mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
231 lines
8 KiB
OpenSCAD
231 lines
8 KiB
OpenSCAD
|
//////////////////////////////////////////////////////////////////////
|
||
|
// Bezier functions and modules.
|
||
|
//////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
/*
|
||
|
BSD 2-Clause License
|
||
|
|
||
|
Copyright (c) 2017, Revar Desmera
|
||
|
All rights reserved.
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions are met:
|
||
|
|
||
|
* Redistributions of source code must retain the above copyright notice, this
|
||
|
list of conditions and the following disclaimer.
|
||
|
|
||
|
* Redistributions in binary form must reproduce the above copyright notice,
|
||
|
this list of conditions and the following disclaimer in the documentation
|
||
|
and/or other materials provided with the distribution.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
|
||
|
include <math.scad>
|
||
|
include <paths.scad>
|
||
|
|
||
|
|
||
|
// Formulae to calculate points on a cubic bezier curve.
|
||
|
function bez_B0(curve,u) = curve[0]*pow((1-u),3);
|
||
|
function bez_B1(curve,u) = curve[1]*(3*u*pow((1-u),2));
|
||
|
function bez_B2(curve,u) = curve[2]*(3*pow(u,2)*(1-u));
|
||
|
function bez_B3(curve,u) = curve[3]*pow(u,3);
|
||
|
function bez_point(curve,u) = bez_B0(curve,u) + bez_B1(curve,u) + bez_B2(curve,u) + bez_B3(curve,u);
|
||
|
|
||
|
function bezier_polyline(bezier, splinesteps=16) = concat(
|
||
|
[
|
||
|
for (
|
||
|
b = [0 : 3 : len(bezier)-4],
|
||
|
l = [0 : splinesteps-1]
|
||
|
) let (
|
||
|
crv = [bezier[b+0], bezier[b+1], bezier[b+2], bezier[b+3]],
|
||
|
u = l / splinesteps
|
||
|
) bez_point(crv, u)
|
||
|
],
|
||
|
[bez_point([bezier[len(bezier)-4], bezier[len(bezier)-3], bezier[len(bezier)-2], bezier[len(bezier)-1]], 1.0)]
|
||
|
);
|
||
|
|
||
|
|
||
|
// Takes a closed 2D bezier path, and creates a 2D polygon from it.
|
||
|
module bezier_polygon(bezier, splinesteps=16) {
|
||
|
polypoints=bezier_polyline(bezier, splinesteps);
|
||
|
polygon(points=slice(polypoints, 0, -1));
|
||
|
}
|
||
|
|
||
|
|
||
|
// Generate bezier curve to fillet 2 line segments between 3 points.
|
||
|
// Returns two path points with surrounding cubic bezier control points.
|
||
|
function fillet3pts(p0, p1, p2, r) = let(
|
||
|
v0 = normalize(p0-p1),
|
||
|
v1 = normalize(p2-p1),
|
||
|
a = vector3d_angle(v0,v1),
|
||
|
mr = min(distance(p0,p1), distance(p2,p1))*0.9,
|
||
|
tr = min(r/tan(a/2), mr),
|
||
|
tp0 = p1+v0*tr,
|
||
|
tp1 = p1+v1*tr,
|
||
|
w=-2.7e-5*a*a + 8.5e-3*a - 3e-3,
|
||
|
nw=max(0, w),
|
||
|
cp0 = tp0+nw*(p1-tp0),
|
||
|
cp1 = tp1+nw*(p1-tp1)
|
||
|
) [tp0, tp0, cp0, cp1, tp1, tp1];
|
||
|
|
||
|
|
||
|
// Takes a 3D polyline path and fillets it into a 3d cubic bezier path.
|
||
|
function fillet_path(pts, fillet) = concat(
|
||
|
[pts[0], pts[0]],
|
||
|
(len(pts) < 3)? [] : [
|
||
|
for (
|
||
|
p = [1 : len(pts)-2],
|
||
|
pt = fillet3pts(pts[p-1], pts[p], pts[p+1], fillet)
|
||
|
) pt
|
||
|
],
|
||
|
[pts[len(pts)-1], pts[len(pts)-1]]
|
||
|
);
|
||
|
|
||
|
|
||
|
// Takes a closed 2D bezier and rotates it around the X axis, forming a solid.
|
||
|
// bezier = array of points for the bezier path to rotate.
|
||
|
// splinesteps = number of segments to divide each bezier segment into.
|
||
|
// Example:
|
||
|
// path = [
|
||
|
// [ 0, 10], [ 50, 0], [ 50, 40],
|
||
|
// [ 95, 40], [100, 40], [100, 45],
|
||
|
// [ 95, 45], [ 66, 45], [ 0, 20],
|
||
|
// [ 0, 12], [ 0, 12], [ 0, 10],
|
||
|
// [ 0, 10]
|
||
|
// ];
|
||
|
// revolve_bezier(path, splinesteps=32, $fn=180);
|
||
|
module revolve_bezier(bezier, splinesteps=16) {
|
||
|
yrot(90) rotate_extrude(convexity=10) {
|
||
|
xrot(180) zrot(-90) bezier_polygon(bezier, splinesteps);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Takes a bezier path and closes it to the X axis.
|
||
|
function bezier_close_to_axis(bezier) =
|
||
|
let(bezend = len(bezier)-1)
|
||
|
concat(
|
||
|
[ [bezier[0][0], 0], [bezier[0][0], 0], bezier[0] ],
|
||
|
bezier,
|
||
|
[ bezier[bezend], [bezier[bezend][0], 0], [bezier[bezend][0], 0] ]
|
||
|
);
|
||
|
|
||
|
|
||
|
// Takes a bezier curve and closes it with a matching path that is
|
||
|
// lowered by a given amount towards the X axis.
|
||
|
function bezier_offset(inset, bezier) =
|
||
|
let(backbez = reverse([ for (pt = bezier) [pt[0], pt[1]-inset] ]))
|
||
|
concat(
|
||
|
bezier,
|
||
|
[bezier[len(bezier)-1]],
|
||
|
[backbez[0]],
|
||
|
backbez,
|
||
|
[backbez[len(backbez)-1]],
|
||
|
[bezier[0]],
|
||
|
[bezier[0]]
|
||
|
);
|
||
|
|
||
|
|
||
|
// Takes a 2D bezier and rotates it around the X axis, forming a solid.
|
||
|
// bezier = array of points for the bezier path to rotate.
|
||
|
// splinesteps = number of segments to divide each bezier segment into.
|
||
|
// Example:
|
||
|
// path = [ [0, 10], [33, 10], [66, 40], [100, 40] ];
|
||
|
// revolve_bezier_solid_to_axis(path, splinesteps=32, $fn=72);
|
||
|
module revolve_bezier_solid_to_axis(bezier, splinesteps=16) {
|
||
|
revolve_bezier(bezier=bezier_close_to_axis(bezier), splinesteps=splinesteps);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Takes a 2D bezier and rotates it around the X axis, into a hollow shell.
|
||
|
// bezier = array of points for the bezier path to rotate.
|
||
|
// offset = the thickness of the created shell.
|
||
|
// splinesteps = number of segments to divide each bezier segment into.
|
||
|
// Example:
|
||
|
// path = [ [0, 10], [33, 10], [66, 40], [100, 40] ];
|
||
|
// revolve_bezier_offset_shell(path, offset=1, splinesteps=32, $fn=72);
|
||
|
module revolve_bezier_offset_shell(bezier, offset=1, splinesteps=16) {
|
||
|
revolve_bezier(bezier=bezier_offset(offset, bezier), splinesteps=splinesteps);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Extrudes 2D children along a bezier path.
|
||
|
// bezier = array of points for the bezier path to extrude along.
|
||
|
// splinesteps = number of segments to divide each bezier segment into.
|
||
|
// Example:
|
||
|
// path = [ [0, 0, 0], [33, 33, 33], [66, -33, -33], [100, 0, 0] ];
|
||
|
// extrude_2d_shapes_along_bezier(path, splinesteps=32)
|
||
|
// circle(r=10, center=true);
|
||
|
module extrude_2d_shapes_along_bezier(bezier, splinesteps=16) {
|
||
|
pointslist = slice(bezier_polyline(bezier, splinesteps), 0, -1);
|
||
|
ptcount = len(pointslist);
|
||
|
for (i = [0 : ptcount-2]) {
|
||
|
pt1 = pointslist[i];
|
||
|
pt2 = pointslist[i+1];
|
||
|
pt0 = i==0? pt1 : pointslist[i-1];
|
||
|
pt3 = (i>=ptcount-2)? pt2 : pointslist[i+2];
|
||
|
dist = distance(pt1,pt2);
|
||
|
v1 = pt2-pt1;
|
||
|
v0 = (i==0)? v1 : (pt1-pt0);
|
||
|
v2 = (i==ptcount-2)? v1 : (pt3-pt2);
|
||
|
az1 = atan2(v1[1], v1[0]);
|
||
|
alt1 = (len(pt1)<3)? 0 : atan2(v1[2], hypot(v1[1], v1[0]));
|
||
|
az0 = atan2(v0[1], v0[0]);
|
||
|
alt0 = (len(pt0)<3)? 0 : atan2(v0[2], hypot(v0[1], v0[0]));
|
||
|
az2 = atan2(v2[1], v2[0]);
|
||
|
alt2 = (len(pt2)<3)? 0 : atan2(v2[2], hypot(v2[1], v2[0]));
|
||
|
translate(pt1) {
|
||
|
difference() {
|
||
|
rotate([0, 90-alt1, az1]) {
|
||
|
translate([0, 0, -1]) {
|
||
|
linear_extrude(height=dist*3, convexity=10) {
|
||
|
children();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
rotate([0, 90-(alt0+alt1)/2, (az0+az1)/2]) {
|
||
|
translate([0, 0, -dist-0.05]) {
|
||
|
cube(size=[99,99,dist*2], center=true);
|
||
|
}
|
||
|
}
|
||
|
rotate([0, 90-(alt1+alt2)/2, (az1+az2)/2]) {
|
||
|
translate([0, 0, dist+dist]) {
|
||
|
cube(size=[99,99,dist*2], center=true);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Takes a closed 2D bezier path, centered on the XY plane, and
|
||
|
// extrudes it perpendicularly along a 3D bezier path, forming a solid.
|
||
|
// bezier = Array of points of a bezier path, to be extruded.
|
||
|
// path = Array of points of a bezier path, to extrude along.
|
||
|
// pathsteps = number of steps to divide each path segment into.
|
||
|
// bezsteps = number of steps to divide each bezier segment into.
|
||
|
// Example:
|
||
|
// bez = [ [-15, 0], [25, -15], [-5, 10], [0, 10], [5, 10], [10, 5], [15, 0], [10, -5], [5, -10], [0, -10], [-5, -10], [-10, -5], [-15, 0] ];
|
||
|
// path = [ [0, 0, 0], [33, 33, 33], [66, -33, -33], [100, 0, 0] ];
|
||
|
// extrude_bezier_along_bezier(bez, path, pathsteps=64, bezsteps=32);
|
||
|
module extrude_bezier_along_bezier(bezier, path, pathsteps=16, bezsteps=16) {
|
||
|
bez_points = simplify2d_path(bezier_polyline(bezier, bezsteps));
|
||
|
path_points = simplify3d_path(path3d(bezier_polyline(path, pathsteps)));
|
||
|
extrude_2dpath_along_3dpath(bez_points, path_points);
|
||
|
}
|
||
|
|
||
|
|
||
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|