2020-02-01 01:03:41 +00:00
//////////////////////////////////////////////////////////////////////
// LibFile: distributors.scad
// Functions and modules to distribute children or copies of children.
// To use, add the following lines to the beginning of your file:
// ```
// include <BOSL2/std.scad>
// ```
//////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////
// Section: Translational Distributors
//////////////////////////////////////////////////////////////////////
// Module: place_copies()
//
// Description:
// Makes copies of the given children at each of the given offsets.
//
// Usage:
// place_copies(a) ...
//
// Arguments:
2020-02-01 02:58:17 +00:00
// a = Array of XYZ offset vectors. Default `[[0,0,0]]`
2020-02-01 01:03:41 +00:00
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// #sphere(r=10);
// place_copies([[-25,-25,0], [25,-25,0], [0,0,50], [0,25,0]]) sphere(r=10);
module place_copies ( a = [ [ 0 , 0 , 0 ] ] )
{
assert ( is_list ( a ) ) ;
for ( $ idx = idx ( a ) ) {
$ pos = a [ $ idx ] ;
assert ( is_vector ( $ pos ) ) ;
translate ( $ pos ) children ( ) ;
}
}
// Module: spread()
//
// Description:
// Evenly distributes `n` copies of all children along a line.
// Copies every child at each position.
//
// Usage:
// spread(l, [n], [p1]) ...
// spread(l, spacing, [p1]) ...
// spread(spacing, [n], [p1]) ...
// spread(p1, p2, [n]) ...
// spread(p1, p2, spacing) ...
//
// Arguments:
// p1 = Starting point of line.
// p2 = Ending point of line.
// l = Length to spread copies over.
// spacing = A 3D vector indicating which direction and distance to place each subsequent copy at.
// n = Number of copies to distribute along the line. (Default: 2)
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example(FlatSpin):
// spread([0,0,0], [5,5,20], n=6) cube(size=[3,2,1],center=true);
// Examples:
// spread(l=40, n=6) cube(size=[3,2,1],center=true);
// spread(l=[15,30], n=6) cube(size=[3,2,1],center=true);
// spread(l=40, spacing=10) cube(size=[3,2,1],center=true);
// spread(spacing=[5,5,0], n=5) cube(size=[3,2,1],center=true);
// Example:
// spread(l=20, n=3) {
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
module spread ( p1 = undef , p2 = undef , spacing = undef , l = undef , n = undef )
{
ll = (
! is_undef ( l ) ? scalar_vec3 ( l , 0 ) :
( ! is_undef ( spacing ) && ! is_undef ( n ) ) ? ( n * scalar_vec3 ( spacing , 0 ) ) :
( ! is_undef ( p1 ) && ! is_undef ( p2 ) ) ? point3d ( p2 - p1 ) :
undef
) ;
cnt = (
! is_undef ( n ) ? n :
( ! is_undef ( spacing ) && ! is_undef ( ll ) ) ? floor ( norm ( ll ) / norm ( scalar_vec3 ( spacing , 0 ) ) + 1.000001 ) :
2
) ;
spc = (
is_undef ( spacing ) ? ( ll / ( cnt - 1 ) ) :
is_num ( spacing ) && ! is_undef ( ll ) ? ( ll / ( cnt - 1 ) ) :
scalar_vec3 ( spacing , 0 )
) ;
assert ( ! is_undef ( cnt ) , "Need two of `spacing`, 'l', 'n', or `p1`/`p2` arguments in `spread()`." ) ;
spos = ! is_undef ( p1 ) ? point3d ( p1 ) : - ( cnt - 1 ) / 2 * spc ;
for ( i = [ 0 : 1 : cnt - 1 ] ) {
pos = i * spc + spos ;
$ pos = pos ;
$ idx = i ;
translate ( pos ) children ( ) ;
}
}
// Module: xspread()
//
// Description:
// Spreads out `n` copies of the children along a line on the X axis.
//
// Usage:
// xspread(spacing, [n], [sp]) ...
// xspread(l, [n], [sp]) ...
//
// Arguments:
// spacing = spacing between copies. (Default: 1.0)
// n = Number of copies to spread out. (Default: 2)
// l = Length to spread copies over.
// sp = If given, copies will be spread on a line to the right of starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// xspread(20) sphere(3);
// xspread(20, n=3) sphere(3);
// xspread(spacing=15, l=50) sphere(3);
// xspread(n=4, l=30, sp=[0,10,0]) sphere(3);
// Example:
// xspread(10, n=3) {
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
module xspread ( spacing = undef , n = undef , l = undef , sp = undef )
{
spread ( l = l * RIGHT , spacing = spacing * RIGHT , n = n , p1 = sp ) children ( ) ;
}
// Module: yspread()
//
// Description:
// Spreads out `n` copies of the children along a line on the Y axis.
//
// Usage:
// yspread(spacing, [n], [sp]) ...
// yspread(l, [n], [sp]) ...
//
// Arguments:
// spacing = spacing between copies. (Default: 1.0)
// n = Number of copies to spread out. (Default: 2)
// l = Length to spread copies over.
// sp = If given, copies will be spread on a line back from starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// yspread(20) sphere(3);
// yspread(20, n=3) sphere(3);
// yspread(spacing=15, l=50) sphere(3);
// yspread(n=4, l=30, sp=[10,0,0]) sphere(3);
// Example:
// yspread(10, n=3) {
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
module yspread ( spacing = undef , n = undef , l = undef , sp = undef )
{
spread ( l = l * BACK , spacing = spacing * BACK , n = n , p1 = sp ) children ( ) ;
}
// Module: zspread()
//
// Description:
// Spreads out `n` copies of the children along a line on the Z axis.
//
// Usage:
// zspread(spacing, [n], [sp]) ...
// zspread(l, [n], [sp]) ...
//
// Arguments:
// spacing = spacing between copies. (Default: 1.0)
// n = Number of copies to spread out. (Default: 2)
// l = Length to spread copies over.
// sp = If given, copies will be spread on a line up from starting position `sp`. If not given, copies will be spread along a line that is centered at [0,0,0].
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Examples:
// zspread(20) sphere(3);
// zspread(20, n=3) sphere(3);
// zspread(spacing=15, l=50) sphere(3);
// zspread(n=4, l=30, sp=[10,0,0]) sphere(3);
// Example:
// zspread(10, n=3) {
// cube(size=[1,3,1],center=true);
// cube(size=[3,1,1],center=true);
// }
module zspread ( spacing = undef , n = undef , l = undef , sp = undef )
{
spread ( l = l * UP , spacing = spacing * UP , n = n , p1 = sp ) children ( ) ;
}
// Module: distribute()
//
// Description:
// Spreads out each individual child along the direction `dir`.
// Every child is placed at a different position, in order.
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// distribute(spacing, dir, [sizes]) ...
// distribute(l, dir, [sizes]) ...
//
// Arguments:
// spacing = Spacing to add between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// dir = Vector direction to distribute copies along.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// distribute(sizes=[100, 30, 50], dir=UP) {
// sphere(r=50);
// cube([10,20,30], center=true);
// cylinder(d=30, h=50, center=true);
// }
module distribute ( spacing = undef , sizes = undef , dir = RIGHT , l = undef )
{
gaps = ( $children < 2 ) ? [ 0 ] :
! is_undef ( sizes ) ? [ for ( i = [ 0 : 1 : $children - 2 ] ) sizes [ i ] / 2 + sizes [ i + 1 ] / 2 ] :
[ for ( i = [ 0 : 1 : $children - 2 ] ) 0 ] ;
spc = ! is_undef ( l ) ? ( ( l - sum ( gaps ) ) / ( $children - 1 ) ) : default ( spacing , 10 ) ;
gaps2 = [ for ( gap = gaps ) gap + spc ] ;
spos = dir * - sum ( gaps2 ) / 2 ;
for ( i = [ 0 : 1 : $children - 1 ] ) {
totspc = sum ( concat ( [ 0 ] , slice ( gaps2 , 0 , i ) ) ) ;
$ pos = spos + totspc * dir ;
$ idx = i ;
translate ( $ pos ) children ( i ) ;
}
}
// Module: xdistribute()
//
// Description:
// Spreads out each individual child along the X axis.
// Every child is placed at a different position, in order.
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// xdistribute(spacing, [sizes]) ...
// xdistribute(l, [sizes]) ...
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// xdistribute(sizes=[100, 10, 30], spacing=40) {
// sphere(r=50);
// cube([10,20,30], center=true);
// cylinder(d=30, h=50, center=true);
// }
module xdistribute ( spacing = 10 , sizes = undef , l = undef )
{
dir = RIGHT ;
gaps = ( $children < 2 ) ? [ 0 ] :
! is_undef ( sizes ) ? [ for ( i = [ 0 : 1 : $children - 2 ] ) sizes [ i ] / 2 + sizes [ i + 1 ] / 2 ] :
[ for ( i = [ 0 : 1 : $children - 2 ] ) 0 ] ;
spc = ! is_undef ( l ) ? ( ( l - sum ( gaps ) ) / ( $children - 1 ) ) : default ( spacing , 10 ) ;
gaps2 = [ for ( gap = gaps ) gap + spc ] ;
spos = dir * - sum ( gaps2 ) / 2 ;
for ( i = [ 0 : 1 : $children - 1 ] ) {
totspc = sum ( concat ( [ 0 ] , slice ( gaps2 , 0 , i ) ) ) ;
$ pos = spos + totspc * dir ;
$ idx = i ;
translate ( $ pos ) children ( i ) ;
}
}
// Module: ydistribute()
//
// Description:
// Spreads out each individual child along the Y axis.
// Every child is placed at a different position, in order.
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// ydistribute(spacing, [sizes])
// ydistribute(l, [sizes])
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// ydistribute(sizes=[30, 20, 100], spacing=40) {
// cylinder(d=30, h=50, center=true);
// cube([10,20,30], center=true);
// sphere(r=50);
// }
module ydistribute ( spacing = 10 , sizes = undef , l = undef )
{
dir = BACK ;
gaps = ( $children < 2 ) ? [ 0 ] :
! is_undef ( sizes ) ? [ for ( i = [ 0 : 1 : $children - 2 ] ) sizes [ i ] / 2 + sizes [ i + 1 ] / 2 ] :
[ for ( i = [ 0 : 1 : $children - 2 ] ) 0 ] ;
spc = ! is_undef ( l ) ? ( ( l - sum ( gaps ) ) / ( $children - 1 ) ) : default ( spacing , 10 ) ;
gaps2 = [ for ( gap = gaps ) gap + spc ] ;
spos = dir * - sum ( gaps2 ) / 2 ;
for ( i = [ 0 : 1 : $children - 1 ] ) {
totspc = sum ( concat ( [ 0 ] , slice ( gaps2 , 0 , i ) ) ) ;
$ pos = spos + totspc * dir ;
$ idx = i ;
translate ( $ pos ) children ( i ) ;
}
}
// Module: zdistribute()
//
// Description:
// Spreads out each individual child along the Z axis.
// Every child is placed at a different position, in order.
// This is useful for laying out groups of disparate objects
// where you only really care about the spacing between them.
//
// Usage:
// zdistribute(spacing, [sizes])
// zdistribute(l, [sizes])
//
// Arguments:
// spacing = spacing between each child. (Default: 10.0)
// sizes = Array containing how much space each child will need.
// l = Length to distribute copies along.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// zdistribute(sizes=[30, 20, 100], spacing=40) {
// cylinder(d=30, h=50, center=true);
// cube([10,20,30], center=true);
// sphere(r=50);
// }
module zdistribute ( spacing = 10 , sizes = undef , l = undef )
{
dir = UP ;
gaps = ( $children < 2 ) ? [ 0 ] :
! is_undef ( sizes ) ? [ for ( i = [ 0 : 1 : $children - 2 ] ) sizes [ i ] / 2 + sizes [ i + 1 ] / 2 ] :
[ for ( i = [ 0 : 1 : $children - 2 ] ) 0 ] ;
spc = ! is_undef ( l ) ? ( ( l - sum ( gaps ) ) / ( $children - 1 ) ) : default ( spacing , 10 ) ;
gaps2 = [ for ( gap = gaps ) gap + spc ] ;
spos = dir * - sum ( gaps2 ) / 2 ;
for ( i = [ 0 : 1 : $children - 1 ] ) {
totspc = sum ( concat ( [ 0 ] , slice ( gaps2 , 0 , i ) ) ) ;
$ pos = spos + totspc * dir ;
$ idx = i ;
translate ( $ pos ) children ( i ) ;
}
}
// Module: grid2d()
//
// Description:
// Makes a square or hexagonal grid of copies of children.
//
// Usage:
// grid2d(size, spacing, [stagger], [scale], [in_poly]) ...
// grid2d(size, cols, rows, [stagger], [scale], [in_poly]) ...
// grid2d(spacing, cols, rows, [stagger], [scale], [in_poly]) ...
// grid2d(spacing, in_poly, [stagger], [scale]) ...
// grid2d(cols, rows, in_poly, [stagger], [scale]) ...
//
// Arguments:
// size = The [X,Y] size to spread the copies over.
// spacing = Distance between copies in [X,Y] or scalar distance.
// cols = How many columns of copies to make. If staggered, count both staggered and unstaggered columns.
// rows = How many rows of copies to make. If staggered, count both staggered and unstaggered rows.
// stagger = If true, make a staggered (hexagonal) grid. If false, make square grid. If `"alt"`, makes alternate staggered pattern. Default: false
// scale = [X,Y] scaling factors to reshape grid.
// in_poly = If given a list of polygon points, only creates copies whose center would be inside the polygon. Polygon can be concave and/or self crossing.
//
// Side Effects:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$col` is set to the integer column number for each child.
// `$row` is set to the integer row number for each child.
//
// Examples:
// grid2d(size=50, spacing=10, stagger=false) cylinder(d=10, h=1);
// grid2d(spacing=10, rows=7, cols=13, stagger=true) cylinder(d=6, h=5);
// grid2d(spacing=10, rows=7, cols=13, stagger="alt") cylinder(d=6, h=5);
// grid2d(size=50, rows=11, cols=11, stagger=true) cylinder(d=5, h=1);
//
// Example:
// poly = [[-25,-25], [25,25], [-25,25], [25,-25]];
// grid2d(spacing=5, stagger=true, in_poly=poly)
// zrot(180/6) cylinder(d=5, h=1, $fn=6);
// %polygon(poly);
//
// Example: Using `$row` and `$col`
// grid2d(spacing=[8,8], cols=8, rows=8, anchor=LEFT+FRONT)
// color(($row+$col)%2?"black":"red")
// cube([8,8,0.01], center=false);
//
// Example:
// // Makes a grid of hexagon pillars whose tops are all
// // angled to reflect light at [0,0,50], if they were shiny.
// hexregion = [for (a = [0:60:359.9]) 50.01*[cos(a), sin(a)]];
// grid2d(spacing=10, stagger=true, in_poly=hexregion) {
// // Note: You must use for(var=[val]) or let(var=val)
// // to set vars from $pos or other special vars in this scope.
// let (ref_v = (normalize([0,0,50]-point3d($pos)) + UP)/2)
// half_of(v=-ref_v, cp=[0,0,5])
// zrot(180/6)
// cylinder(h=20, d=10/cos(180/6)+0.01, $fn=6);
// }
2020-02-29 05:36:10 +00:00
module grid2d ( size = undef , spacing = undef , cols = undef , rows = undef , stagger = false , scale = [ 1 , 1 , 1 ] , in_poly = undef )
2020-02-01 01:03:41 +00:00
{
assert ( in_list ( stagger , [ false , true , "alt" ] ) ) ;
scl = vmul ( scalar_vec3 ( scale , 1 ) , ( stagger ! = false ? [ 0.5 , sin ( 60 ) , 1 ] : [ 1 , 1 , 1 ] ) ) ;
if ( ! is_undef ( size ) ) {
siz = scalar_vec3 ( size ) ;
if ( ! is_undef ( spacing ) ) {
spc = vmul ( scalar_vec3 ( spacing ) , scl ) ;
maxcols = ceil ( siz . x / spc . x ) ;
maxrows = ceil ( siz . y / spc . y ) ;
grid2d ( spacing = spacing , cols = maxcols , rows = maxrows , stagger = stagger , scale = scale , in_poly = in_poly , anchor = anchor , spin = spin , orient = orient ) children ( ) ;
} else {
spc = [ siz . x / cols , siz . y / rows ] ;
grid2d ( spacing = spc , cols = cols , rows = rows , stagger = stagger , scale = scale , in_poly = in_poly , anchor = anchor , spin = spin , orient = orient ) children ( ) ;
}
} else {
spc = is_list ( spacing ) ? point3d ( spacing ) : vmul ( scalar_vec3 ( spacing ) , scl ) ;
bounds = ! is_undef ( in_poly ) ? pointlist_bounds ( in_poly ) : undef ;
bnds = ! is_undef ( bounds ) ? [ for ( a = [ 0 , 1 ] ) 2 * max ( vabs ( [ for ( i = [ 0 , 1 ] ) bounds [ i ] [ a ] ] ) ) + 1 ] : undef ;
mcols = ! is_undef ( cols ) ? cols : ( ! is_undef ( spc ) && ! is_undef ( bnds ) ) ? quantup ( ceil ( bnds [ 0 ] / spc [ 0 ] ) - 1 , 4 ) + 1 : undef ;
mrows = ! is_undef ( rows ) ? rows : ( ! is_undef ( spc ) && ! is_undef ( bnds ) ) ? quantup ( ceil ( bnds [ 1 ] / spc [ 1 ] ) - 1 , 4 ) + 1 : undef ;
siz = vmul ( spc , [ mcols - 1 , mrows - 1 , 0 ] ) + [ 0 , 0 , 0.01 ] ;
staggermod = ( stagger = = "alt" ) ? 1 : 0 ;
if ( stagger = = false ) {
2020-02-29 05:36:10 +00:00
for ( row = [ 0 : 1 : mrows - 1 ] ) {
for ( col = [ 0 : 1 : mcols - 1 ] ) {
pos = [ col * spc . x , row * spc . y ] - point2d ( siz / 2 ) ;
if ( is_undef ( in_poly ) || point_in_polygon ( pos , in_poly ) >= 0 ) {
$ col = col ;
$ row = row ;
$ pos = pos ;
translate ( pos ) children ( ) ;
2020-02-01 01:03:41 +00:00
}
}
}
} else {
// stagger == true or stagger == "alt"
2020-02-29 05:36:10 +00:00
cols1 = ceil ( mcols / 2 ) ;
cols2 = mcols - cols1 ;
for ( row = [ 0 : 1 : mrows - 1 ] ) {
rowcols = ( ( row % 2 ) = = staggermod ) ? cols1 : cols2 ;
if ( rowcols > 0 ) {
for ( col = [ 0 : 1 : rowcols - 1 ] ) {
rowdx = ( row % 2 ! = staggermod ) ? spc [ 0 ] : 0 ;
pos = [ 2 * col * spc [ 0 ] + rowdx , row * spc [ 1 ] ] - point2d ( siz / 2 ) ;
if ( is_undef ( in_poly ) || point_in_polygon ( pos , in_poly ) >= 0 ) {
$ col = col * 2 + ( ( row % 2 ! = staggermod ) ? 1 : 0 ) ;
$ row = row ;
$ pos = pos ;
translate ( pos ) children ( ) ;
2020-02-01 01:03:41 +00:00
}
}
}
}
}
}
}
// Module: grid3d()
//
// Description:
// Makes a 3D grid of duplicate children.
//
// Usage:
// grid3d(n, spacing) ...
// grid3d(n=[Xn,Yn,Zn], spacing=[dX,dY,dZ]) ...
// grid3d([xa], [ya], [za]) ...
//
// Arguments:
// xa = array or range of X-axis values to offset by. (Default: [0])
// ya = array or range of Y-axis values to offset by. (Default: [0])
// za = array or range of Z-axis values to offset by. (Default: [0])
// n = Optional number of copies to have per axis.
// spacing = spacing of copies per axis. Use with `n`.
//
// Side Effect:
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the [Xidx,Yidx,Zidx] index values of each child copy, when using `count` and `n`.
//
// Examples(FlatSpin):
// grid3d(xa=[0:25:50],ya=[0,40],za=[-20:40:20]) sphere(r=5);
// grid3d(n=[3, 4, 2], spacing=[60, 50, 40]) sphere(r=10);
// Examples:
// grid3d(ya=[-60:40:60],za=[0,70]) sphere(r=10);
// grid3d(n=3, spacing=30) sphere(r=10);
// grid3d(n=[3, 1, 2], spacing=30) sphere(r=10);
// grid3d(n=[3, 4], spacing=[80, 60]) sphere(r=10);
// Examples:
// grid3d(n=[10, 10, 10], spacing=50) color($idx/9) cube(50, center=true);
module grid3d ( xa = [ 0 ] , ya = [ 0 ] , za = [ 0 ] , n = undef , spacing = undef )
{
n = scalar_vec3 ( n , 1 ) ;
spacing = scalar_vec3 ( spacing , undef ) ;
if ( ! is_undef ( n ) && ! is_undef ( spacing ) ) {
for ( xi = [ 0 : 1 : n . x - 1 ] ) {
for ( yi = [ 0 : 1 : n . y - 1 ] ) {
for ( zi = [ 0 : 1 : n . z - 1 ] ) {
$ idx = [ xi , yi , zi ] ;
$ pos = vmul ( spacing , $ idx - ( n - [ 1 , 1 , 1 ] ) / 2 ) ;
translate ( $ pos ) children ( ) ;
}
}
}
} else {
for ( xoff = xa , yoff = ya , zoff = za ) {
$ pos = [ xoff , yoff , zoff ] ;
translate ( $ pos ) children ( ) ;
}
}
}
//////////////////////////////////////////////////////////////////////
// Section: Rotational Distributors
//////////////////////////////////////////////////////////////////////
// Module: rot_copies()
//
// Description:
// Given a list of [X,Y,Z] rotation angles in `rots`, rotates copies of the children to each of those angles, regardless of axis of rotation.
// Given a list of scalar angles in `rots`, rotates copies of the children to each of those angles around the axis of rotation.
// If given a vector `v`, that becomes the axis of rotation. Default axis of rotation is UP.
// If given a count `n`, makes that many copies, rotated evenly around the axis.
// If given an offset `delta`, translates each child by that amount before rotating them into place. This makes rings.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
// Usage:
// rot_copies(rots, [cp], [sa], [delta], [subrot]) ...
// rot_copies(rots, v, [cp], [sa], [delta], [subrot]) ...
// rot_copies(n, [v], [cp], [sa], [delta], [subrot]) ...
//
// Arguments:
// rots = A list of [X,Y,Z] rotation angles in degrees. If `v` is given, this will be a list of scalar angles in degrees to rotate around `v`.
// v = If given, this is the vector of the axis to rotate around.
// cp = Centerpoint to rotate around. Default: `[0,0,0]`
// n = Optional number of evenly distributed copies, rotated around the axis.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise. Default: 0
// delta = [X,Y,Z] amount to move away from cp before rotating. Makes rings of copies. Default: `[0,0,0]`
// subrot = If false, don't sub-rotate children as they are copied around the ring. Only makes sense when used with `delta`. Default: `true`
//
// Side Effects:
// `$ang` is set to the rotation angle (or XYZ rotation triplet) of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index value of each child copy.
// `$axis` is set to the axis to rotate around, if `rots` was given as a list of angles instead of a list of [X,Y,Z] rotation angles.
//
// Example:
// #cylinder(h=20, r1=5, r2=0);
// rot_copies([[45,0,0],[0,45,90],[90,-45,270]]) cylinder(h=20, r1=5, r2=0);
//
// Example:
// rot_copies([45, 90, 135], v=DOWN+BACK)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// rot_copies(n=6, v=DOWN+BACK)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// rot_copies(n=6, v=DOWN+BACK, delta=[10,0,0])
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// rot_copies(n=6, v=UP+FWD, delta=[10,0,0], sa=45)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// rot_copies(n=6, v=DOWN+BACK, delta=[20,0,0], subrot=false)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
module rot_copies ( rots = [ ] , v = undef , cp = [ 0 , 0 , 0 ] , n = undef , sa = 0 , offset = 0 , delta = [ 0 , 0 , 0 ] , subrot = true )
{
sang = sa + offset ;
angs = ! is_undef ( n ) ?
( n < = 0 ? [ ] : [ for ( i = [ 0 : 1 : n - 1 ] ) i / n * 360 + sang ] ) :
assert ( is_list ( rots ) )
rots ;
for ( $ idx = idx ( angs ) ) {
$ ang = angs [ $ idx ] ;
$ axis = v ;
translate ( cp ) {
rotate ( a = $ ang , v = v ) {
translate ( delta ) {
rot ( a = ( subrot ? sang : $ ang ) , v = v , reverse = true ) {
translate ( - cp ) {
children ( ) ;
}
}
}
}
}
}
}
// Module: xrot_copies()
//
// Usage:
// xrot_copies(rots, [r], [cp], [sa], [subrot]) ...
// xrot_copies(n, [r], [cp], [sa], [subrot]) ...
//
// Description:
// Given an array of angles, rotates copies of the children to each of those angles around the X axis.
// If given a count `n`, makes that many copies, rotated evenly around the X axis.
// If given an offset radius `r`, distributes children around a ring of that radius.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
// Arguments:
// rots = Optional array of rotation angles, in degrees, to make copies at.
// cp = Centerpoint to rotate around.
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from Y+, when facing the origin from X+. First unrotated copy is placed at that angle.
// r = Radius to move children back, away from cp, before rotating. Makes rings of copies.
// subrot = If false, don't sub-rotate children as they are copied around the ring.
//
// Side Effects:
// `$idx` is set to the index value of each child copy.
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$axis` is set to the axis vector rotated around.
//
// Example:
// xrot_copies([180, 270, 315])
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6)
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6, r=10)
// xrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6, r=10, sa=45)
// xrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// xrot_copies(n=6, r=20, subrot=false)
// xrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) xrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
module xrot_copies ( rots = [ ] , cp = [ 0 , 0 , 0 ] , n = undef , sa = 0 , r = 0 , subrot = true )
{
rot_copies ( rots = rots , v = RIGHT , cp = cp , n = n , sa = sa , delta = [ 0 , r , 0 ] , subrot = subrot ) children ( ) ;
}
// Module: yrot_copies()
//
// Usage:
// yrot_copies(rots, [r], [cp], [sa], [subrot]) ...
// yrot_copies(n, [r], [cp], [sa], [subrot]) ...
//
// Description:
// Given an array of angles, rotates copies of the children to each of those angles around the Y axis.
// If given a count `n`, makes that many copies, rotated evenly around the Y axis.
// If given an offset radius `r`, distributes children around a ring of that radius.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
// Arguments:
// rots = Optional array of rotation angles, in degrees, to make copies at.
// cp = Centerpoint to rotate around.
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X-, when facing the origin from Y+.
// r = Radius to move children left, away from cp, before rotating. Makes rings of copies.
// subrot = If false, don't sub-rotate children as they are copied around the ring.
//
// Side Effects:
// `$idx` is set to the index value of each child copy.
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$axis` is set to the axis vector rotated around.
//
// Example:
// yrot_copies([180, 270, 315])
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6)
// cylinder(h=20, r1=5, r2=0);
// color("red",0.333) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6, r=10)
// yrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6, r=10, sa=45)
// yrot(-90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// yrot_copies(n=6, r=20, subrot=false)
// yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
module yrot_copies ( rots = [ ] , cp = [ 0 , 0 , 0 ] , n = undef , sa = 0 , r = 0 , subrot = true )
{
rot_copies ( rots = rots , v = BACK , cp = cp , n = n , sa = sa , delta = [ - r , 0 , 0 ] , subrot = subrot ) children ( ) ;
}
// Module: zrot_copies()
//
// Usage:
// zrot_copies(rots, [r], [cp], [sa], [subrot]) ...
// zrot_copies(n, [r], [cp], [sa], [subrot]) ...
//
// Description:
// Given an array of angles, rotates copies of the children to each of those angles around the Z axis.
// If given a count `n`, makes that many copies, rotated evenly around the Z axis.
// If given an offset radius `r`, distributes children around a ring of that radius.
// If given a centerpoint `cp`, centers the ring around that centerpoint.
// If `subrot` is true, each child will be rotated in place to keep the same size towards the center.
// The first (unrotated) copy will be placed at the relative starting angle `sa`.
//
// Arguments:
// rots = Optional array of rotation angles, in degrees, to make copies at.
// cp = Centerpoint to rotate around. Default: [0,0,0]
// n = Optional number of evenly distributed copies to be rotated around the ring.
// sa = Starting angle, in degrees. For use with `n`. Angle is in degrees counter-clockwise from X+, when facing the origin from Z+. Default: 0
// r = Radius to move children right, away from cp, before rotating. Makes rings of copies. Default: 0
// subrot = If false, don't sub-rotate children as they are copied around the ring. Default: true
//
// Side Effects:
// `$idx` is set to the index value of each child copy.
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$axis` is set to the axis vector rotated around.
//
// Example:
// zrot_copies([180, 270, 315])
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// zrot_copies(n=6)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// zrot_copies(n=6, r=10)
// yrot(90) cylinder(h=20, r1=5, r2=0);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0);
//
// Example:
// zrot_copies(n=6, r=20, sa=45)
// yrot(90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) yrot(90) cylinder(h=20, r1=5, r2=0, center=true);
//
// Example:
// zrot_copies(n=6, r=20, subrot=false)
// yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
// color("red",0.333) yrot(-90) cylinder(h=20, r1=5, r2=0, center=true);
module zrot_copies ( rots = [ ] , cp = [ 0 , 0 , 0 ] , n = undef , sa = 0 , r = 0 , subrot = true )
{
rot_copies ( rots = rots , v = UP , cp = cp , n = n , sa = sa , delta = [ r , 0 , 0 ] , subrot = subrot ) children ( ) ;
}
// Module: arc_of()
//
// Description:
// Evenly distributes n duplicate children around an ovoid arc on the XY plane.
//
// Usage:
// arc_of(r|d, n, [sa], [ea], [rot]
// arc_of(rx|dx, ry|dy, n, [sa], [ea], [rot]
//
// Arguments:
// n = number of copies to distribute around the circle. (Default: 6)
// r = radius of circle (Default: 1)
// rx = radius of ellipse on X axis. Used instead of r.
// ry = radius of ellipse on Y axis. Used instead of r.
// d = diameter of circle. (Default: 2)
// dx = diameter of ellipse on X axis. Used instead of d.
// dy = diameter of ellipse on Y axis. Used instead of d.
// rot = whether to rotate the copied children. (Default: false)
// sa = starting angle. (Default: 0.0)
// ea = ending angle. Will distribute copies CCW from sa to ea. (Default: 360.0)
//
// Side Effects:
// `$ang` is set to the rotation angle of each child copy, and can be used to modify each child individually.
// `$pos` is set to the relative centerpoint of each child copy, and can be used to modify each child individually.
// `$idx` is set to the index value of each child copy.
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(d=40, n=5) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(d=40, n=5, sa=45, ea=225) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(r=15, n=8, rot=false) cube(size=[10,3,3],center=true);
//
// Example:
// #cube(size=[10,3,3],center=true);
// arc_of(rx=20, ry=10, n=8) cube(size=[10,3,3],center=true);
module arc_of (
n = 6 ,
r = undef , rx = undef , ry = undef ,
d = undef , dx = undef , dy = undef ,
sa = 0 , ea = 360 ,
rot = true
) {
rx = get_radius ( r1 = rx , r = r , d1 = dx , d = d , dflt = 1 ) ;
ry = get_radius ( r1 = ry , r = r , d1 = dy , d = d , dflt = 1 ) ;
sa = posmod ( sa , 360 ) ;
ea = posmod ( ea , 360 ) ;
n = ( abs ( ea - sa ) < 0.01 ) ? ( n + 1 ) : n ;
delt = ( ( ( ea < = sa ) ? 360.0 : 0 ) + ea - sa ) / ( n - 1 ) ;
for ( $ idx = [ 0 : 1 : n - 1 ] ) {
$ ang = sa + ( $ idx * delt ) ;
$ pos = [ rx * cos ( $ ang ) , ry * sin ( $ ang ) , 0 ] ;
translate ( $ pos ) {
zrot ( rot ? atan2 ( ry * sin ( $ ang ) , rx * cos ( $ ang ) ) : 0 ) {
children ( ) ;
}
}
}
}
// Module: ovoid_spread()
//
// Description:
// Spreads children semi-evenly over the surface of a sphere.
//
// Usage:
// ovoid_spread(r|d, n, [cone_ang], [scale], [perp]) ...
//
// Arguments:
// r = Radius of the sphere to distribute over
// d = Diameter of the sphere to distribute over
// n = How many copies to evenly spread over the surface.
// cone_ang = Angle of the cone, in degrees, to limit how much of the sphere gets covered. For full sphere coverage, use 180. Measured pre-scaling. Default: 180
// scale = The [X,Y,Z] scaling factors to reshape the sphere being covered.
// perp = If true, rotate children to be perpendicular to the sphere surface. Default: true
//
// Side Effects:
// `$pos` is set to the relative post-scaled centerpoint of each child copy, and can be used to modify each child individually.
// `$theta` is set to the theta angle of the child from the center of the sphere.
// `$phi` is set to the pre-scaled phi angle of the child from the center of the sphere.
// `$rad` is set to the pre-scaled radial distance of the child from the center of the sphere.
// `$idx` is set to the index number of each child being copied.
//
// Example:
// ovoid_spread(n=250, d=100, cone_ang=45, scale=[3,3,1])
// cylinder(d=10, h=10, center=false);
//
// Example:
// ovoid_spread(n=500, d=100, cone_ang=180)
// color(normalize(point3d(vabs($pos))))
// cylinder(d=8, h=10, center=false);
module ovoid_spread ( r = undef , d = undef , n = 100 , cone_ang = 90 , scale = [ 1 , 1 , 1 ] , perp = true )
{
r = get_radius ( r = r , d = d , dflt = 50 ) ;
cnt = ceil ( n / ( cone_ang / 180 ) ) ;
// Calculate an array of [theta,phi] angles for `n` number of
// points, almost evenly spaced across the surface of a sphere.
// This approximation is based on the golden spiral method.
theta_phis = [ for ( x = [ 0 : 1 : n - 1 ] ) [ 180 * ( 1 + sqrt ( 5 ) ) * ( x + 0.5 ) % 360 , acos ( 1 - 2 * ( x + 0.5 ) / cnt ) ] ] ;
for ( $ idx = idx ( theta_phis ) ) {
tp = theta_phis [ $ idx ] ;
xyz = spherical_to_xyz ( r , tp [ 0 ] , tp [ 1 ] ) ;
$ pos = vmul ( xyz , scale ) ;
$t heta = tp [ 0 ] ;
$ phi = tp [ 1 ] ;
$ rad = r ;
translate ( $ pos ) {
if ( perp ) {
rot ( from = UP , to = xyz ) children ( ) ;
} else {
children ( ) ;
}
}
}
}
//////////////////////////////////////////////////////////////////////
// Section: Reflectional Distributors
//////////////////////////////////////////////////////////////////////
// Module: mirror_copy()
//
// Description:
// Makes a copy of the children, mirrored across the given plane.
//
// Usage:
// mirror_copy(v, [cp], [offset]) ...
//
// Arguments:
// v = The normal vector of the plane to mirror across.
// offset = distance to offset away from the plane.
// cp = A point that lies on the mirroring plane.
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// mirror_copy([1,-1,0]) zrot(-45) yrot(90) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) zrot(-45) cube([0.01,15,15], center=true);
//
// Example:
// mirror_copy([1,1,0], offset=5) rot(a=90,v=[-1,1,0]) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) zrot(45) cube([0.01,15,15], center=true);
//
// Example:
// mirror_copy(UP+BACK, cp=[0,-5,-5]) rot(from=UP, to=BACK+UP) cylinder(d1=10, d2=0, h=20);
// color("blue",0.25) translate([0,-5,-5]) rot(from=UP, to=BACK+UP) cube([15,15,0.01], center=true);
module mirror_copy ( v = [ 0 , 0 , 1 ] , offset = 0 , cp = [ 0 , 0 , 0 ] )
{
nv = v / norm ( v ) ;
off = nv * offset ;
if ( cp = = [ 0 , 0 , 0 ] ) {
translate ( off ) {
$ orig = true ;
$ idx = 0 ;
children ( ) ;
}
mirror ( nv ) translate ( off ) {
$ orig = false ;
$ idx = 1 ;
children ( ) ;
}
} else {
translate ( off ) children ( ) ;
translate ( cp ) mirror ( nv ) translate ( - cp ) translate ( off ) children ( ) ;
}
}
// Module: xflip_copy()
//
// Description:
// Makes a copy of the children, mirrored across the X axis.
//
// Usage:
// xflip_copy([x], [offset]) ...
//
// Arguments:
// offset = Distance to offset children right, before copying.
// x = The X coordinate of the mirroring plane. Default: 0
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// xflip_copy() yrot(90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([0.01,15,15], center=true);
//
// Example:
// xflip_copy(offset=5) yrot(90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([0.01,15,15], center=true);
//
// Example:
// xflip_copy(x=-5) yrot(90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) left(5) cube([0.01,15,15], center=true);
module xflip_copy ( offset = 0 , x = 0 )
{
mirror_copy ( v = [ 1 , 0 , 0 ] , offset = offset , cp = [ x , 0 , 0 ] ) children ( ) ;
}
// Module: yflip_copy()
//
// Description:
// Makes a copy of the children, mirrored across the Y axis.
//
// Usage:
// yflip_copy([y], [offset]) ...
//
// Arguments:
// offset = Distance to offset children back, before copying.
// y = The Y coordinate of the mirroring plane. Default: 0
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// yflip_copy() xrot(-90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,0.01,15], center=true);
//
// Example:
// yflip_copy(offset=5) xrot(-90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,0.01,15], center=true);
//
// Example:
// yflip_copy(y=-5) xrot(-90) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) fwd(5) cube([15,0.01,15], center=true);
module yflip_copy ( offset = 0 , y = 0 )
{
mirror_copy ( v = [ 0 , 1 , 0 ] , offset = offset , cp = [ 0 , y , 0 ] ) children ( ) ;
}
// Module: zflip_copy()
//
// Description:
// Makes a copy of the children, mirrored across the Z axis.
//
// Usage:
// zflip_copy([z], [offset]) ...
//
// Arguments:
// offset = Distance to offset children up, before copying.
// z = The Z coordinate of the mirroring plane. Default: 0
//
// Side Effects:
// `$orig` is true for the original instance of children. False for the copy.
// `$idx` is set to the index value of each copy.
//
// Example:
// zflip_copy() cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,15,0.01], center=true);
//
// Example:
// zflip_copy(offset=5) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) cube([15,15,0.01], center=true);
//
// Example:
// zflip_copy(z=-5) cylinder(h=20, r1=4, r2=0);
// color("blue",0.25) down(5) cube([15,15,0.01], center=true);
module zflip_copy ( offset = 0 , z = 0 )
{
mirror_copy ( v = [ 0 , 0 , 1 ] , offset = offset , cp = [ 0 , 0 , z ] ) children ( ) ;
}
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap