps = = [ ] ? ( len ( a ) - len ( b ) ) : cmps [ 0 ] ;
2021-11-10 03:27:55 +00:00
// Section: Finding the index of the minimum or maximum of a list
// Function: min_index()
// Usage:
// idx = min_index(vals);
// idxlist = min_index(vals, all=true);
// Topics: List Handling
// See Also: max_index(), is_increasing(), is_decreasing()
// Description:
// Returns the index of the first occurrence of the minimum value in the given list.
// If `all` is true then returns a list of all indices where the minimum value occurs.
// Arguments:
// vals = vector of values
// all = set to true to return indices of all occurences of the minimum. Default: false
// Example:
// a = min_index([5,3,9,6,2,7,8,2,1]); // Returns: 8
// b = min_index([5,3,9,6,2,7,8,2,7],all=true); // Returns: [4,7]
function min_index ( vals , all = false ) =
assert ( is_vector ( vals ) && len ( vals ) > 0 , "Invalid or empty list of numbers." )
all ? search ( min ( vals ) , vals , 0 ) : search ( min ( vals ) , vals ) [ 0 ] ;
// Function: max_index()
// Usage:
// idx = max_index(vals);
// idxlist = max_index(vals, all=true);
// Topics: List Handling
// See Also: min_index(), is_increasing(), is_decreasing()
// Description:
// Returns the index of the first occurrence of the maximum value in the given list.
// If `all` is true then returns a list of all indices where the maximum value occurs.
// Arguments:
// vals = vector of values
// all = set to true to return indices of all occurences of the maximum. Default: false
// Example:
// max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2
// max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7]
function max_index ( vals , all = false ) =
assert ( is_vector ( vals ) && len ( vals ) > 0 , "Invalid or empty list of numbers." )
all ? search ( max ( vals ) , vals , 0 ) : search ( max ( vals ) , vals ) [ 0 ] ;
2021-10-27 03:12:51 +00:00
// Section: Dealing with duplicate list entries
// Function: find_approx()
// Topics: List Handling
// See Also: in_list()
// Usage:
// idx = find_approx(val, list, [start=], [eps=]);
// indices = find_approx(val, list, all=true, [start=], [eps=]);
// Description:
2021-11-04 12:09:29 +00:00
// Finds the first item in `list` that matches `val`, returning the index. Returns `undef` if there is no match.
2021-10-27 03:12:51 +00:00
// Arguments:
// val = The value to search for. If given a function literal of signature `function (x)`, uses that function to check list items. Returns true for a match.
// list = The list to search through.
// ---
2021-11-04 12:09:29 +00:00
// start = The index to start searching from. Default: 0
2021-10-27 03:12:51 +00:00
// all = If true, returns a list of all matching item indices.
// eps = The maximum allowed floating point rounding error for numeric comparisons.
function find_approx ( val , list , start = 0 , all = false , eps = EPSILON ) =
all ? [ for ( i = [ start : 1 : len ( list ) - 1 ] ) if ( approx ( val , list [ i ] , eps = eps ) ) i ]
: __find_approx ( val , list , eps = eps , i = start ) ;
function __find_approx ( val , list , eps , i = 0 ) =
i >= len ( list ) ? undef :
approx ( val , list [ i ] , eps = eps )
? i
: __find_approx ( val , list , eps = eps , i = i + 1 ) ;
// Function: deduplicate()
// Usage:
// list = deduplicate(list, [close], [eps]);
// Topics: List Handling
// See Also: deduplicate_indexed()
// Description:
// Removes consecutive duplicate items in a list.
// When `eps` is zero, the comparison between consecutive items is exact.
// Otherwise, when all list items and subitems are numbers, the comparison is within the tolerance `eps`.
// Unlike `unique()` only consecutive duplicates are removed and the list is *not* sorted.
// Arguments:
// list = The list to deduplicate.
// closed = If true, drops trailing items if they match the first list item.
// eps = The maximum tolerance between items.
// Example:
// a = deduplicate([8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3,8]
// b = deduplicate(closed=true, [8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3]
// c = deduplicate("Hello"); // Returns: "Helo"
// d = deduplicate([[3,4],[7,2],[7,1.99],[1,4]],eps=0.1); // Returns: [[3,4],[7,2],[1,4]]
// e = deduplicate([[7,undef],[7,undef],[1,4],[1,4+1e-12]],eps=0); // Returns: [[7,undef],[1,4],[1,4+1e-12]]
function deduplicate ( list , closed = false , eps = EPSILON ) =
assert ( is_list ( list ) || is_string ( list ) )
let (
l = len ( list ) ,
end = l - ( closed ? 0 : 1 )
)
is_string ( list ) ? str_join ( [ for ( i = [ 0 : 1 : l - 1 ] ) if ( i = = end || list [ i ] ! = list [ ( i + 1 ) % l ] ) list [ i ] ] ) :
eps = = 0 ? [ for ( i = [ 0 : 1 : l - 1 ] ) if ( i = = end || list [ i ] ! = list [ ( i + 1 ) % l ] ) list [ i ] ] :
[ for ( i = [ 0 : 1 : l - 1 ] ) if ( i = = end || ! approx ( list [ i ] , list [ ( i + 1 ) % l ] , eps ) ) list [ i ] ] ;
// Function: deduplicate_indexed()
// Usage:
// new_idxs = deduplicate_indexed(list, indices, [closed], [eps]);
// Topics: List Handling
// See Also: deduplicate()
// Description:
// Given a list, and a list of indices, removes consecutive indices corresponding to list values that are equal
// or approximately equal.
// Arguments:
// list = The list that the indices index into.
// indices = The list of indices to deduplicate.
// closed = If true, drops trailing indices if their list value matches the list value corresponding to the first index.
// eps = The maximum difference to allow between numbers or vectors.
// Example:
// a = deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1]); // Returns: [1,4,3,2,0,1]
// b = deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1], closed=true); // Returns: [1,4,3,2,0]
// c = deduplicate_indexed([[7,undef],[7,undef],[1,4],[1,4],[1,4+1e-12]],eps=0); // Returns: [0,2,4]
function deduplicate_indexed ( list , indices , closed = false , eps = EPSILON ) =
assert ( is_list ( list ) || is_string ( list ) , "Improper list or string." )
indices = = [ ] ? [ ] :
assert ( is_vector ( indices ) , "Indices must be a list of numbers." )
let (
ll = len ( list ) ,
l = len ( indices ) ,
end = l - ( closed ? 0 : 1 )
) [
for ( i = [ 0 : 1 : l - 1 ] ) let (
idx1 = indices [ i ] ,
idx2 = indices [ ( i + 1 ) % l ] ,
a = assert ( idx1 >= 0 , "Bad index." )
assert ( idx1 < len ( list ) , "Bad index in indices." )
list [ idx1 ] ,
b = assert ( idx2 >= 0 , "Bad index." )
assert ( idx2 < len ( list ) , "Bad index in indices." )
list [ idx2 ] ,
eq = ( a = = b ) ? true :
( a * 0 ! = b * 0 ) || ( eps = = 0 ) ? false :
is_num ( a ) || is_vector ( a ) ? approx ( a , b , eps = eps )
: false
)
if ( i = = end || ! eq ) indices [ i ]
] ;
// Function: unique()
// Usage:
// ulist = unique(list);
// Topics: List Handling
// See Also: shuffle(), sort(), sortidx(), unique_count()
// Description:
// Given a string or a list returns the sorted string or the sorted list with all repeated items removed.
// The sorting order of non homogeneous lists is the function `sort` order.
// Arguments:
// list = The list to uniquify.
// Example:
// sorted = unique([5,2,8,3,1,3,8,7,5]); // Returns: [1,2,3,5,7,8]
// sorted = unique("axdbxxc"); // Returns: "abcdx"
// sorted = unique([true,2,"xba",[1,0],true,[0,0],3,"a",[0,0],2]); // Returns: [true,2,3,"a","xba",[0,0],[1,0]]
function unique ( list ) =
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
is_string ( list ) ? str_join ( unique ( [ for ( x = list ) x ] ) ) :
len ( list ) < = 1 ? list :
is_homogeneous ( list , 1 ) && ! is_list ( list [ 0 ] )
? _unique_sort ( list )
: let ( sorted = sort ( list ) )
[
for ( i = [ 0 : 1 : len ( sorted ) - 1 ] )
if ( i = = 0 || ( sorted [ i ] ! = sorted [ i - 1 ] ) )
sorted [ i ]
] ;
function _unique_sort ( l ) =
len ( l ) < = 1 ? l :
let (
pivot = l [ floor ( len ( l ) / 2 ) ] ,
equal = [ for ( li = l ) if ( li = = pivot ) li ] ,
lesser = [ for ( li = l ) if ( li < pivot ) li ] ,
greater = [ for ( li = l ) if ( li > pivot ) li ]
)
concat (
_unique_sort ( lesser ) ,
equal [ 0 ] ,
_unique_sort ( greater )
) ;
// Function: unique_count()
// Usage:
// counts = unique_count(list);
// Topics: List Handling
// See Also: shuffle(), sort(), sortidx(), unique()
// Description:
// Returns `[sorted,counts]` where `sorted` is a sorted list of the unique items in `list` and `counts` is a list such
// that `count[i]` gives the number of times that `sorted[i]` appears in `list`.
// Arguments:
// list = The list to analyze.
// Example:
// sorted = unique([5,2,8,3,1,3,8,3,5]); // Returns: [ [1,2,3,5,8], [1,1,3,2,2] ]
function unique_count ( list ) =
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
list = = [ ] ? [ [ ] , [ ] ] :
is_homogeneous ( list , 1 ) && ! is_list ( list [ 0 ] )
? let ( sorted = _group_sort ( list ) )
[ [ for ( s = sorted ) s [ 0 ] ] , [ for ( s = sorted ) len ( s ) ] ]
: let (
list = sort ( list ) ,
ind = [ 0 , for ( i = [ 1 : 1 : len ( list ) - 1 ] ) if ( list [ i ] ! = list [ i - 1 ] ) i ]
)
[ select ( list , ind ) , deltas ( concat ( ind , [ len ( list ) ] ) ) ] ;
// Section: Sorting
// returns true for valid index specifications idx in the interval [imin, imax)
// note that idx can't have any value greater or EQUAL to imax
// this allows imax=INF as a bound to numerical lists
function _valid_idx ( idx , imin , imax ) =
is_undef ( idx )
|| ( is_finite ( idx )
&& ( is_undef ( imin ) || idx >= imin )
&& ( is_undef ( imax ) || idx < imax ) )
|| ( is_list ( idx )
&& ( is_undef ( imin ) || min ( idx ) >= imin )
&& ( is_undef ( imax ) || max ( idx ) < imax ) )
|| ( is_range ( idx )
&& ( is_undef ( imin ) || ( idx [ 1 ] > 0 && idx [ 0 ] >= imin ) || ( idx [ 1 ] < 0 && idx [ 0 ] < = imax ) )
&& ( is_undef ( imax ) || ( idx [ 1 ] > 0 && idx [ 2 ] < = imax ) || ( idx [ 1 ] < 0 && idx [ 2 ] >= imin ) ) ) ;
// idx should be an index of the arrays l[i]
function _group_sort_by_index ( l , idx ) =
len ( l ) = = 0 ? [ ] :
len ( l ) = = 1 ? [ l ] :
let (
pivot = l [ floor ( len ( l ) / 2 ) ] [ idx ] ,
equal = [ for ( li = l ) if ( li [ idx ] = = pivot ) li ] ,
lesser = [ for ( li = l ) if ( li [ idx ] < pivot ) li ] ,
greater = [ for ( li = l ) if ( li [ idx ] > pivot ) li ]
)
concat (
_group_sort_by_index ( lesser , idx ) ,
[ equal ] ,
_group_sort_by_index ( greater , idx )
) ;
function _group_sort ( l ) =
len ( l ) = = 0 ? [ ] :
len ( l ) = = 1 ? [ l ] :
let (
pivot = l [ floor ( len ( l ) / 2 ) ] ,
equal = [ for ( li = l ) if ( li = = pivot ) li ] ,
lesser = [ for ( li = l ) if ( li < pivot ) li ] ,
greater = [ for ( li = l ) if ( li > pivot ) li ]
)
concat (
_group_sort ( lesser ) ,
[ equal ] ,
_group_sort ( greater )
) ;
// Sort a vector of scalar values with the native comparison operator
// all elements should have the same type.
function _sort_scalars ( arr ) =
len ( arr ) < = 1 ? arr :
let (
pivot = arr [ floor ( len ( arr ) / 2 ) ] ,
lesser = [ for ( y = arr ) if ( y < pivot ) y ] ,
equal = [ for ( y = arr ) if ( y = = pivot ) y ] ,
greater = [ for ( y = arr ) if ( y > pivot ) y ]
)
concat ( _sort_scalars ( lesser ) , equal , _sort_scalars ( greater ) ) ;
// lexical sort of a homogeneous list of vectors
// uses native comparison operator
function _sort_vectors ( arr , _i = 0 ) =
len ( arr ) < = 1 || _i >= len ( arr [ 0 ] ) ? arr :
let (
pivot = arr [ floor ( len ( arr ) / 2 ) ] [ _i ] ,
lesser = [ for ( entry = arr ) if ( entry [ _i ] < pivot ) entry ] ,
equal = [ for ( entry = arr ) if ( entry [ _i ] = = pivot ) entry ] ,
greater = [ for ( entry = arr ) if ( entry [ _i ] > pivot ) entry ]
)
concat (
_sort_vectors ( lesser , _i ) ,
_sort_vectors ( equal , _i + 1 ) ,
_sort_vectors ( greater , _i ) ) ;
// lexical sort of a homogeneous list of vectors by the vector components with indices in idxlist
// all idxlist indices should be in the range of the vector dimensions
// idxlist must be undef or a simple list of numbers
// uses native comparison operator
function _sort_vectors ( arr , idxlist , _i = 0 ) =
len ( arr ) < = 1 || ( is_list ( idxlist ) && _i >= len ( idxlist ) ) || _i >= len ( arr [ 0 ] ) ? arr :
let (
k = is_list ( idxlist ) ? idxlist [ _i ] : _i ,
pivot = arr [ floor ( len ( arr ) / 2 ) ] [ k ] ,
lesser = [ for ( entry = arr ) if ( entry [ k ] < pivot ) entry ] ,
equal = [ for ( entry = arr ) if ( entry [ k ] = = pivot ) entry ] ,
greater = [ for ( entry = arr ) if ( entry [ k ] > pivot ) entry ]
)
concat (
_sort_vectors ( lesser , idxlist , _i ) ,
_sort_vectors ( equal , idxlist , _i + 1 ) ,
_sort_vectors ( greater , idxlist , _i ) ) ;
// sorting using compare_vals(); returns indexed list when `indexed==true`
function _sort_general ( arr , idx = undef , indexed = false ) =
( len ( arr ) < = 1 ) ? arr :
! indexed && is_undef ( idx )
? _lexical_sort ( arr )
2021-11-19 00:02:50 +00:00
: let ( labeled = is_undef ( idx ) ? [ for ( i = idx ( arr ) ) [ i , arr [ i ] ] ]
: [ for ( i = idx ( arr ) ) [ i , for ( j = idx ) arr [ i ] [ j ] ] ] ,
arrind = _indexed_sort ( labeled ) )
2021-10-27 03:12:51 +00:00
indexed
? arrind
: [ for ( i = arrind ) arr [ i ] ] ;
// lexical sort using compare_vals()
function _lexical_sort ( arr ) =
len ( arr ) < = 1 ? arr :
let ( pivot = arr [ floor ( len ( arr ) / 2 ) ] )
let (
lesser = [ for ( entry = arr ) if ( compare_vals ( entry , pivot ) < 0 ) entry ] ,
equal = [ for ( entry = arr ) if ( compare_vals ( entry , pivot ) = = 0 ) entry ] ,
greater = [ for ( entry = arr ) if ( compare_vals ( entry , pivot ) > 0 ) entry ]
)
concat ( _lexical_sort ( lesser ) , equal , _lexical_sort ( greater ) ) ;
// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair
// the sorting is done using compare_vals()
function _indexed_sort ( arrind ) =
arrind = = [ ] ? [ ] : len ( arrind ) = = 1 ? [ arrind [ 0 ] [ 0 ] ] :
let ( pivot = arrind [ floor ( len ( arrind ) / 2 ) ] [ 1 ] )
let (
lesser = [ for ( entry = arrind ) if ( compare_vals ( entry [ 1 ] , pivot ) < 0 ) entry ] ,
equal = [ for ( entry = arrind ) if ( compare_vals ( entry [ 1 ] , pivot ) = = 0 ) entry [ 0 ] ] ,
greater = [ for ( entry = arrind ) if ( compare_vals ( entry [ 1 ] , pivot ) > 0 ) entry ]
)
concat ( _indexed_sort ( lesser ) , equal , _indexed_sort ( greater ) ) ;
// Function: sort()
// Usage:
// slist = sort(list, [idx]);
// Topics: List Handling
// See Also: shuffle(), sortidx(), unique(), unique_count(), group_sort()
// Description:
// Sorts the given list in lexicographic order. If the input is a homogeneous simple list or a homogeneous
// list of vectors (see function is_homogeneous), the sorting method uses the native comparison operator and is faster.
// When sorting non homogeneous list the elements are compared with `compare_vals`, with types ordered according to
// `undef < boolean < number < string < list`. Comparison of lists is recursive.
// When comparing vectors, homogeneous or not, the parameter `idx` may be used to select the components to compare.
// Note that homogeneous lists of vectors may contain mixed types provided that for any two list elements
// list[i] and list[j] satisfies type(list[i][k])==type(list[j][k]) for all k.
// Strings are allowed as any list element and are compared with the native operators although no substring
// comparison is possible.
// Arguments:
// list = The list to sort.
// idx = If given, do the comparison based just on the specified index, range or list of indices.
// Example:
// // Homogeneous lists
// l1 = [45,2,16,37,8,3,9,23,89,12,34];
// sorted1 = sort(l1); // Returns [2,3,8,9,12,16,23,34,37,45,89]
// l2 = [["oat",0], ["cat",1], ["bat",3], ["bat",2], ["fat",3]];
// sorted2 = sort(l2); // Returns: [["bat",2],["bat",3],["cat",1],["fat",3],["oat",0]]
// // Non-homegenous list
// l3 = [[4,0],[7],[3,9],20,[4],[3,1],[8]];
// sorted3 = sort(l3); // Returns: [20,[3,1],[3,9],[4],[4,0],[7],[8]]
function sort ( list , idx = undef ) =
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
is_string ( list ) ? str_join ( sort ( [ for ( x = list ) x ] , idx ) ) :
! is_list ( list ) || len ( list ) < = 1 ? list :
is_homogeneous ( list , 1 )
2021-10-28 00:21:12 +00:00
? let ( size = list_shape ( list [ 0 ] ) )
2021-10-27 03:12:51 +00:00
size = = 0 ? _sort_scalars ( list )
: len ( size ) ! = 1 ? _sort_general ( list , idx )
: is_undef ( idx ) ? _sort_vectors ( list )
: assert ( _valid_idx ( idx ) , "Invalid indices." )
_sort_vectors ( list , [ for ( i = idx ) i ] )
: _sort_general ( list , idx ) ;
// Function: sortidx()
// Usage:
// idxlist = sortidx(list, [idx]);
// Topics: List Handling
// See Also: shuffle(), sort(), group_sort(), unique(), unique_count()
// Description:
// Given a list, sort it as function `sort()`, and returns
// a list of indexes into the original list in that sorted order.
// If you iterate the returned list in order, and use the list items
// to index into the original list, you will be iterating the original
// values in sorted order.
// Arguments:
// list = The list to sort.
// idx = If given, do the comparison based just on the specified index, range or list of indices.
// Example:
// lst = ["d","b","e","c"];
// idxs = sortidx(lst); // Returns: [1,3,0,2]
// ordered = select(lst, idxs); // Returns: ["b", "c", "d", "e"]
// Example:
// lst = [
// ["foo", 88, [0,0,1], false],
// ["bar", 90, [0,1,0], true],
// ["baz", 89, [1,0,0], false],
// ["qux", 23, [1,1,1], true]
// ];
// idxs1 = sortidx(lst, idx=1); // Returns: [3,0,2,1]
// idxs2 = sortidx(lst, idx=0); // Returns: [1,2,0,3]
// idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1]
function sortidx ( list , idx = undef ) =
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
! is_list ( list ) || len ( list ) < = 1 ? list :
is_homogeneous ( list , 1 )
? let (
2021-10-28 00:21:12 +00:00
size = list_shape ( list [ 0 ] ) ,
2021-10-27 03:12:51 +00:00
aug = ! ( size = = 0 || len ( size ) = = 1 ) ? 0 // for general sorting
: [ for ( i = [ 0 : len ( list ) - 1 ] ) concat ( i , list [ i ] ) ] , // for scalar or vector sorting
lidx = size = = 0 ? [ 1 ] : // scalar sorting
len ( size ) = = 1
? is_undef ( idx ) ? [ for ( i = [ 0 : len ( list [ 0 ] ) - 1 ] ) i + 1 ] // vector sorting
: [ for ( i = idx ) i + 1 ] // vector sorting
: 0 // just to signal
)
assert ( ! ( size = = 0 && is_def ( idx ) ) ,
"The specification of `idx` is incompatible with scalar sorting." )
assert ( _valid_idx ( idx ) , "Invalid indices." )
lidx ! = 0
? let ( lsort = _sort_vectors ( aug , lidx ) )
[ for ( li = lsort ) li [ 0 ] ]
: _sort_general ( list , idx , indexed = true )
: _sort_general ( list , idx , indexed = true ) ;
// Function: group_sort()
// Usage:
// ulist = group_sort(list);
// Topics: List Handling
// See Also: shuffle(), sort(), sortidx(), unique(), unique_count()
// Description:
// Given a list of values, returns the sorted list with all repeated items grouped in a list.
// When the list entries are themselves lists, the sorting may be done based on the `idx` entry
// of those entries, that should be numbers.
// The result is always a list of lists.
// Arguments:
// list = The list to sort.
// idx = If given, do the comparison based just on the specified index. Default: zero.
// Example:
// sorted = group_sort([5,2,8,3,1,3,8,7,5]); // Returns: [[1],[2],[3,3],[5,5],[7],[8,8]]
// sorted2 = group_sort([[5,"a"],[2,"b"], [5,"c"], [3,"d"], [2,"e"] ], idx=0); // Returns: [[[2,"b"],[2,"e"]], [[5,"a"],[5,"c"]], [[3,"d"]] ]
function group_sort ( list , idx ) =
assert ( is_list ( list ) , "Input should be a list." )
assert ( is_undef ( idx ) || ( is_finite ( idx ) && idx >= 0 ) , "Invalid index." )
len ( list ) < = 1 ? [ list ] :
is_vector ( list ) ? _group_sort ( list ) :
let ( idx = is_undef ( idx ) ? 0 : idx )
assert ( [ for ( entry = list ) if ( ! is_list ( entry ) || len ( entry ) < idx || ! is_num ( entry [ idx ] ) ) 1 ] = = [ ] ,
"Some entry of the list is a list shorter than `idx` or the indexed entry of it is not a number." )
_group_sort_by_index ( list , idx ) ;
// Function: group_data()
// Usage:
// groupings = group_data(groups, values);
// Topics: Array Handling
// Description:
// Given a list of integer group numbers, and an equal-length list of values,
// returns a list of groups with the values sorted into the corresponding groups.
// Ie: if you have a groups index list of [2,3,2] and values of ["A","B","C"], then
// the values "A" and "C" will be put in group 2, and "B" will be in group 3.
// Groups that have no values grouped into them will be an empty list. So the
// above would return [[], [], ["A","C"], ["B"]]
// Arguments:
// groups = A list of integer group index numbers.
// values = A list of values to sort into groups.
// Example:
// groups = group_data([1,2,0], ["A","B","C"]); // Returns [["B"],["C"],["A"]]
// Example:
// groups = group_data([1,3,1], ["A","B","C"]); // Returns [[],["A","C"],[],["B"]]
function group_data ( groups , values ) =
assert ( all_integer ( groups ) && all_nonnegative ( groups ) )
assert ( is_list ( values ) )
assert ( len ( groups ) = = len ( values ) ,
"The groups and values arguments should be lists of matching length." )
2021-11-19 00:02:50 +00:00
let ( sorted = _group_sort_by_index ( [ for ( i = idx ( groups ) ) [ groups [ i ] , values [ i ] ] ] , 0 ) )
2021-10-27 03:12:51 +00:00
// retrieve values and insert []
[
for ( i = idx ( sorted ) )
let (
a = i = = 0 ? 0 : sorted [ i - 1 ] [ 0 ] [ 0 ] + 1 ,
g0 = sorted [ i ]
)
each [
for ( j = [ a : 1 : g0 [ 0 ] [ 0 ] - 1 ] ) [ ] ,
[ for ( g1 = g0 ) g1 [ 1 ] ]
]
] ;
2021-10-30 21:47:17 +00:00
// Function: list_smallest()
// Usage:
// small = list_smallest(list, k)
// Description:
// Returns a set of the k smallest items in list in arbitrary order. The items must be
// mutually comparable with native OpenSCAD comparison operations. You will get "undefined operation"
// errors if you provide invalid input.
// Arguments:
// list = list to process
// k = number of items to return
function list_smallest ( list , k ) =
assert ( is_list ( list ) )
assert ( is_finite ( k ) && k >= 0 , "k must be nonnegative" )
let (
v = list [ rand_int ( 0 , len ( list ) - 1 , 1 ) [ 0 ] ] ,
smaller = [ for ( li = list ) if ( li < v ) li ] ,
equal = [ for ( li = list ) if ( li = = v ) li ]
)
len ( smaller ) = = k ? smaller :
len ( smaller ) < k && len ( smaller ) + len ( equal ) >= k ? [ each smaller , for ( i = [ 1 : k - len ( smaller ) ] ) v ] :
len ( smaller ) > k ? list_smallest ( smaller , k ) :
let ( bigger = [ for ( li = list ) if ( li > v ) li ] )
concat ( smaller , equal , list_smallest ( bigger , k - len ( smaller ) - len ( equal ) ) ) ;
2021-11-05 04:13:50 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap