2019-04-20 00:02:17 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: arrays.scad
// List and Array manipulation functions.
// To use, add the following lines to the beginning of your file:
// ```
// use <BOSL2/std.scad>
// ```
2020-01-10 00:10:18 +00:00
//////////////////////////////////////////////////////////////////////
2019-04-20 00:02:17 +00:00
2020-01-10 00:14:12 +00:00
// Section: Terminology
// - **List**: An ordered collection of zero or more items. ie: `["a", "b", "c"]`
// - **Vector**: A list of numbers. ie: `[4, 5, 6]`
// - **Array**: A nested list of lists, or list of lists of lists, or deeper. ie: `[[2,3], [4,5], [6,7]]`
// - **Dimension**: The depth of nesting of lists in an array. A List is 1D. A list of lists is 2D. etc.
2020-03-31 06:09:20 +00:00
// - **Set**: A list of unique items.
2020-01-10 00:14:12 +00:00
2020-01-10 00:10:18 +00:00
// Section: List Query Operations
2019-04-20 00:02:17 +00:00
2020-07-28 18:02:35 +00:00
// Function: is_simple_list()
// Description:
// Returns true just when all elements of `list` are simple values.
// Usage:
// is_simple_list(list)
// Arguments:
// list = The list to check.
// Example:
// a = is_simple_list([3,4,5,6,7,8,9]); Returns: true
// b = is_simple_list([3,4,5,[6],7,8]); Returns: false
function is_simple_list ( list ) =
is_list ( list )
&& [ ] = = [ for ( e = list ) if ( is_list ( e ) ) 0 ] ;
2019-04-20 00:02:17 +00:00
// Function: select()
// Description:
// Returns a portion of a list, wrapping around past the beginning, if end<start.
// The first item is index 0. Negative indexes are counted back from the end.
// The last item is -1. If only the `start` index is given, returns just the value
// at that position.
// Usage:
// select(list,start)
// select(list,start,end)
// Arguments:
// list = The list to get the portion of.
// start = The index of the first item.
// end = The index of the last item.
// Example:
// l = [3,4,5,6,7,8,9];
// select(l, 5, 6); // Returns [8,9]
// select(l, 5, 8); // Returns [8,9,3,4]
// select(l, 5, 2); // Returns [8,9,3,4,5]
// select(l, -3, -1); // Returns [7,8,9]
// select(l, 3, 3); // Returns [6]
// select(l, 4); // Returns 7
// select(l, -2); // Returns 8
// select(l, [1:3]); // Returns [4,5,6]
// select(l, [1,3]); // Returns [4,6]
function select ( list , start , end = undef ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Invalid list." )
2020-05-30 02:04:34 +00:00
let ( l = len ( list ) )
2020-07-24 21:54:34 +00:00
l = = 0 ? [ ]
: end = = undef ?
is_num ( start ) ?
list [ ( start % l + l ) % l ]
: assert ( is_list ( start ) || is_range ( start ) , "Invalid start parameter" )
[ for ( i = start ) list [ ( i % l + l ) % l ] ]
2020-07-30 04:58:12 +00:00
: assert ( is_finite ( start ) , "Invalid start parameter." )
assert ( is_finite ( end ) , "Invalid end parameter." )
2020-07-24 21:54:34 +00:00
let ( s = ( start % l + l ) % l , e = ( end % l + l ) % l )
( s < = e ) ? [ for ( i = [ s : 1 : e ] ) list [ i ] ]
: concat ( [ for ( i = [ s : 1 : l - 1 ] ) list [ i ] ] , [ for ( i = [ 0 : 1 : e ] ) list [ i ] ] ) ;
2020-07-29 05:52:12 +00:00
2019-04-20 00:02:17 +00:00
2020-01-10 00:10:18 +00:00
// Function: slice()
// Description:
// Returns a slice of a list. The first item is index 0.
// Negative indexes are counted back from the end. The last item is -1.
// Arguments:
2020-07-24 21:54:34 +00:00
// list = The array/list to get the slice of.
// start = The index of the first item to return.
2020-01-10 00:10:18 +00:00
// end = The index after the last item to return, unless negative, in which case the last item to return.
// Example:
// slice([3,4,5,6,7,8,9], 3, 5); // Returns [6,7]
// slice([3,4,5,6,7,8,9], 2, -1); // Returns [5,6,7,8,9]
// slice([3,4,5,6,7,8,9], 1, 1); // Returns []
// slice([3,4,5,6,7,8,9], 6, -1); // Returns [9]
// slice([3,4,5,6,7,8,9], 2, -2); // Returns [5,6,7,8]
2020-07-24 21:54:34 +00:00
function slice ( list , start , end ) =
assert ( is_list ( list ) , "Invalid list" )
assert ( is_finite ( start ) && is_finite ( end ) , "Invalid number(s)" )
let ( l = len ( list ) )
l = = 0 ? [ ]
: let (
s = start < 0 ? ( l + start ) : start ,
e = end < 0 ? ( l + end + 1 ) : end
) [ for ( i = [ s : 1 : e - 1 ] ) if ( e > s ) list [ i ] ] ;
2020-01-10 00:10:18 +00:00
// Function: in_list()
2020-07-28 20:51:45 +00:00
// Description: Returns true if value `val` is in list `list`. When `val==NAN` the answer will be false for any list.
2020-01-10 00:10:18 +00:00
// Arguments:
2020-07-24 21:54:34 +00:00
// val = The simple value to search for.
// list = The list to search.
// idx = If given, searches the given subindexes for matches for `val`.
2020-01-10 00:10:18 +00:00
// Example:
// in_list("bar", ["foo", "bar", "baz"]); // Returns true.
// in_list("bee", ["foo", "bar", "baz"]); // Returns false.
// in_list("bar", [[2,"foo"], [4,"bar"], [3,"baz"]], idx=1); // Returns true.
2020-07-21 23:55:05 +00:00
function in_list ( val , list , idx = undef ) =
let ( s = search ( [ val ] , list , num_returns_per_match = 1 , index_col_num = idx ) [ 0 ] )
2020-07-24 21:54:34 +00:00
s = = [ ] || s [ 0 ] = = [ ] ? false
2020-07-21 23:55:05 +00:00
: is_undef ( idx ) ? val = = list [ s ]
: val = = list [ s ] [ idx ] ;
2020-07-29 05:52:12 +00:00
2020-01-10 00:10:18 +00:00
// Function: min_index()
// Usage:
// min_index(vals,[all]);
// Description:
// Returns the index of the first occurrence of the minimum value in the given list.
// If `all` is true then returns a list of all indices where the minimum value occurs.
// Arguments:
// vals = vector of values
// all = set to true to return indices of all occurences of the minimum. Default: false
// Example:
2020-07-24 21:54:34 +00:00
// min_index([5,3,9,6,2,7,8,2,1]); // Returns: 8
// min_index([5,3,9,6,2,7,8,2,7],all=true); // Returns: [4,7]
2020-01-10 00:10:18 +00:00
function min_index ( vals , all = false ) =
2020-07-24 21:54:34 +00:00
assert ( is_vector ( vals ) && len ( vals ) > 0 , "Invalid or empty list of numbers." )
2020-05-30 02:04:34 +00:00
all ? search ( min ( vals ) , vals , 0 ) : search ( min ( vals ) , vals ) [ 0 ] ;
2020-01-10 00:10:18 +00:00
// Function: max_index()
// Usage:
// max_index(vals,[all]);
// Description:
// Returns the index of the first occurrence of the maximum value in the given list.
// If `all` is true then returns a list of all indices where the maximum value occurs.
// Arguments:
// vals = vector of values
// all = set to true to return indices of all occurences of the maximum. Default: false
// Example:
// max_index([5,3,9,6,2,7,8,9,1]); // Returns: 2
// max_index([5,3,9,6,2,7,8,9,1],all=true); // Returns: [2,7]
function max_index ( vals , all = false ) =
2020-07-24 21:54:34 +00:00
assert ( is_vector ( vals ) && len ( vals ) > 0 , "Invalid or empty list of numbers." )
2020-05-30 02:04:34 +00:00
all ? search ( max ( vals ) , vals , 0 ) : search ( max ( vals ) , vals ) [ 0 ] ;
2020-01-10 00:10:18 +00:00
// Function: list_increasing()
// Usage:
// list_increasing(list)
// Description:
// Returns true if the list is (non-strictly) increasing
// Example:
// list_increasing([1,2,3,4]); // Returns: true
// list_increasing([1,3,2,4]); // Returns: false
// list_increasing([4,3,2,1]); // Returns: false
function list_increasing ( list ) =
2020-05-30 02:04:34 +00:00
assert ( is_list ( list ) || is_string ( list ) )
len ( [ for ( p = pair ( list ) ) if ( p . x > p . y ) true ] ) = = 0 ;
2020-01-10 00:10:18 +00:00
// Function: list_decreasing()
// Usage:
// list_decreasing(list)
// Description:
// Returns true if the list is (non-strictly) decreasing
// Example:
// list_decreasing([1,2,3,4]); // Returns: false
// list_decreasing([4,2,3,1]); // Returns: false
// list_decreasing([4,3,2,1]); // Returns: true
function list_decreasing ( list ) =
2020-05-30 02:04:34 +00:00
assert ( is_list ( list ) || is_string ( list ) )
len ( [ for ( p = pair ( list ) ) if ( p . x < p . y ) true ] ) = = 0 ;
2020-01-10 00:10:18 +00:00
// Section: Basic List Generation
2020-03-05 04:22:39 +00:00
// Function: repeat()
2020-01-10 00:10:18 +00:00
// Usage:
2020-03-05 04:22:39 +00:00
// repeat(val, n)
2020-01-10 00:10:18 +00:00
// Description:
// Generates a list or array of `n` copies of the given `list`.
// If the count `n` is given as a list of counts, then this creates a
// multi-dimensional array, filled with `val`.
// Arguments:
// val = The value to repeat to make the list or array.
// n = The number of copies to make of `val`.
// Example:
2020-03-05 04:22:39 +00:00
// repeat(1, 4); // Returns [1,1,1,1]
// repeat(8, [2,3]); // Returns [[8,8,8], [8,8,8]]
// repeat(0, [2,2,3]); // Returns [[[0,0,0],[0,0,0]], [[0,0,0],[0,0,0]]]
// repeat([1,2,3],3); // Returns [[1,2,3], [1,2,3], [1,2,3]]
function repeat ( val , n , i = 0 ) =
2020-05-30 02:04:34 +00:00
is_num ( n ) ? [ for ( j = [ 1 : 1 : n ] ) val ] :
2020-07-24 21:54:34 +00:00
assert ( is_list ( n ) , "Invalid count number." )
2020-05-30 02:04:34 +00:00
( i >= len ( n ) ) ? val :
[ for ( j = [ 1 : 1 : n [ i ] ] ) repeat ( val , n , i + 1 ) ] ;
2020-01-10 00:10:18 +00:00
2020-07-29 05:52:12 +00:00
2019-04-20 00:02:17 +00:00
// Function: list_range()
// Usage:
2019-10-24 05:48:47 +00:00
// list_range(n, [s], [e])
// list_range(n, [s], [step])
2019-04-20 00:02:17 +00:00
// list_range(e, [step])
// list_range(s, e, [step])
// Description:
// Returns a list, counting up from starting value `s`, by `step` increments,
// until either `n` values are in the list, or it reaches the end value `e`.
2020-07-24 21:54:34 +00:00
// If both `n` and `e` are given, returns `n` values evenly spread from `s`
2019-10-24 05:48:47 +00:00
// to `e`, and `step` is ignored.
2019-04-20 00:02:17 +00:00
// Arguments:
// n = Desired number of values in returned list, if given.
// s = Starting value. Default: 0
// e = Ending value to stop at, if given.
// step = Amount to increment each value. Default: 1
// Example:
// list_range(4); // Returns [0,1,2,3]
// list_range(n=4, step=2); // Returns [0,2,4,6]
// list_range(n=4, s=3, step=3); // Returns [3,6,9,12]
2019-06-19 08:51:47 +00:00
// list_range(n=5, s=0, e=10); // Returns [0, 2.5, 5, 7.5, 10]
2019-04-20 00:02:17 +00:00
// list_range(e=3); // Returns [0,1,2,3]
2020-07-24 21:54:34 +00:00
// list_range(e=7, step=2); // Returns [0,2,4,6]
2019-04-20 00:02:17 +00:00
// list_range(s=3, e=5); // Returns [3,4,5]
// list_range(s=3, e=8, step=2); // Returns [3,5,7]
2020-07-24 21:54:34 +00:00
// list_range(s=4, e=8.3, step=2); // Returns [4,6,8]
2019-04-20 00:02:17 +00:00
// list_range(n=4, s=[3,4], step=[2,3]); // Returns [[3,4], [5,7], [7,10], [9,13]]
2019-10-24 05:48:47 +00:00
function list_range ( n = undef , s = 0 , e = undef , step = undef ) =
2020-07-24 21:54:34 +00:00
assert ( is_undef ( n ) || is_finite ( n ) , "Parameter `n` must be a number." )
assert ( is_undef ( n ) || is_undef ( e ) || is_undef ( step ) , "At most 2 of n, e, and step can be given." )
let ( step = ( n ! = undef && e ! = undef ) ? ( e - s ) / ( n - 1 ) : default ( step , 1 ) )
is_undef ( e ) ?
assert ( is_consistent ( [ s , step ] ) , "Incompatible data." )
[ for ( i = [ 0 : 1 : n - 1 ] ) s + step * i ]
: assert ( is_vector ( [ s , step , e ] ) , "Start `s`, step `step` and end `e` must be numbers." )
[ for ( v = [ s : step : e ] ) v ] ;
2020-07-29 05:52:12 +00:00
2019-04-20 00:02:17 +00:00
2020-01-10 00:10:18 +00:00
// Section: List Manipulation
2019-04-20 00:02:17 +00:00
// Function: reverse()
// Description: Reverses a list/array.
// Arguments:
// list = The list to reverse.
// Example:
// reverse([3,4,5,6]); // Returns [6,5,4,3]
2019-10-30 05:42:41 +00:00
function reverse ( list ) =
2020-05-30 02:04:34 +00:00
assert ( is_list ( list ) || is_string ( list ) )
[ for ( i = [ len ( list ) - 1 : - 1 : 0 ] ) list [ i ] ] ;
2019-10-30 05:42:41 +00:00
// Function: list_rotate()
// Usage:
// rlist = list_rotate(list,n);
// Description:
// Rotates the contents of a list by `n` positions left.
// If `n` is negative, then the rotation is `abs(n)` positions to the right.
// Arguments:
// list = The list to rotate.
// n = The number of positions to rotate by. If negative, rotated to the right. Positive rotates to the left. Default: 1
// Example:
// l1 = list_rotate([1,2,3,4,5],-2); // Returns: [4,5,1,2,3]
// l2 = list_rotate([1,2,3,4,5],-1); // Returns: [5,1,2,3,4]
// l3 = list_rotate([1,2,3,4,5],0); // Returns: [1,2,3,4,5]
// l4 = list_rotate([1,2,3,4,5],1); // Returns: [2,3,4,5,1]
// l5 = list_rotate([1,2,3,4,5],2); // Returns: [3,4,5,1,2]
// l6 = list_rotate([1,2,3,4,5],3); // Returns: [4,5,1,2,3]
// l7 = list_rotate([1,2,3,4,5],4); // Returns: [5,1,2,3,4]
// l8 = list_rotate([1,2,3,4,5],5); // Returns: [1,2,3,4,5]
// l9 = list_rotate([1,2,3,4,5],6); // Returns: [2,3,4,5,1]
function list_rotate ( list , n = 1 ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Invalid list or string." )
assert ( is_finite ( n ) , "Invalid number" )
2020-05-30 02:04:34 +00:00
select ( list , n , n + len ( list ) - 1 ) ;
2019-04-20 00:02:17 +00:00
2019-06-17 06:54:44 +00:00
// Function: deduplicate()
// Usage:
2020-07-24 21:54:34 +00:00
// deduplicate(list,[close],[eps]);
2019-06-17 06:54:44 +00:00
// Description:
// Removes consecutive duplicate items in a list.
2020-07-24 21:54:34 +00:00
// When `eps` is zero, the comparison between consecutive items is exact.
// Otherwise, when all list items and subitems are numbers, the comparison is within the tolerance `eps`.
2019-06-17 06:54:44 +00:00
// This is different from `unique()` in that the list is *not* sorted.
// Arguments:
// list = The list to deduplicate.
2019-07-19 04:24:32 +00:00
// closed = If true, drops trailing items if they match the first list item.
2020-07-24 21:54:34 +00:00
// eps = The maximum tolerance between items.
2019-06-17 06:54:44 +00:00
// Examples:
2019-07-19 04:24:32 +00:00
// deduplicate([8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3,8]
// deduplicate(closed=true, [8,3,4,4,4,8,2,3,3,8,8]); // Returns: [8,3,4,8,2,3]
2019-06-17 06:54:44 +00:00
// deduplicate("Hello"); // Returns: ["H","e","l","o"]
// deduplicate([[3,4],[7,2],[7,1.99],[1,4]],eps=0.1); // Returns: [[3,4],[7,2],[1,4]]
2020-07-25 19:27:19 +00:00
// deduplicate([[7,undef],[7,undef],[1,4],[1,4+1e-12]],eps=0); // Returns: [[7,undef],[1,4],[1,4+1e-12]]
2019-07-19 04:24:32 +00:00
function deduplicate ( list , closed = false , eps = EPSILON ) =
2020-05-30 02:04:34 +00:00
assert ( is_list ( list ) || is_string ( list ) )
2020-07-24 21:54:34 +00:00
let ( l = len ( list ) ,
end = l - ( closed ? 0 : 1 ) )
is_string ( list ) || ( eps = = 0 )
? [ for ( i = [ 0 : 1 : l - 1 ] ) if ( i = = end || list [ i ] ! = list [ ( i + 1 ) % l ] ) list [ i ] ]
: [ for ( i = [ 0 : 1 : l - 1 ] ) if ( i = = end || ! approx ( list [ i ] , list [ ( i + 1 ) % l ] , eps ) ) list [ i ] ] ;
2020-07-28 20:51:45 +00:00
2019-06-17 06:54:44 +00:00
2020-03-24 21:51:37 +00:00
// Function: deduplicate_indexed()
// Usage:
// new_idxs = deduplicate_indexed(list, indices, [closed], [eps]);
// Description:
// Given a list, and indices into it, removes consecutive indices that
// index to the same values in the list.
// Arguments:
// list = The list that the indices index into.
// indices = The list of indices to deduplicate.
// closed = If true, drops trailing indices if what they index matches what the first index indexes.
// eps = The maximum difference to allow between numbers or vectors.
// Examples:
// deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1]); // Returns: [1,4,3,2,0,1]
// deduplicate_indexed([8,6,4,6,3], [1,4,3,1,2,2,0,1], closed=true); // Returns: [1,4,3,2,0]
2020-07-25 19:27:19 +00:00
// deduplicate_indexed([[7,undef],[7,undef],[1,4],[1,4],[1,4+1e-12]],eps=0); // Returns: [0,2,4]
2020-03-24 21:51:37 +00:00
function deduplicate_indexed ( list , indices , closed = false , eps = EPSILON ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Improper list or string." )
2020-05-30 02:04:34 +00:00
indices = = [ ] ? [ ] :
2020-07-24 21:54:34 +00:00
assert ( is_vector ( indices ) , "Indices must be a list of numbers." )
let ( l = len ( indices ) ,
end = l - ( closed ? 0 : 1 ) )
[ for ( i = [ 0 : 1 : l - 1 ] )
let (
a = list [ indices [ i ] ] ,
b = list [ indices [ ( i + 1 ) % l ] ] ,
eq = ( a = = b ) ? true :
( a * 0 ! = b * 0 ) || ( eps = = 0 ) ? false :
is_num ( a ) || is_vector ( a ) ? approx ( a , b , eps = eps )
: false
)
if ( i = = end || ! eq ) indices [ i ]
2020-05-30 02:04:34 +00:00
] ;
2020-03-24 21:51:37 +00:00
2020-07-29 05:52:12 +00:00
2019-12-07 00:27:49 +00:00
// Function: repeat_entries()
// Usage:
// newlist = repeat_entries(list, N)
// Description:
// Takes a list as input and duplicates some of its entries to produce a list
// with length `N`. If the requested `N` is not a multiple of the list length then
// the entries will be duplicated as uniformly as possible. You can also set `N` to a vector,
// in which case len(N) must equal len(list) and the output repeats the ith entry N[i] times.
// In either case, the result will be a list of length `N`. The `exact` option requires
// that the final length is exactly as requested. If you set it to `false` then the
// algorithm will favor uniformity and the output list may have a different number of
// entries due to rounding.
2020-07-27 22:15:34 +00:00
// .
2019-12-07 00:27:49 +00:00
// When applied to a path the output path is the same geometrical shape but has some vertices
// repeated. This can be useful when you need to align paths with a different number of points.
// (See also subdivide_path for a different way to do that.)
// Arguments:
// list = list whose entries will be repeated
// N = scalar total number of points desired or vector requesting N[i] copies of vertex i.
// exact = if true return exactly the requested number of points, possibly sacrificing uniformity. If false, return uniform points that may not match the number of points requested. Default: True
// Examples:
2020-01-24 01:01:41 +00:00
// list = [0,1,2,3];
2019-12-07 00:27:49 +00:00
// echo(repeat_entries(list, 6)); // Ouputs [0,0,1,2,2,3]
// echo(repeat_entries(list, 6, exact=false)); // Ouputs [0,0,1,1,2,2,3,3]
// echo(repeat_entries(list, [1,1,2,1], exact=false)); // Ouputs [0,1,2,2,3]
function repeat_entries ( list , N , exact = true ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( list ) && len ( list ) > 0 , "The list cannot be void." )
assert ( ( is_finite ( N ) && N > 0 ) || is_vector ( N , len ( list ) ) ,
"Parameter N must be a number greater than zero or vector with the same length of `list`" )
2020-05-30 02:04:34 +00:00
let (
length = len ( list ) ,
2020-07-24 21:54:34 +00:00
reps_guess = is_list ( N ) ? N : repeat ( N / length , length ) ,
reps = exact ?
_sum_preserving_round ( reps_guess )
: [ for ( val = reps_guess ) round ( val ) ]
2020-05-30 02:04:34 +00:00
)
[ for ( i = [ 0 : length - 1 ] ) each repeat ( list [ i ] , reps [ i ] ) ] ;
2020-07-24 21:54:34 +00:00
2020-07-28 20:51:45 +00:00
2019-12-07 00:27:49 +00:00
2019-06-12 02:26:06 +00:00
// Function: list_set()
// Usage:
2019-06-28 22:26:05 +00:00
// list_set(list, indices, values, [dflt], [minlen])
2019-06-12 02:26:06 +00:00
// Description:
// Takes the input list and returns a new list such that `list[indices[i]] = values[i]` for all of
2020-07-24 21:54:34 +00:00
// the (index,value) pairs supplied and unchanged for other indices. If you supply `indices` that are
// beyond the length of the list then the list is extended and filled in with the `dflt` value.
// If you set `minlen` then the list is lengthed, if necessary, by padding with `dflt` to that length.
// Repetitions in `indices` are not allowed. The lists `indices` and `values` must have the same length.
// If `indices` is given as a scalar, then that index of the given `list` will be set to the scalar value of `values`.
2019-06-12 02:26:06 +00:00
// Arguments:
2019-06-28 22:26:05 +00:00
// list = List to set items in. Default: []
2019-06-12 02:26:06 +00:00
// indices = List of indices into `list` to set.
// values = List of values to set.
// dflt = Default value to store in sparse skipped indices.
// minlen = Minimum length to expand list to.
2019-08-16 03:49:04 +00:00
// Examples:
// list_set([2,3,4,5], 2, 21); // Returns: [2,3,21,5]
// list_set([2,3,4,5], [1,3], [81,47]); // Returns: [2,81,4,47]
2020-07-24 21:54:34 +00:00
function list_set ( list = [ ] , indices , values , dflt = 0 , minlen = 0 ) =
2020-05-30 02:04:34 +00:00
assert ( is_list ( list ) || is_string ( list ) )
! is_list ( indices ) ? (
2020-07-24 21:54:34 +00:00
( is_finite ( indices ) && indices < len ( list ) ) ?
[ for ( i = idx ( list ) ) i = = indices ? values : list [ i ] ]
: list_set ( list , [ indices ] , [ values ] , dflt ) )
: assert ( is_vector ( indices ) && is_list ( values ) && len ( values ) = = len ( indices ) ,
"Index list and value list must have the same length" )
let ( midx = max ( len ( list ) - 1 , max ( indices ) ) )
[ for ( i = [ 0 : midx ] )
let ( j = search ( i , indices , 0 ) ,
k = j [ 0 ] )
assert ( len ( j ) < 2 , "Repeated indices are not acceptable." )
k ! = undef ? values [ k ] :
i < len ( list ) ? list [ i ] :
dflt ,
each repeat ( dflt , minlen - max ( indices ) )
] ;
2019-06-12 02:26:06 +00:00
2020-01-10 00:10:18 +00:00
// Function: list_insert()
// Usage:
2020-07-24 21:54:34 +00:00
// list_insert(list, indices, values);
2020-01-10 00:10:18 +00:00
// Description:
2020-07-24 21:54:34 +00:00
// Insert `values` into `list` before position `indices`.
2020-01-10 00:10:18 +00:00
// Example:
// list_insert([3,6,9,12],1,5); // Returns [3,5,6,9,12]
// list_insert([3,6,9,12],[1,3],[5,11]); // Returns [3,5,6,9,11,12]
2020-07-24 21:54:34 +00:00
function list_insert ( list , indices , values , _i = 0 ) =
2020-05-30 02:04:34 +00:00
assert ( is_list ( list ) || is_string ( list ) )
2020-07-24 21:54:34 +00:00
! is_list ( indices ) ?
assert ( is_finite ( indices ) && is_finite ( values ) , "Invalid indices/values." )
assert ( indices < = len ( list ) , "Indices must be <= len(list) ." )
[ for ( i = idx ( list ) ) each ( i = = indices ? [ values , list [ i ] ] : [ list [ i ] ] ) ]
: assert ( is_vector ( indices ) && is_list ( values ) && len ( values ) = = len ( indices ) ,
"Index list and value list must have the same length" )
assert ( max ( indices ) < = len ( list ) , "Indices must be <= len(list) ." )
let ( maxidx = max ( indices ) ,
minidx = min ( indices ) )
[ for ( i = [ 0 : 1 : minidx - 1 ] ) list [ i ] ,
for ( i = [ minidx : min ( maxidx , len ( list ) - 1 ) ] )
let ( j = search ( i , indices , 0 ) ,
k = j [ 0 ] ,
x = assert ( len ( j ) < 2 , "Repeated indices are not acceptable." )
)
each ( k ! = undef ? [ values [ k ] , list [ i ] ] : [ list [ i ] ] ) ,
for ( i = [ min ( maxidx , len ( list ) - 1 ) + 1 : 1 : len ( list ) - 1 ] ) list [ i ] ,
if ( maxidx = = len ( list ) ) values [ max_index ( indices ) ]
] ;
2020-01-10 00:10:18 +00:00
2019-04-20 00:02:17 +00:00
// Function: list_remove()
// Usage:
2020-07-24 21:54:34 +00:00
// list_remove(list, indices)
2019-04-20 00:02:17 +00:00
// Description:
2020-07-24 21:54:34 +00:00
// Remove all items from `list` whose indexes are in `indices`.
2019-04-20 00:02:17 +00:00
// Arguments:
// list = The list to remove items from.
2020-07-24 21:54:34 +00:00
// indices = The list of indexes of items to remove.
2019-10-21 09:28:45 +00:00
// Example:
2019-10-23 00:09:08 +00:00
// list_insert([3,6,9,12],1); // Returns: [3,9,12]
// list_insert([3,6,9,12],[1,3]); // Returns: [3,9]
2020-07-24 21:54:34 +00:00
function list_remove ( list , indices ) =
assert ( is_list ( list ) || is_string ( list ) , "Invalid list/string." )
is_finite ( indices )
? [ for ( i = [ 0 : 1 : min ( indices , len ( list ) - 1 ) - 1 ] ) list [ i ] ,
for ( i = [ min ( indices , len ( list ) - 1 ) + 1 : 1 : len ( list ) - 1 ] ) list [ i ] ]
: assert ( is_vector ( indices ) , "Invalid list `indices`." )
len ( indices ) = = 0 ? list :
[ for ( i = [ 0 : len ( list ) - 1 ] )
if ( [ ] = = search ( i , indices , 1 ) ) list [ i ] ] ;
2020-07-28 20:51:45 +00:00
2019-04-20 00:02:17 +00:00
2019-10-21 09:28:45 +00:00
// Function: list_remove_values()
// Usage:
// list_remove_values(list,values,all=false) =
// Description:
// Removes the first, or all instances of the given `values` from the `list`.
// Returns the modified list.
// Arguments:
// list = The list to modify.
// values = The values to remove from the list.
// all = If true, remove all instances of the value `value` from the list `list`. If false, remove only the first. Default: false
// Example:
// animals = ["bat", "cat", "rat", "dog", "bat", "rat"];
// animals2 = list_remove_values(animals, "rat"); // Returns: ["bat","cat","dog","bat","rat"]
// nonflying = list_remove_values(animals, "bat", all=true); // Returns: ["cat","rat","dog","rat"]
// animals3 = list_remove_values(animals, ["bat","rat"]); // Returns: ["cat","dog","bat","rat"]
// domestic = list_remove_values(animals, ["bat","rat"], all=true); // Returns: ["cat","dog"]
// animals4 = list_remove_values(animals, ["tucan","rat"], all=true); // Returns: ["bat","cat","dog","bat"]
function list_remove_values ( list , values = [ ] , all = false ) =
2020-05-30 02:04:34 +00:00
assert ( is_list ( list ) || is_string ( list ) )
! is_list ( values ) ? list_remove_values ( list , values = [ values ] , all = all ) :
let (
idxs = all ? flatten ( search ( values , list , 0 ) ) : search ( values , list , 1 ) ,
uidxs = unique ( idxs )
) list_remove ( list , uidxs ) ;
2019-10-21 09:28:45 +00:00
2019-06-26 00:44:21 +00:00
// Function: bselect()
// Usage:
// bselect(array,index);
// Description:
// Returns the items in `array` whose matching element in `index` is true.
// Arguments:
// array = Initial list to extract items from.
// index = List of booleans.
// Example:
// bselect([3,4,5,6,7], [false,true,true,false,true]); // Returns: [4,5,7]
function bselect ( array , index ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( array ) || is_string ( array ) , "Improper array." )
assert ( is_list ( index ) && len ( index ) >= len ( array ) , "Improper index list." )
2020-05-30 02:04:34 +00:00
[ for ( i = [ 0 : len ( array ) - 1 ] ) if ( index [ i ] ) array [ i ] ] ;
2019-06-26 00:44:21 +00:00
// Function: list_bset()
// Usage:
2019-10-23 00:09:08 +00:00
// list_bset(indexset, valuelist,[dflt])
2019-06-26 00:44:21 +00:00
// Description:
// Opposite of `bselect()`. Returns a list the same length as `indexlist`, where each item will
// either be 0 if the corresponding item in `indexset` is false, or the next sequential value
2020-07-25 19:27:19 +00:00
// from `valuelist` if the item is true. The number of `true` values in `indexset` must be equal
// to the length of `valuelist`.
2019-06-26 00:44:21 +00:00
// Arguments:
// indexset = A list of boolean values.
// valuelist = The list of values to set into the returned list.
// dflt = Default value to store when the indexset item is false.
// Example:
// list_bset([false,true,false,true,false], [3,4]); // Returns: [0,3,0,4,0]
2019-10-23 00:09:08 +00:00
// list_bset([false,true,false,true,false], [3,4],dflt=1); // Returns: [1,3,1,4,1]
2019-06-26 00:44:21 +00:00
function list_bset ( indexset , valuelist , dflt = 0 ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( indexset ) , "The index set is not a list." )
assert ( is_list ( valuelist ) , "The `valuelist` is not a list." )
2020-07-25 19:27:19 +00:00
let ( trueind = search ( [ true ] , indexset , 0 ) [ 0 ] )
assert ( ! ( len ( trueind ) > len ( valuelist ) ) , str ( "List `valuelist` too short; its length should be " , len ( trueind ) ) )
assert ( ! ( len ( trueind ) < len ( valuelist ) ) , str ( "List `valuelist` too long; its length should be " , len ( trueind ) ) )
2020-07-24 21:54:34 +00:00
concat (
2020-05-30 02:04:34 +00:00
list_set ( [ ] , trueind , valuelist , dflt = dflt ) , // Fill in all of the values
repeat ( dflt , len ( indexset ) - max ( trueind ) - 1 ) // Add trailing values so length matches indexset
) ;
2019-06-26 00:44:21 +00:00
2019-06-12 02:26:06 +00:00
2020-07-29 05:52:12 +00:00
2020-01-10 00:10:18 +00:00
// Section: List Length Manipulation
2019-06-12 02:26:06 +00:00
2019-04-20 00:02:17 +00:00
// Function: list_shortest()
// Description:
// Returns the length of the shortest sublist in a list of lists.
// Arguments:
2020-07-24 21:54:34 +00:00
// array = A list of lists.
function list_shortest ( array ) =
assert ( is_list ( array ) || is_string ( list ) , "Invalid input." )
min ( [ for ( v = array ) len ( v ) ] ) ;
2019-04-20 00:02:17 +00:00
// Function: list_longest()
// Description:
// Returns the length of the longest sublist in a list of lists.
// Arguments:
2020-07-24 21:54:34 +00:00
// array = A list of lists.
function list_longest ( array ) =
assert ( is_list ( array ) || is_string ( list ) , "Invalid input." )
max ( [ for ( v = array ) len ( v ) ] ) ;
2019-04-20 00:02:17 +00:00
// Function: list_pad()
// Description:
2020-07-24 21:54:34 +00:00
// If the list `array` is shorter than `minlen` length, pad it to length with the value given in `fill`.
2019-04-20 00:02:17 +00:00
// Arguments:
2020-07-24 21:54:34 +00:00
// array = A list.
2019-04-20 00:02:17 +00:00
// minlen = The minimum length to pad the list to.
// fill = The value to pad the list with.
2020-07-24 21:54:34 +00:00
function list_pad ( array , minlen , fill = undef ) =
assert ( is_list ( array ) || is_string ( list ) , "Invalid input." )
concat ( array , repeat ( fill , minlen - len ( array ) ) ) ;
2019-04-20 00:02:17 +00:00
// Function: list_trim()
// Description:
2020-07-24 21:54:34 +00:00
// If the list `array` is longer than `maxlen` length, truncates it to be `maxlen` items long.
2019-04-20 00:02:17 +00:00
// Arguments:
2020-07-24 21:54:34 +00:00
// array = A list.
2019-04-20 00:02:17 +00:00
// minlen = The minimum length to pad the list to.
2020-07-24 21:54:34 +00:00
function list_trim ( array , maxlen ) =
assert ( is_list ( array ) || is_string ( list ) , "Invalid input." )
[ for ( i = [ 0 : 1 : min ( len ( array ) , maxlen ) - 1 ] ) array [ i ] ] ;
2019-04-20 00:02:17 +00:00
// Function: list_fit()
// Description:
2020-07-24 21:54:34 +00:00
// If the list `array` is longer than `length` items long, truncates it to be exactly `length` items long.
// If the list `array` is shorter than `length` items long, pad it to length with the value given in `fill`.
2019-04-20 00:02:17 +00:00
// Arguments:
2020-07-24 21:54:34 +00:00
// array = A list.
2019-04-20 00:02:17 +00:00
// minlen = The minimum length to pad the list to.
// fill = The value to pad the list with.
2020-07-24 21:54:34 +00:00
function list_fit ( array , length , fill ) =
assert ( is_list ( array ) || is_string ( list ) , "Invalid input." )
let ( l = len ( array ) )
l = = length ? array :
l > length ? list_trim ( array , length )
: list_pad ( array , length , fill ) ;
2019-04-20 00:02:17 +00:00
2020-01-10 00:10:18 +00:00
// Section: List Shuffling and Sorting
2019-04-20 00:02:17 +00:00
2019-07-19 04:28:15 +00:00
// Function: shuffle()
2019-05-30 00:42:09 +00:00
// Description:
// Shuffles the input list into random order.
function shuffle ( list ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
2020-05-30 02:04:34 +00:00
len ( list ) < = 1 ? list :
let (
rval = rands ( 0 , 1 , len ( list ) ) ,
left = [ for ( i = [ 0 : len ( list ) - 1 ] ) if ( rval [ i ] < 0.5 ) list [ i ] ] ,
right = [ for ( i = [ 0 : len ( list ) - 1 ] ) if ( rval [ i ] >= 0.5 ) list [ i ] ]
2020-07-24 21:54:34 +00:00
)
concat ( shuffle ( left ) , shuffle ( right ) ) ;
2019-05-30 00:42:09 +00:00
2019-06-25 23:16:40 +00:00
// Sort a vector of scalar values
function _sort_scalars ( arr ) =
2020-07-24 21:54:34 +00:00
len ( arr ) < = 1 ? arr :
let (
2020-05-30 02:04:34 +00:00
pivot = arr [ floor ( len ( arr ) / 2 ) ] ,
lesser = [ for ( y = arr ) if ( y < pivot ) y ] ,
equal = [ for ( y = arr ) if ( y = = pivot ) y ] ,
greater = [ for ( y = arr ) if ( y > pivot ) y ]
2020-07-24 21:54:34 +00:00
)
concat ( _sort_scalars ( lesser ) , equal , _sort_scalars ( greater ) ) ;
2019-07-19 04:24:32 +00:00
2019-06-25 23:16:40 +00:00
// Sort a vector of vectors based on the first entry only of each vector
function _sort_vectors1 ( arr ) =
2020-05-30 02:04:34 +00:00
len ( arr ) < = 1 ? arr :
2020-07-24 21:54:34 +00:00
! ( len ( arr ) > 0 ) ? [ ] :
let (
2020-05-30 02:04:34 +00:00
pivot = arr [ floor ( len ( arr ) / 2 ) ] ,
lesser = [ for ( y = arr ) if ( y [ 0 ] < pivot [ 0 ] ) y ] ,
equal = [ for ( y = arr ) if ( y [ 0 ] = = pivot [ 0 ] ) y ] ,
greater = [ for ( y = arr ) if ( y [ 0 ] > pivot [ 0 ] ) y ]
2020-07-24 21:54:34 +00:00
)
concat ( _sort_vectors1 ( lesser ) , equal , _sort_vectors1 ( greater ) ) ;
2019-07-19 04:24:32 +00:00
2019-06-25 23:16:40 +00:00
// Sort a vector of vectors based on the first two entries of each vector
// Lexicographic order, remaining entries of vector ignored
function _sort_vectors2 ( arr ) =
2020-05-30 02:04:34 +00:00
len ( arr ) < = 1 ? arr :
2020-07-24 21:54:34 +00:00
! ( len ( arr ) > 0 ) ? [ ] :
let (
2020-05-30 02:04:34 +00:00
pivot = arr [ floor ( len ( arr ) / 2 ) ] ,
lesser = [ for ( y = arr ) if ( y [ 0 ] < pivot [ 0 ] || ( y [ 0 ] = = pivot [ 0 ] && y [ 1 ] < pivot [ 1 ] ) ) y ] ,
equal = [ for ( y = arr ) if ( y [ 0 ] = = pivot [ 0 ] && y [ 1 ] = = pivot [ 1 ] ) y ] ,
2020-07-24 21:54:34 +00:00
greater = [ for ( y = arr ) if ( y [ 0 ] > pivot [ 0 ] || ( y [ 0 ] = = pivot [ 0 ] && y [ 1 ] > pivot [ 1 ] ) ) y ]
)
concat ( _sort_vectors2 ( lesser ) , equal , _sort_vectors2 ( greater ) ) ;
2019-06-25 23:16:40 +00:00
// Sort a vector of vectors based on the first three entries of each vector
// Lexicographic order, remaining entries of vector ignored
function _sort_vectors3 ( arr ) =
2020-05-30 02:04:34 +00:00
len ( arr ) < = 1 ? arr : let (
pivot = arr [ floor ( len ( arr ) / 2 ) ] ,
2020-07-25 19:27:19 +00:00
lesser = [ for ( y = arr )
if ( y [ 0 ] < pivot [ 0 ]
|| ( y [ 0 ] = = pivot [ 0 ]
&& ( y [ 1 ] < pivot [ 1 ]
|| ( y [ 1 ] = = pivot [ 1 ]
&& y [ 2 ] < pivot [ 2 ] ) ) ) )
y ] ,
equal = [ for ( y = arr )
if ( y [ 0 ] = = pivot [ 0 ]
&& y [ 1 ] = = pivot [ 1 ]
&& y [ 2 ] = = pivot [ 2 ] )
y ] ,
greater = [ for ( y = arr )
if ( y [ 0 ] > pivot [ 0 ]
|| ( y [ 0 ] = = pivot [ 0 ]
&& ( y [ 1 ] > pivot [ 1 ]
|| ( y [ 1 ] = = pivot [ 1 ]
&& y [ 2 ] > pivot [ 2 ] ) ) ) )
y ]
2020-05-30 02:04:34 +00:00
) concat ( _sort_vectors3 ( lesser ) , equal , _sort_vectors3 ( greater ) ) ;
2019-06-25 23:16:40 +00:00
// Sort a vector of vectors based on the first four entries of each vector
// Lexicographic order, remaining entries of vector ignored
function _sort_vectors4 ( arr ) =
2020-05-30 02:04:34 +00:00
len ( arr ) < = 1 ? arr : let (
pivot = arr [ floor ( len ( arr ) / 2 ) ] ,
2020-07-25 19:27:19 +00:00
lesser = [ for ( y = arr )
if ( y [ 0 ] < pivot [ 0 ]
|| ( y [ 0 ] = = pivot [ 0 ]
&& ( y [ 1 ] < pivot [ 1 ]
|| ( y [ 1 ] = = pivot [ 1 ]
&& ( y [ 2 ] < pivot [ 2 ]
|| ( y [ 2 ] = = pivot [ 2 ]
&& y [ 3 ] < pivot [ 3 ] ) ) ) ) ) )
y ] ,
equal = [ for ( y = arr )
if ( y [ 0 ] = = pivot [ 0 ]
&& y [ 1 ] = = pivot [ 1 ]
&& y [ 2 ] = = pivot [ 2 ]
&& y [ 3 ] = = pivot [ 3 ] )
y ] ,
greater = [ for ( y = arr )
if ( y [ 0 ] > pivot [ 0 ]
|| ( y [ 0 ] = = pivot [ 0 ]
&& ( y [ 1 ] > pivot [ 1 ]
|| ( y [ 1 ] = = pivot [ 1 ]
&& ( y [ 2 ] > pivot [ 2 ]
|| ( y [ 2 ] = = pivot [ 2 ]
&& y [ 3 ] > pivot [ 3 ] ) ) ) ) ) )
y ]
2020-05-30 02:04:34 +00:00
) concat ( _sort_vectors4 ( lesser ) , equal , _sort_vectors4 ( greater ) ) ;
2020-07-24 21:54:34 +00:00
2019-06-25 23:16:40 +00:00
function _sort_general ( arr , idx = undef ) =
2020-05-30 02:04:34 +00:00
( len ( arr ) < = 1 ) ? arr :
let (
pivot = arr [ floor ( len ( arr ) / 2 ) ] ,
pivotval = idx = = undef ? pivot : [ for ( i = idx ) pivot [ i ] ] ,
2020-07-24 21:54:34 +00:00
compare =
is_undef ( idx ) ? [ for ( entry = arr ) compare_vals ( entry , pivotval ) ] :
[ for ( entry = arr )
2020-07-25 19:27:19 +00:00
let ( val = [ for ( i = idx ) entry [ i ] ] )
compare_vals ( val , pivotval ) ] ,
2020-05-30 02:04:34 +00:00
lesser = [ for ( i = [ 0 : 1 : len ( arr ) - 1 ] ) if ( compare [ i ] < 0 ) arr [ i ] ] ,
equal = [ for ( i = [ 0 : 1 : len ( arr ) - 1 ] ) if ( compare [ i ] = = 0 ) arr [ i ] ] ,
greater = [ for ( i = [ 0 : 1 : len ( arr ) - 1 ] ) if ( compare [ i ] > 0 ) arr [ i ] ]
)
concat ( _sort_general ( lesser , idx ) , equal , _sort_general ( greater , idx ) ) ;
2020-07-25 19:27:19 +00:00
2019-06-25 23:16:40 +00:00
function _sort_general ( arr , idx = undef ) =
2020-05-30 02:04:34 +00:00
( len ( arr ) < = 1 ) ? arr :
let (
pivot = arr [ floor ( len ( arr ) / 2 ) ] ,
pivotval = idx = = undef ? pivot : [ for ( i = idx ) pivot [ i ] ] ,
compare = [
for ( entry = arr ) let (
val = idx = = undef ? entry : [ for ( i = idx ) entry [ i ] ] ,
cmp = compare_vals ( val , pivotval )
) cmp
] ,
lesser = [ for ( i = [ 0 : 1 : len ( arr ) - 1 ] ) if ( compare [ i ] < 0 ) arr [ i ] ] ,
equal = [ for ( i = [ 0 : 1 : len ( arr ) - 1 ] ) if ( compare [ i ] = = 0 ) arr [ i ] ] ,
greater = [ for ( i = [ 0 : 1 : len ( arr ) - 1 ] ) if ( compare [ i ] > 0 ) arr [ i ] ]
)
concat ( _sort_general ( lesser , idx ) , equal , _sort_general ( greater , idx ) ) ;
2019-06-25 23:16:40 +00:00
2020-07-29 05:52:12 +00:00
2019-06-25 23:16:40 +00:00
// Function: sort()
// Usage:
// sort(list, [idx])
// Description:
// Sorts the given list using `compare_vals()`, sorting in lexicographic order, with types ordered according to
// `undef < boolean < number < string < list`. Comparison of lists is recursive.
// If the list is a list of vectors whose length is from 1 to 4 and the `idx` parameter is not passed, then
// `sort` uses a much more efficient method for comparisons and will run much faster. In this case, all entries
// in the data are compared using the native comparison operator, so comparisons between types will fail.
// Arguments:
// list = The list to sort.
// idx = If given, do the comparison based just on the specified index, range or list of indices.
// Example:
// l = [45,2,16,37,8,3,9,23,89,12,34];
// sorted = sort(l); // Returns [2,3,8,9,12,16,23,34,37,45,89]
function sort ( list , idx = undef ) =
2020-05-30 02:04:34 +00:00
! is_list ( list ) || len ( list ) < = 1 ? list :
2020-07-25 19:27:19 +00:00
assert ( is_undef ( idx ) || is_finite ( idx ) || is_vector ( idx ) || is_range ( idx ) , "Invalid indices." )
2020-05-30 02:04:34 +00:00
is_def ( idx ) ? _sort_general ( list , idx ) :
let ( size = array_dim ( list ) )
len ( size ) = = 1 ? _sort_scalars ( list ) :
2020-07-24 21:54:34 +00:00
len ( size ) = = 2 && size [ 1 ] < = 4
? (
2020-05-30 02:04:34 +00:00
size [ 1 ] = = 0 ? list :
size [ 1 ] = = 1 ? _sort_vectors1 ( list ) :
size [ 1 ] = = 2 ? _sort_vectors2 ( list ) :
2020-07-24 21:54:34 +00:00
size [ 1 ] = = 3 ? _sort_vectors3 ( list )
/*size[1]==4*/ : _sort_vectors4 ( list )
)
: _sort_general ( list ) ;
2019-04-20 00:02:17 +00:00
// Function: sortidx()
// Description:
// Given a list, calculates the sort order of the list, and returns
// a list of indexes into the original list in that sorted order.
// If you iterate the returned list in order, and use the list items
// to index into the original list, you will be iterating the original
// values in sorted order.
// Example:
// lst = ["d","b","e","c"];
// idxs = sortidx(lst); // Returns: [1,3,0,2]
2019-06-25 23:16:40 +00:00
// ordered = select(lst, idxs); // Returns: ["b", "c", "d", "e"]
2019-04-20 00:02:17 +00:00
// Example:
// lst = [
2020-05-30 02:04:34 +00:00
// ["foo", 88, [0,0,1], false],
// ["bar", 90, [0,1,0], true],
// ["baz", 89, [1,0,0], false],
// ["qux", 23, [1,1,1], true]
2019-04-20 00:02:17 +00:00
// ];
// idxs1 = sortidx(lst, idx=1); // Returns: [3,0,2,1]
// idxs2 = sortidx(lst, idx=0); // Returns: [1,2,0,3]
// idxs3 = sortidx(lst, idx=[1,3]); // Returns: [3,0,2,1]
2019-06-25 23:16:40 +00:00
function sortidx ( list , idx = undef ) =
2020-07-25 19:27:19 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Invalid input to sort." )
assert ( is_undef ( idx ) || is_finite ( idx ) || is_vector ( idx ) , "Invalid indices." )
2020-07-24 21:54:34 +00:00
list = = [ ] ? [ ] :
let (
2020-05-30 02:04:34 +00:00
size = array_dim ( list ) ,
2020-07-24 21:54:34 +00:00
aug = is_undef ( idx ) && ( len ( size ) = = 1 || ( len ( size ) = = 2 && size [ 1 ] < = 4 ) )
? zip ( list , list_range ( len ( list ) ) )
: enumerate ( list , idx = idx )
2020-05-30 02:04:34 +00:00
)
is_undef ( idx ) && len ( size ) = = 1 ? subindex ( _sort_vectors1 ( aug ) , 1 ) :
2020-07-24 21:54:34 +00:00
is_undef ( idx ) && len ( size ) = = 2 && size [ 1 ] < = 4
? (
size [ 1 ] = = 0 ? list_range ( len ( arr ) ) :
size [ 1 ] = = 1 ? subindex ( _sort_vectors1 ( aug ) , 1 ) :
size [ 1 ] = = 2 ? subindex ( _sort_vectors2 ( aug ) , 2 ) :
size [ 1 ] = = 3 ? subindex ( _sort_vectors3 ( aug ) , 3 )
/*size[1]==4*/ : subindex ( _sort_vectors4 ( aug ) , 4 )
)
: // general case
subindex ( _sort_general ( aug , idx = list_range ( s = 1 , n = len ( aug ) - 1 ) ) , 0 ) ;
2019-06-25 23:16:40 +00:00
function sortidx ( list , idx = undef ) =
2020-05-30 02:04:34 +00:00
list = = [ ] ? [ ] : let (
size = array_dim ( list ) ,
aug = is_undef ( idx ) && ( len ( size ) = = 1 || ( len ( size ) = = 2 && size [ 1 ] < = 4 ) ) ?
zip ( list , list_range ( len ( list ) ) ) :
enumerate ( list , idx = idx )
)
is_undef ( idx ) && len ( size ) = = 1 ? subindex ( _sort_vectors1 ( aug ) , 1 ) :
is_undef ( idx ) && len ( size ) = = 2 && size [ 1 ] < = 4 ? (
size [ 1 ] = = 0 ? list_range ( len ( arr ) ) :
size [ 1 ] = = 1 ? subindex ( _sort_vectors1 ( aug ) , 1 ) :
size [ 1 ] = = 2 ? subindex ( _sort_vectors2 ( aug ) , 2 ) :
size [ 1 ] = = 3 ? subindex ( _sort_vectors3 ( aug ) , 3 ) :
/*size[1]==4*/ subindex ( _sort_vectors4 ( aug ) , 4 )
) :
// general case
subindex ( _sort_general ( aug , idx = list_range ( s = 1 , n = len ( aug ) - 1 ) ) , 0 ) ;
2019-04-20 00:02:17 +00:00
2020-07-25 19:27:19 +00:00
// sort() does not accept strings but sortidx does; isn't inconsistent ?
2019-04-20 00:02:17 +00:00
// Function: unique()
// Usage:
// unique(arr);
// Description:
// Returns a sorted list with all repeated items removed.
// Arguments:
// arr = The list to uniquify.
function unique ( arr ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( arr ) || is_string ( arr ) , "Invalid input." )
len ( arr ) < = 1 ? arr :
let ( sorted = sort ( arr ) )
[ for ( i = [ 0 : 1 : len ( sorted ) - 1 ] )
2020-05-30 02:04:34 +00:00
if ( i = = 0 || ( sorted [ i ] ! = sorted [ i - 1 ] ) )
sorted [ i ]
] ;
2019-04-20 00:02:17 +00:00
2020-07-29 05:52:12 +00:00
2020-02-12 01:23:31 +00:00
// Function: unique_count()
// Usage:
// unique_count(arr);
// Description:
// Returns `[sorted,counts]` where `sorted` is a sorted list of the unique items in `arr` and `counts` is a list such
// that `count[i]` gives the number of times that `sorted[i]` appears in `arr`.
// Arguments:
// arr = The list to analyze.
function unique_count ( arr ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( arr ) || is_string ( arr ) , "Invalid input." )
2020-03-19 01:31:22 +00:00
arr = = [ ] ? [ [ ] , [ ] ] :
2020-03-18 02:01:21 +00:00
let ( arr = sort ( arr ) )
2020-07-24 21:54:34 +00:00
let ( ind = [ 0 , for ( i = [ 1 : 1 : len ( arr ) - 1 ] ) if ( arr [ i ] ! = arr [ i - 1 ] ) i ] )
[ select ( arr , ind ) , deltas ( concat ( ind , [ len ( arr ) ] ) ) ] ;
2020-07-28 20:51:45 +00:00
2020-07-29 05:52:12 +00:00
2019-04-20 00:02:17 +00:00
2020-01-10 00:10:18 +00:00
// Section: List Iteration Helpers
2019-04-20 00:02:17 +00:00
2020-01-10 00:10:18 +00:00
// Function: idx()
2020-01-09 04:43:19 +00:00
// Usage:
2020-01-10 00:10:18 +00:00
// i = idx(list);
// for(i=idx(list)) ...
2020-01-09 04:43:19 +00:00
// Description:
2020-01-10 00:10:18 +00:00
// Returns the range of indexes for the given list.
2020-01-09 04:43:19 +00:00
// Arguments:
2020-01-10 00:10:18 +00:00
// list = The list to returns the index range of.
// step = The step size to stride through the list. Default: 1
// end = The delta from the end of the list. Default: -1
// start = The starting index. Default: 0
// Example(2D):
// colors = ["red", "green", "blue"];
// for (i=idx(colors)) right(20*i) color(colors[i]) circle(d=10);
function idx ( list , step = 1 , end = - 1 , start = 0 ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( list ) || is_string ( list ) , "Invalid input." )
2020-05-30 02:04:34 +00:00
[ start : step : len ( list ) + end ] ;
2020-01-09 04:43:19 +00:00
2020-01-10 00:10:18 +00:00
// Function: enumerate()
2020-01-09 04:43:19 +00:00
// Description:
2020-01-10 00:10:18 +00:00
// Returns a list, with each item of the given list `l` numbered in a sublist.
// Something like: `[[0,l[0]], [1,l[1]], [2,l[2]], ...]`
2020-01-09 04:43:19 +00:00
// Arguments:
2020-01-10 00:10:18 +00:00
// l = List to enumerate.
// idx = If given, enumerates just the given subindex items of `l`.
2020-01-09 04:43:19 +00:00
// Example:
2020-01-10 00:10:18 +00:00
// enumerate(["a","b","c"]); // Returns: [[0,"a"], [1,"b"], [2,"c"]]
// enumerate([[88,"a"],[76,"b"],[21,"c"]], idx=1); // Returns: [[0,"a"], [1,"b"], [2,"c"]]
// enumerate([["cat","a",12],["dog","b",10],["log","c",14]], idx=[1:2]); // Returns: [[0,"a",12], [1,"b",10], [2,"c",14]]
// Example(2D):
// colors = ["red", "green", "blue"];
// for (p=enumerate(colors)) right(20*p[0]) color(p[1]) circle(d=10);
function enumerate ( l , idx = undef ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( l ) || is_string ( list ) , "Invalid input." )
assert ( is_undef ( idx ) || is_finite ( idx ) || is_vector ( idx ) || is_range ( idx ) , "Invalid index/indices." )
( idx = = undef )
? [ for ( i = [ 0 : 1 : len ( l ) - 1 ] ) [ i , l [ i ] ] ]
: [ for ( i = [ 0 : 1 : len ( l ) - 1 ] ) concat ( [ i ] , [ for ( j = idx ) l [ i ] [ j ] ] ) ] ;
2020-01-09 04:43:19 +00:00
2020-03-05 01:24:00 +00:00
// Function: force_list()
// Usage:
2020-07-03 22:22:21 +00:00
// list = force_list(value, [n], [fill])
2020-03-05 01:24:00 +00:00
// Description:
2020-07-03 22:22:21 +00:00
// Coerces non-list values into a list. Makes it easy to treat a scalar input
// consistently as a singleton list, as well as list inputs.
// - If `value` is a list, then that list is returned verbatim.
// - If `value` is not a list, and `fill` is not given, then a list of `n` copies of `value` will be returned.
// - If `value` is not a list, and `fill` is given, then a list `n` items long will be returned where `value` will be the first item, and the rest will contain the value of `fill`.
// Arguments:
// value = The value or list to coerce into a list.
// n = The number of items in the coerced list. Default: 1
// fill = The value to pad the coerced list with, after the firt value. Default: undef (pad with copies of `value`)
// Examples:
// x = force_list([3,4,5]); // Returns: [3,4,5]
// y = force_list(5); // Returns: [5]
// z = force_list(7, n=3); // Returns: [7,7,7]
// w = force_list(4, n=3, fill=1); // Returns: [4,1,1]
function force_list ( value , n = 1 , fill ) =
is_list ( value ) ? value :
2020-07-24 21:54:34 +00:00
is_undef ( fill ) ? [ for ( i = [ 1 : 1 : n ] ) value ] : [ value , for ( i = [ 2 : 1 : n ] ) fill ] ;
2020-03-05 01:24:00 +00:00
2019-05-10 09:33:44 +00:00
// Function: pair()
2019-04-20 00:02:17 +00:00
// Usage:
2019-05-10 09:33:44 +00:00
// pair(v)
// Description:
2019-06-19 08:31:44 +00:00
// Takes a list, and returns a list of adjacent pairs from it.
2020-07-03 22:22:21 +00:00
// Example(2D): Note that the last point and first point do NOT get paired together.
// for (p = pair(circle(d=20, $fn=12)))
// move(p[0])
// rot(from=BACK, to=p[1]-p[0])
// trapezoid(w1=1, w2=0, h=norm(p[1]-p[0]), anchor=FRONT);
2019-05-10 09:33:44 +00:00
// Example:
2020-07-03 22:22:21 +00:00
// l = ["A","B","C","D"];
2019-05-10 09:33:44 +00:00
// echo([for (p=pair(l)) str(p.y,p.x)]); // Outputs: ["BA", "CB", "DC"]
2019-10-30 05:42:41 +00:00
function pair ( v ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( v ) || is_string ( v ) , "Invalid input." )
2020-05-30 02:04:34 +00:00
[ for ( i = [ 0 : 1 : len ( v ) - 2 ] ) [ v [ i ] , v [ i + 1 ] ] ] ;
2019-05-10 09:33:44 +00:00
// Function: pair_wrap()
// Usage:
// pair_wrap(v)
// Description:
2020-07-24 21:54:34 +00:00
// Takes a list, and returns a list of adjacent pairs from it, wrapping around from the end to the start of the list.
// Example(2D):
2020-07-03 22:22:21 +00:00
// for (p = pair_wrap(circle(d=20, $fn=12)))
// move(p[0])
// rot(from=BACK, to=p[1]-p[0])
// trapezoid(w1=1, w2=0, h=norm(p[1]-p[0]), anchor=FRONT);
2019-05-10 09:33:44 +00:00
// Example:
2019-06-19 08:31:44 +00:00
// l = ["A","B","C","D"];
2019-05-10 09:33:44 +00:00
// echo([for (p=pair_wrap(l)) str(p.y,p.x)]); // Outputs: ["BA", "CB", "DC", "AD"]
2019-10-30 05:42:41 +00:00
function pair_wrap ( v ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( v ) || is_string ( v ) , "Invalid input." )
2020-05-30 02:04:34 +00:00
[ for ( i = [ 0 : 1 : len ( v ) - 1 ] ) [ v [ i ] , v [ ( i + 1 ) % len ( v ) ] ] ] ;
2019-05-10 09:33:44 +00:00
2019-06-19 08:31:44 +00:00
// Function: triplet()
// Usage:
// triplet(v)
// Description:
// Takes a list, and returns a list of adjacent triplets from it.
// Example:
// l = ["A","B","C","D","E"];
// echo([for (p=triplet(l)) str(p.z,p.y,p.x)]); // Outputs: ["CBA", "DCB", "EDC"]
2019-10-30 05:42:41 +00:00
function triplet ( v ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( v ) || is_string ( v ) , "Invalid input." )
2020-05-30 02:04:34 +00:00
[ for ( i = [ 0 : 1 : len ( v ) - 3 ] ) [ v [ i ] , v [ i + 1 ] , v [ i + 2 ] ] ] ;
2019-06-19 08:31:44 +00:00
// Function: triplet_wrap()
// Usage:
// triplet_wrap(v)
// Description:
// Takes a list, and returns a list of adjacent triplets from it, wrapping around from the end to the start of the list.
// Example:
// l = ["A","B","C","D"];
// echo([for (p=triplet_wrap(l)) str(p.z,p.y,p.x)]); // Outputs: ["CBA", "DCB", "ADC", "BAD"]
2019-10-30 05:42:41 +00:00
function triplet_wrap ( v ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( v ) || is_string ( v ) , "Invalid input." )
2020-05-30 02:04:34 +00:00
[ for ( i = [ 0 : 1 : len ( v ) - 1 ] ) [ v [ i ] , v [ ( i + 1 ) % len ( v ) ] , v [ ( i + 2 ) % len ( v ) ] ] ] ;
2019-06-19 08:31:44 +00:00
2020-01-09 04:43:19 +00:00
// Function: permute()
// Usage:
// list = permute(l, [n]);
// Description:
// Returns an ordered list of every unique permutation of `n` items out of the given list `l`.
// For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`.
// For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`.
// Arguments:
// l = The list to provide permutations for.
// n = The number of items in each permutation. Default: 2
// Example:
// pairs = permute([3,4,5,6]); // Returns: [[3,4],[3,5],[3,6],[4,5],[4,6],[5,6]]
// triplets = permute([3,4,5,6],n=3); // Returns: [[3,4,5],[3,4,6],[3,5,6],[4,5,6]]
// Example(2D):
// for (p=permute(regular_ngon(n=7,d=100))) stroke(p);
function permute ( l , n = 2 , _s = 0 ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( l ) , "Invalid list." )
assert ( is_finite ( n ) && n >= 1 && n < = len ( l ) , "Invalid number `n`." )
n = = 1
? [ for ( i = [ _s : 1 : len ( l ) - 1 ] ) [ l [ i ] ] ]
: [ for ( i = [ _s : 1 : len ( l ) - n ] , p = permute ( l , n = n - 1 , _s = i + 1 ) ) concat ( [ l [ i ] ] , p ) ] ;
2020-01-09 04:43:19 +00:00
2020-03-31 06:09:20 +00:00
// Section: Set Manipulation
// Function: set_union()
// Usage:
// s = set_union(a, b, [get_indices]);
// Description:
// Given two sets (lists with unique items), returns the set of unique items that are in either `a` or `b`.
// If `get_indices` is true, a list of indices into the new union set are returned for each item in `b`,
// in addition to returning the new union set. In this case, a 2-item list is returned, `[INDICES, NEWSET]`,
// where INDICES is the list of indices for items in `b`, and NEWSET is the new union set.
// Arguments:
// a = One of the two sets to merge.
// b = The other of the two sets to merge.
// get_indices = If true, indices into the new union set are also returned for each item in `b`. Returns `[INDICES, NEWSET]`. Default: false
// Example:
// set_a = [2,3,5,7,11];
// set_b = [1,2,3,5,8];
// set_u = set_union(set_a, set_b);
// // set_u now equals [2,3,5,7,11,1,8]
// set_v = set_union(set_a, set_b, get_indices=true);
// // set_v now equals [[5,0,1,2,6], [2,3,5,7,11,1,8]]
function set_union ( a , b , get_indices = false ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( a ) && is_list ( b ) , "Invalid sets." )
2020-05-30 02:04:34 +00:00
let (
found1 = search ( b , a ) ,
found2 = search ( b , b ) ,
2020-07-24 21:54:34 +00:00
c = [ for ( i = idx ( b ) )
if ( found1 [ i ] = = [ ] && found2 [ i ] = = i )
b [ i ]
] ,
2020-05-30 02:04:34 +00:00
nset = concat ( a , c )
2020-07-24 21:54:34 +00:00
)
! get_indices ? nset :
2020-05-30 02:04:34 +00:00
let (
la = len ( a ) ,
found3 = search ( b , c ) ,
2020-07-24 21:54:34 +00:00
idxs = [ for ( i = idx ( b ) )
( found1 [ i ] ! = [ ] ) ? found1 [ i ] : la + found3 [ i ]
]
2020-05-30 02:04:34 +00:00
) [ idxs , nset ] ;
2020-03-31 06:09:20 +00:00
2020-07-29 05:52:12 +00:00
2020-03-31 06:09:20 +00:00
// Function: set_difference()
// Usage:
// s = set_difference(a, b);
// Description:
// Given two sets (lists with unique items), returns the set of items that are in `a`, but not `b`.
// Arguments:
// a = The starting set.
// b = The set of items to remove from set `a`.
// Example:
// set_a = [2,3,5,7,11];
// set_b = [1,2,3,5,8];
// set_d = set_difference(set_a, set_b);
// // set_d now equals [7,11]
function set_difference ( a , b ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( a ) && is_list ( b ) , "Invalid sets." )
let ( found = search ( a , b , num_returns_per_match = 1 ) )
[ for ( i = idx ( a ) ) if ( found [ i ] = = [ ] ) a [ i ] ] ;
2020-03-31 06:09:20 +00:00
// Function: set_intersection()
// Usage:
// s = set_intersection(a, b);
// Description:
// Given two sets (lists with unique items), returns the set of items that are in both sets.
// Arguments:
// a = The starting set.
// b = The set of items to intersect with set `a`.
// Example:
// set_a = [2,3,5,7,11];
// set_b = [1,2,3,5,8];
// set_i = set_intersection(set_a, set_b);
// // set_i now equals [2,3,5]
function set_intersection ( a , b ) =
2020-07-24 21:54:34 +00:00
assert ( is_list ( a ) && is_list ( b ) , "Invalid sets." )
let ( found = search ( a , b , num_returns_per_match = 1 ) )
[ for ( i = idx ( a ) ) if ( found [ i ] ! = [ ] ) a [ i ] ] ;
2020-03-31 06:09:20 +00:00
2020-01-10 00:10:18 +00:00
// Section: Array Manipulation
2020-07-24 21:54:34 +00:00
// Function: add_scalar()
// Usage:
// add_scalar(v,s);
// Description:
// Given an array and a scalar, returns the array with the scalar added to each item in it.
// If given a list of arrays, recursively adds the scalar to the each array.
// Arguments:
// v = The initial array.
// s = A scalar value to add to every item in the array.
// Example:
// add_scalar([1,2,3],3); // Returns: [4,5,6]
// add_scalar([[1,2,3],[3,4,5]],3); // Returns: [[4,5,6],[6,7,8]]
function add_scalar ( v , s ) =
is_finite ( s ) ? [ for ( x = v ) is_list ( x ) ? add_scalar ( x , s ) : is_finite ( x ) ? x + s : x ] : v ;
2020-07-28 20:51:45 +00:00
2020-07-29 05:52:12 +00:00
2020-01-10 00:10:18 +00:00
// Function: subindex()
// Description:
// For each array item, return the indexed subitem.
// Returns a list of the values of each vector at the specfied
// index list or range. If the index list or range has
// only one entry the output list is flattened.
// Arguments:
// v = The given list of lists.
// idx = The index, list of indices, or range of indices to fetch.
// Example:
// v = [[[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
// subindex(v,2); // Returns [3, 7, 11, 15]
// subindex(v,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]]
// subindex(v,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]
2020-07-24 21:54:34 +00:00
function subindex ( v , idx ) =
[ for ( val = v )
let ( value = [ for ( i = idx ) val [ i ] ] )
2020-05-30 02:04:34 +00:00
len ( value ) = = 1 ? value [ 0 ] : value
2020-07-24 21:54:34 +00:00
] ;
2020-01-10 00:10:18 +00:00
2019-05-10 09:33:44 +00:00
// Function: zip()
// Usage:
// zip(v1, v2, v3, [fit], [fill]);
// zip(vecs, [fit], [fill]);
2019-04-20 00:02:17 +00:00
// Description:
// Zips together corresponding items from two or more lists.
// Returns a list of lists, where each sublist contains corresponding
// items from each of the input lists. `[[A1, B1, C1], [A2, B2, C2], ...]`
// Arguments:
// vecs = A list of two or more lists to zipper together.
// fit = If `fit=="short"`, the zips together up to the length of the shortest list in vecs. If `fit=="long"`, then pads all lists to the length of the longest, using the value in `fill`. If `fit==false`, then requires all lists to be the same length. Default: false.
// fill = The default value to fill in with if one or more lists if short. Default: undef
// Example:
// v1 = [1,2,3,4];
// v2 = [5,6,7];
// v3 = [8,9,10,11];
2019-05-10 09:33:44 +00:00
// zip(v1,v3); // returns [[1,8], [2,9], [3,10], [4,11]]
// zip([v1,v3]); // returns [[1,8], [2,9], [3,10], [4,11]]
// zip([v1,v2], fit="short"); // returns [[1,5], [2,6], [3,7]]
// zip([v1,v2], fit="long"); // returns [[1,5], [2,6], [3,7], [4,undef]]
// zip([v1,v2], fit="long, fill=0); // returns [[1,5], [2,6], [3,7], [4,0]]
// zip([v1,v2,v3], fit="long"); // returns [[1,5,8], [2,6,9], [3,7,10], [4,undef,11]]
2019-04-20 00:02:17 +00:00
// Example:
// v1 = [[1,2,3], [4,5,6], [7,8,9]];
// v2 = [[20,19,18], [17,16,15], [14,13,12]];
2019-05-10 09:33:44 +00:00
// zip(v1,v2); // Returns [[1,2,3,20,19,18], [4,5,6,17,16,15], [7,8,9,14,13,12]]
function zip ( vecs , v2 , v3 , fit = false , fill = undef ) =
2020-05-30 02:04:34 +00:00
( v3 ! = undef ) ? zip ( [ vecs , v2 , v3 ] , fit = fit , fill = fill ) :
( v2 ! = undef ) ? zip ( [ vecs , v2 ] , fit = fit , fill = fill ) :
2020-07-24 21:54:34 +00:00
assert ( in_list ( fit , [ false , "short" , "long" ] ) , "Invalid fit value." )
2020-05-30 02:04:34 +00:00
assert ( all ( [ for ( v = vecs ) is_list ( v ) ] ) , "One of the inputs to zip is not a list" )
let (
minlen = list_shortest ( vecs ) ,
2020-07-24 21:54:34 +00:00
maxlen = list_longest ( vecs )
)
assert ( fit ! = false || minlen = = maxlen , "Input vectors to zip must have the same length" )
( fit = = "long" )
? [ for ( i = [ 0 : 1 : maxlen - 1 ] ) [ for ( v = vecs ) for ( x = ( i < len ( v ) ? v [ i ] : ( fill = = undef ) ? [ fill ] : fill ) ) x ] ]
: [ for ( i = [ 0 : 1 : minlen - 1 ] ) [ for ( v = vecs ) for ( x = v [ i ] ) x ] ] ;
2019-04-20 00:02:17 +00:00
2020-01-10 00:10:18 +00:00
2019-04-20 00:02:17 +00:00
// Function: array_group()
// Description:
// Takes a flat array of values, and groups items in sets of `cnt` length.
// The opposite of this is `flatten()`.
// Arguments:
// v = The list of items to group.
// cnt = The number of items to put in each grouping.
// dflt = The default value to fill in with is the list is not a multiple of `cnt` items long.
// Example:
// v = [1,2,3,4,5,6];
// array_group(v,2) returns [[1,2], [3,4], [5,6]]
// array_group(v,3) returns [[1,2,3], [4,5,6]]
// array_group(v,4,0) returns [[1,2,3,4], [5,6,0,0]]
2019-05-27 05:34:46 +00:00
function array_group ( v , cnt = 2 , dflt = 0 ) = [ for ( i = [ 0 : cnt : len ( v ) - 1 ] ) [ for ( j = [ 0 : 1 : cnt - 1 ] ) default ( v [ i + j ] , dflt ) ] ] ;
2019-04-20 00:02:17 +00:00
// Function: flatten()
// Description: Takes a list of lists and flattens it by one level.
// Arguments:
// l = List to flatten.
// Example:
// flatten([[1,2,3], [4,5,[6,7,8]]]) returns [1,2,3,4,5,[6,7,8]]
2019-06-22 21:00:12 +00:00
function flatten ( l ) = [ for ( a = l ) each a ] ;
2019-04-20 00:02:17 +00:00
2020-07-28 18:02:35 +00:00
// Function: full_flatten()
// Description:
// Collects in a list all elements recursively found in any level of the given list.
// The output list is ordered in depth first order.
// Arguments:
// l = List to flatten.
// Example:
// full_flatten([[1,2,3], [4,5,[6,7,8]]]) returns [1,2,3,4,5,6,7,8]
function full_flatten ( l ) = [ for ( a = l ) if ( is_list ( a ) ) ( each full_flatten ( a ) ) else a ] ;
2019-04-20 00:02:17 +00:00
// Internal. Not exposed.
function _array_dim_recurse ( v ) =
2020-07-24 21:54:34 +00:00
! is_list ( v [ 0 ] )
? sum ( [ for ( entry = v ) is_list ( entry ) ? 1 : 0 ] ) = = 0 ? [ ] : [ undef ]
: let (
firstlen = len ( v [ 0 ] ) ,
first = sum ( [ for ( entry = v ) len ( entry ) = = firstlen ? 0 : 1 ] ) = = 0 ? firstlen : undef ,
leveldown = flatten ( v )
)
is_list ( leveldown [ 0 ] )
? concat ( [ first ] , _array_dim_recurse ( leveldown ) )
: [ first ] ;
2019-04-20 00:02:17 +00:00
// Function: array_dim()
// Usage:
// array_dim(v, [depth])
// Description:
// Returns the size of a multi-dimensional array. Returns a list of
// dimension lengths. The length of `v` is the dimension `0`. The
// length of the items in `v` is dimension `1`. The length of the
// items in the items in `v` is dimension `2`, etc. For each dimension,
// if the length of items at that depth is inconsistent, `undef` will
// be returned. If no items of that dimension depth exist, `0` is
// returned. Otherwise, the consistent length of items in that
// dimensional depth is returned.
// Arguments:
// v = Array to get dimensions of.
// depth = Dimension to get size of. If not given, returns a list of dimension lengths.
// Examples:
// array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]]); // Returns [2,2,3]
// array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 0); // Returns 2
// array_dim([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]], 2); // Returns 3
// array_dim([[[1,2,3],[4,5,6]],[[7,8,9]]]); // Returns [2,undef,3]
function array_dim ( v , depth = undef ) =
2020-07-24 21:54:34 +00:00
assert ( is_undef ( depth ) || ( is_finite ( depth ) && depth >= 0 ) , "Invalid depth." )
! is_list ( v ) ? 0 :
( depth = = undef )
? concat ( [ len ( v ) ] , _array_dim_recurse ( v ) )
: ( depth = = 0 )
? len ( v )
: let ( dimlist = _array_dim_recurse ( v ) )
( depth > len ( dimlist ) ) ? 0 : dimlist [ depth - 1 ] ;
2019-04-20 00:02:17 +00:00
2020-07-24 21:54:34 +00:00
// This function may return undef!
2019-04-20 00:02:17 +00:00
2019-05-12 19:32:03 +00:00
// Function: transpose()
// Description: Returns the transposition of the given array.
// Example:
// arr = [
// ["a", "b", "c"],
// ["d", "e", "f"],
// ["g", "h", "i"]
// ];
// t = transpose(arr);
// // Returns:
// // [
// // ["a", "d", "g"],
// // ["b", "e", "h"],
// // ["c", "f", "i"],
// // ]
// Example:
2019-05-12 19:54:09 +00:00
// arr = [
// ["a", "b", "c"],
// ["d", "e", "f"]
// ];
// t = transpose(arr);
// // Returns:
// // [
// // ["a", "d"],
// // ["b", "e"],
// // ["c", "f"],
// // ]
// Example:
// transpose([3,4,5]); // Returns: [3,4,5]
2019-05-12 19:32:03 +00:00
function transpose ( arr ) =
2020-07-24 21:54:34 +00:00
let ( a0 = arr [ 0 ] )
is_list ( a0 )
? assert ( [ for ( a = arr ) if ( len ( a ) ! = len ( a0 ) ) 1 ] = = [ ] , "The array is not a matrix." )
[ for ( i = [ 0 : 1 : len ( a0 ) - 1 ] )
[ for ( j = [ 0 : 1 : len ( arr ) - 1 ] ) arr [ j ] [ i ] ] ]
: arr ;
2019-05-12 19:32:03 +00:00
2020-05-30 02:04:34 +00:00
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap