BOSL2/shapes2d.scad

517 lines
19 KiB
OpenSCAD
Raw Normal View History

2019-05-12 10:32:56 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: shapes2d.scad
// Common useful 2D shapes.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
// Section: 2D Drawing Helpers
// Module: stroke()
// Usage:
// stroke(path, width, [endcap], [close]);
// Description:
// Draws a 2D line path with a given line thickness.
// Arguments:
// path = The 2D path to draw along.
// width = The width of the line to draw.
// endcaps = If true, draw round endcaps at the ends of the line.
// close = If true, draw an additional line from the end of the path to the start.
// Example(2D):
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=10, endcaps=false);
// Example(2D):
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=20, endcaps=true);
// Example(2D):
// path = [[0,100], [100,100], [200,0], [100,-100], [100,0]];
// stroke(path, width=20, endcaps=true, close=true);
module stroke(path, width=1, endcaps=true, close=false)
{
$fn = quantup(segs(width/2),4);
path = close? concat(path,[path[0]]) : path;
segments = pair(path);
segpairs = pair(segments);
// Line segments
for (seg = segments) {
delt = seg[1] - seg[0];
translate(seg[0])
rot(from=BACK,to=delt)
left(width/2)
square([width, norm(delt)], center=false);
}
// Joints
for (segpair = segpairs) {
seg1 = segpair[0];
seg2 = segpair[1];
delt1 = seg1[1] - seg1[0];
delt2 = seg2[1] - seg2[0];
hull() {
translate(seg1[1])
rot(from=BACK,to=delt1)
circle(d=width);
translate(seg2[0])
rot(from=BACK,to=delt2)
circle(d=width);
}
}
// Endcaps
if (endcaps) {
seg1 = segments[0];
delt1 = seg1[1] - seg1[0];
translate(seg1[0])
rot(from=BACK, to=delt1)
circle(d=width);
seg2 = select(segments,-1);
delt2 = seg2[1] - seg2[0];
translate(seg2[1])
rot(from=BACK, to=delt2)
circle(d=width);
}
}
// Section: 2D Shapes
// Function&Module: pie_slice2d()
2019-05-12 10:32:56 +00:00
// Usage:
// pie_slice2d(r|d, ang);
// Description:
// When called as a function, returns the 2D path for a "pie" slice of a circle.
// When called as a module, creates a 2D "pie" slice of a circle.
2019-05-12 10:32:56 +00:00
// Arguments:
// r = The radius of the circle to get a slice of.
// d = The diameter of the circle to get a slice of.
// ang = The angle of the arc of the pie slice.
// Examples(2D):
// pie_slice2d(r=50,ang=30);
// pie_slice2d(d=100,ang=45);
// pie_slice2d(d=40,ang=120);
// pie_slice2d(d=40,ang=240);
// Example(2D): Called as Function
2019-05-12 10:32:56 +00:00
// stroke(close=true, pie_slice2d(r=50,ang=30));
function pie_slice2d(r=undef, d=undef, ang=30) =
let(
r = get_radius(r=r, d=d, dflt=10),
sides = ceil(segs(r)*ang/360)
) concat(
[[0,0]],
[for (i=[0:1:sides]) let(a=i*ang/sides) r*[cos(a),sin(a)]]
2019-05-12 10:32:56 +00:00
);
module pie_slice2d(r=undef, d=undef, ang=30) {
pts = pie_slice2d(r=r, d=d, ang=ang);
polygon(pts);
}
2019-05-29 04:23:59 +00:00
// Function&Module: arc()
// Usage: 2D arc from 0º to `angle` degrees.
// arc(N, r|d, angle);
// Usage: 2D arc from START to END degrees.
// arc(N, r|d, angle=[START,END])
// Usage: 2D arc from `start` to `start+angle` degrees.
// arc(N, r|d, start, angle)
// Usage: 2D circle segment by `width` and `thickness`, starting and ending on the X axis.
// arc(N, width, thickness)
// Usage: Shortest 2d or 3d arc around centerpoint `cp`, starting at P0 and ending on the vector pointing from `cp` to `P1`.
// arc(N, cp, points=[P0,P1])
// Usage: 2D or 3D arc, starting at `P0`, passing through `P1` and ending at `P2`.
// arc(N, points=[P0,P1,P2])
// Description:
// If called as a function, returns a 2D or 3D path forming an arc.
// If called as a module, creates a 2D arc polygon or pie slice shape.
// Arguments:
// N = Number of line segments to form the arc curve from.
// r = Radius of the arc.
// d = Diameter of the arc.
// angle = If a scalar, specifies the end angle in degrees. If a vector of two scalars, specifies start and end angles.
// cp = Centerpoint of arc.
// points = Points on the arc.
// width = If given with `thickness`, arc starts and ends on X axis, to make a circle segment.
// thickness = If given with `width`, arc starts and ends on X axis, to make a circle segment.
// start = Start angle of arc.
// wedge = If true, include centerpoint `cp` in output to form pie slice shape.
// Examples(2D):
// arc(N=8, r=30, angle=30, wedge=true);
// arc(N=8, d=60, angle=30, wedge=true);
// arc(N=12, d=60, angle=120);
// arc(N=12, d=60, angle=120, wedge=true);
// arc(N=12, r=30, angle=[75,135], wedge=true);
// arc(N=12, r=30, start=45, angle=75, wedge=true);
// arc(N=24, width=60, thickness=20);
// arc(N=12, cp=[-10,5], points=[[20,10],[0,35]], wedge=true);
// arc(N=12, points=[[30,-5],[20,10],[-10,20]], wedge=true);
// Example(FlatSpin):
// include <BOSL2/paths.scad>
// path = arc(N=12, points=[[0,30,0],[0,0,30],[30,0,0]]);
// trace_polyline(path, showpts=true, color="cyan");
module arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false)
{
path = arc(N=N, r=r, angle=angle, d=d, cp=cp, points=points, width=width, thickness=thickness, start=start, wedge=wedge);
polygon(path);
}
function arc(N, r, angle, d, cp, points, width, thickness, start, wedge=false) =
// First try for 2d arc specified by angles
is_def(width) && is_def(thickness)? (
arc(N,points=[[width/2,0], [0,thickness], [-width/2,0]],wedge=wedge)
) : is_def(angle)? (
let(
parmok = is_undef(points) && is_undef(width) && is_undef(thickness) &&
((is_vector(angle) && len(angle)==2 && is_undef(start)) || is_num(angle))
)
assert(parmok,"Invalid parameters in arc")
let(
cp = is_def(cp) ? cp : [0,0],
start = is_def(start)? start : is_vector(angle) ? angle[0] : 0,
angle = is_vector(angle)? angle[1]-angle[0] : angle,
r = get_radius(r=r,d=d),
N = max(3,N),
arcpoints = [for(i=[0:N-1]) let(theta = start + i*angle/(N-1)) r*[cos(theta),sin(theta)]+cp],
extra = wedge? [cp] : []
)
concat(extra,arcpoints)
) :
assert(is_list(points),"Invalid parameters")
// Arc is 3d, so transform points to 2d and make a recursive call, then remap back to 3d
len(points[0])==3? (
let(
thirdpoint = is_def(cp) ? cp : points[2],
center2d = is_def(cp) ? project_plane(cp,thirdpoint,points[0],points[1]) : undef,
points2d = project_plane(points,thirdpoint,points[0],points[1])
)
lift_plane(arc(N,cp=center2d,points=points2d,wedge=wedge),thirdpoint,points[0],points[1])
) : is_def(cp)? (
// Arc defined by center plus two points, will have radius defined by center and points[0]
// and extent defined by direction of point[1] from the center
let(
angle = vector_angle(points[0], cp, points[1]),
v1 = points[0]-cp,
v2 = points[1]-cp,
dir = sign(det2([v1,v2])), // z component of cross product
r=norm(v1)
)
assert(dir!=0,"Collinear inputs don't define a unique arc")
arc(N,cp=cp,r=r,start=atan2(v1.y,v1.x),angle=dir*angle,wedge=wedge)
) : (
// Final case is arc passing through three points, starting at point[0] and ending at point[3]
let(col = collinear(points[0],points[1],points[2],1e-3))
assert(!col, "Collinear inputs do not define an arc")
let(
cp = line_intersection(_normal_segment(points[0],points[1]),_normal_segment(points[1],points[2])),
// select order to be counterclockwise
dir = det2([points[1]-points[0],points[2]-points[1]]) > 0,
points = dir? select(points,[0,2]) : select(points,[2,0]),
r = norm(points[0]-cp),
theta_start = atan2(points[0].y-cp.y, points[0].x-cp.x),
theta_end = atan2(points[1].y-cp.y, points[1].x-cp.x),
angle = posmod(theta_end-theta_start, 360),
arcpts = arc(N,cp=cp,r=r,start=theta_start,angle=angle,wedge=wedge)
)
dir ? arcpts : reverse(arcpts)
);
function _normal_segment(p1,p2) =
let(center = (p1+p2)/2)
[center, center + norm(p1-p2)/2 * line_normal(p1,p2)];
// Function&Module: trapezoid()
2019-05-12 10:32:56 +00:00
// Usage:
// trapezoid(h, w1, w2);
// Description:
// When called as a function, returns a 2D path for a trapezoid with parallel front and back sides.
// When called as a module, creates a 2D trapezoid with parallel front and back sides.
2019-05-12 10:32:56 +00:00
// Arguments:
// h = The Y axis height of the trapezoid.
// w1 = The X axis width of the front end of the trapezoid.
// w2 = The X axis width of the back end of the trapezoid.
// Examples(2D):
// trapezoid(h=30, w1=40, w2=20);
// trapezoid(h=25, w1=20, w2=35);
// trapezoid(h=20, w1=40, w2=0);
// Example(2D): Called as Function
2019-05-12 10:32:56 +00:00
// stroke(close=true, trapezoid(h=30, w1=40, w2=20));
function trapezoid(h, w1, w2) =
[[-w1/2,-h/2], [-w2/2,h/2], [w2/2,h/2], [w1/2,-h/2]];
module trapezoid(h, w1, w2)
polygon(trapezoid(h=h, w1=w1, w2=w2));
// Function&Module: regular_ngon()
2019-05-12 10:32:56 +00:00
// Usage:
// regular_ngon(n, or|od, [realign]);
// regular_ngon(n, ir|id, [realign]);
// regular_ngon(n, side, [realign]);
// Description:
// When called as a function, returns a 2D path for a regular N-sided polygon.
// When called as a module, creates a 2D regular N-sided polygon.
2019-05-12 10:32:56 +00:00
// Arguments:
// n = The number of sides.
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): by Outer Size
// regular_ngon(n=5, or=30);
// regular_ngon(n=5, od=60);
// Example(2D): by Inner Size
// regular_ngon(n=5, ir=30);
// regular_ngon(n=5, id=60);
// Example(2D): by Side Length
// regular_ngon(n=8, side=20);
// Example(2D): Realigned
// regular_ngon(n=8, side=20, realign=true);
// Example(2D): Called as Function
2019-05-12 10:32:56 +00:00
// stroke(close=true, regular_ngon(n=6, or=30));
function regular_ngon(n=6, or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) =
let(
sc = 1/cos(180/n),
r = get_radius(r1=ir*sc, r=or, d1=id*sc, d=od, dflt=side/2/sin(180/n)),
offset = 90 + (realign? (180/n) : 0)
) [for (a=[0:360/n:360-EPSILON]) r*[cos(a+offset),sin(a+offset)]];
module regular_ngon(n=6, or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false)
polygon(regular_ngon(n=n,or=or,od=od,ir=ir,id=id,side=side,realign=realign));
// Function&Module: pentagon()
2019-05-12 10:32:56 +00:00
// Usage:
// pentagon(or|od, [realign]);
// pentagon(ir|id, [realign];
// pentagon(side, [realign];
// Description:
// When called as a function, returns a 2D path for a regular pentagon.
// When called as a module, creates a 2D regular pentagon.
2019-05-12 10:32:56 +00:00
// Arguments:
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): by Outer Size
2019-05-12 10:32:56 +00:00
// pentagon(or=30);
// pentagon(od=60);
// Example(2D): by Inner Size
2019-05-12 10:32:56 +00:00
// pentagon(ir=30);
// pentagon(id=60);
// Example(2D): by Side Length
2019-05-12 10:32:56 +00:00
// pentagon(side=20);
// Example(2D): Realigned
// pentagon(side=20, realign=true);
// Example(2D): Called as Function
// stroke(close=true, pentagon(or=30));
function pentagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) =
regular_ngon(n=5, or=or, od=od, ir=ir, id=id, side=side, realign=realign);
2019-05-12 10:32:56 +00:00
module pentagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false)
polygon(pentagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign));
2019-05-12 10:32:56 +00:00
// Function&Module: hexagon()
2019-05-12 10:32:56 +00:00
// Usage:
// hexagon(or, od, ir, id, side);
// Description:
// When called as a function, returns a 2D path for a regular hexagon.
// When called as a module, creates a 2D regular hexagon.
2019-05-12 10:32:56 +00:00
// Arguments:
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): by Outer Size
2019-05-12 10:32:56 +00:00
// hexagon(or=30);
// hexagon(od=60);
// Example(2D): by Inner Size
2019-05-12 10:32:56 +00:00
// hexagon(ir=30);
// hexagon(id=60);
// Example(2D): by Side Length
2019-05-12 10:32:56 +00:00
// hexagon(side=20);
// Example(2D): Realigned
// hexagon(side=20, realign=true);
// Example(2D): Called as Function
// stroke(close=true, hexagon(or=30));
function hexagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) =
regular_ngon(n=6, or=or, od=od, ir=ir, id=id, side=side, realign=realign);
2019-05-12 10:32:56 +00:00
module hexagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false)
polygon(hexagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign));
2019-05-12 10:32:56 +00:00
// Function&Module: octagon()
2019-05-12 10:32:56 +00:00
// Usage:
// octagon(or, od, ir, id, side);
// Description:
// When called as a function, returns a 2D path for a regular octagon.
// When called as a module, creates a 2D regular octagon.
2019-05-12 10:32:56 +00:00
// Arguments:
// or = Outside radius, at points.
// od = Outside diameter, at points.
// ir = Inside radius, at center of sides.
// id = Inside diameter, at center of sides.
// side = Length of each side.
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
// Example(2D): by Outer Size
2019-05-12 10:32:56 +00:00
// octagon(or=30);
// octagon(od=60);
// Example(2D): by Inner Size
2019-05-12 10:32:56 +00:00
// octagon(ir=30);
// octagon(id=60);
// Example(2D): by Side Length
2019-05-12 10:32:56 +00:00
// octagon(side=20);
// Example(2D): Realigned
// octagon(side=20, realign=true);
// Example(2D): Called as Function
// stroke(close=true, octagon(or=30));
function octagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false) =
regular_ngon(n=8, or=or, od=od, ir=ir, id=id, side=side, realign=realign);
2019-05-12 10:32:56 +00:00
module octagon(or=undef, od=undef, ir=undef, id=undef, side=undef, realign=false)
polygon(octagon(or=or, od=od, ir=ir, id=id, side=side, realign=realign));
// Function&Module: glued_circles()
2019-05-12 10:32:56 +00:00
// Usage:
// glued_circles(r|d, spread, tangent);
// Description:
// When called as a function, returns a 2D path forming a shape of two circles joined by curved waist.
// When called as a module, creates a 2D shape of two circles joined by curved waist.
2019-05-12 10:32:56 +00:00
// Arguments:
// r = The radius of the end circles.
// d = The diameter of the end circles.
// spread = The distance between the centers of the end circles.
// tangent = The angle in degrees of the tangent point for the joining arcs, measured away from the Y axis.
// Examples(2D):
// glued_circles(r=15, spread=40, tangent=45);
// glued_circles(d=30, spread=30, tangent=30);
// glued_circles(d=30, spread=30, tangent=15);
// glued_circles(d=30, spread=30, tangent=-30);
// Example(2D): Called as Function
2019-05-12 10:32:56 +00:00
// stroke(close=true, glued_circles(r=15, spread=40, tangent=45));
function glued_circles(r=undef, d=undef, spread=10, tangent=30) =
let(
r = get_radius(r=r, d=d, dflt=10),
r2 = (spread/2 / sin(tangent)) - r,
cp1 = [spread/2, 0],
cp2 = [0, (r+r2)*cos(tangent)],
sa1 = 90-tangent,
ea1 = 270+tangent,
lobearc = ea1-sa1,
lobesegs = floor(segs(r)*lobearc/360),
lobestep = lobearc / lobesegs,
sa2 = 270-tangent,
ea2 = 270+tangent,
subarc = ea2-sa2,
arcsegs = ceil(segs(r2)*abs(subarc)/360),
arcstep = subarc / arcsegs
) concat(
[for (i=[0:1:lobesegs]) let(a=sa1+i*lobestep) r * [cos(a),sin(a)] - cp1],
tangent==0? [] : [for (i=[0:1:arcsegs]) let(a=ea2-i*arcstep+180) r2 * [cos(a),sin(a)] - cp2],
[for (i=[0:1:lobesegs]) let(a=sa1+i*lobestep+180) r * [cos(a),sin(a)] + cp1],
tangent==0? [] : [for (i=[0:1:arcsegs]) let(a=ea2-i*arcstep) r2 * [cos(a),sin(a)] + cp2]
2019-05-12 10:32:56 +00:00
);
module glued_circles(r=undef, d=undef, spread=10, tangent=30)
polygon(glued_circles(r=r, d=d, spread=spread, tangent=tangent));
// Function&Module: star()
2019-05-12 10:32:56 +00:00
// Usage:
// star(n, r|d, ir|id|step, [realign]);
// Description:
// When called as a function, returns the path needed to create a star polygon with N points.
// When called as a module, creates a star polygon with N points.
2019-05-12 10:32:56 +00:00
// Arguments:
// n = The number of stellate tips on the star.
// r = The radius to the tips of the star.
// d = The diameter to the tips of the star.
// ir = The radius to the inner corners of the star.
// id = The diameter to the inner corners of the star.
// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2
// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false
// Examples(2D):
// star(n=5, r=50, ir=25);
// star(n=5, r=50, step=2);
// star(n=7, r=50, step=2);
// star(n=7, r=50, step=3);
// Example(2D): Realigned
// star(n=7, r=50, step=3, realign=true);
// Example(2D): Called as Function
2019-05-12 10:32:56 +00:00
// stroke(close=true, star(n=5, r=50, ir=25));
function star(n, r, d, ir, id, step, realign=false) =
let(
r = get_radius(r=r, d=d),
2019-05-16 04:38:54 +00:00
count = num_defined([ir,id,step]),
2019-05-12 10:32:56 +00:00
stepOK = is_undef(step) || (step>1 && step<n/2)
)
assert(count==1, "Must specify exactly one of ir, id, step")
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2)," for ",n," point star"))
let(
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n),
ir = get_radius(r=ir, d=id, dflt=stepr),
offset = 90+(realign? 180/n : 0)
)
[for(i=[0:1:2*n-1]) let(theta=180*i/n+offset, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]];
2019-05-12 10:32:56 +00:00
module star(n, r, d, ir, id, step, realign=false)
polygon(star(n=n, r=r, d=d, ir=ir, id=id, step=step, realign=realign));
function _superformula(theta,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
pow(pow(abs(cos(m1*theta/4)/a),n2)+pow(abs(sin(m2*theta/4)/b),n3),-1/n1);
// Function&Module: superformula_shape()
2019-05-12 10:32:56 +00:00
// Usage:
// superformula_shape(step,m1,m2,n1,n2,n3,[a],[b]);
// Description:
// When called as a function, returns a 2D path for the outline of the [Superformula](https://en.wikipedia.org/wiki/Superformula) shape.
// When called as a module, creates a 2D [Superformula](https://en.wikipedia.org/wiki/Superformula) shape.
2019-05-12 10:32:56 +00:00
// Arguments:
// step = The angle step size for sampling the superformula shape. Smaller steps are slower but more accurate.
// scale = The scaling multiplier for the size of the shape.
// m1 = The m1 argument for the superformula.
// m2 = The m2 argument for the superformula.
// n1 = The n1 argument for the superformula.
// n2 = The n2 argument for the superformula.
// n3 = The n3 argument for the superformula.
// a = The a argument for the superformula.
// b = The b argument for the superformula.
// Example(2D):
// superformula_shape(step=0.5,scale=100,m1=16,m2=16,n1=0.5,n2=0.5,n3=16);
// Example(2D): Called as Function
2019-05-12 10:32:56 +00:00
// stroke(close=true, superformula_shape(step=0.5,scale=100,m1=16,m2=16,n1=0.5,n2=0.5,n3=16));
function superformula_shape(step=0.5,scale=1,m1,m2,n1,n2=1,n3=1,a=1,b=1) =
[for (a=[0:step:360]) let(r=scale*_superformula(theta=a,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3)) r*[cos(a),sin(a)]];
module superformula_shape(step=0.5,scale=1,m1,m2,n1,n2=1,n3=1,a=1,b=1)
polygon(superformula_shape(step=step,scale=scale,m1=m1,m2=m2,n1=n1,n2=n2,n3=n3,a=a,b=b));
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap