2018-11-19 23:24:44 +00:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
2019-03-23 04:13:18 +00:00
|
|
|
// LibFile: phillips_drive.scad
|
|
|
|
// Phillips driver bits
|
|
|
|
// To use, add these lines to the top of your file:
|
|
|
|
// ```
|
2019-04-19 07:25:10 +00:00
|
|
|
// include <BOSL2/std.scad>
|
|
|
|
// include <BOSL2/phillips_drive.scad>
|
2019-03-23 04:13:18 +00:00
|
|
|
// ```
|
2018-11-19 23:24:44 +00:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
2019-03-23 04:13:18 +00:00
|
|
|
// Section: Modules
|
|
|
|
|
|
|
|
|
|
|
|
// Module: phillips_drive()
|
|
|
|
// Description: Creates a model of a phillips driver bit of a given named size.
|
|
|
|
// Arguments:
|
2018-11-27 04:22:00 +00:00
|
|
|
// size = The size of the bit. "#1", "#2", or "#3"
|
2018-11-19 23:24:44 +00:00
|
|
|
// shaft = The diameter of the drive bit's shaft.
|
|
|
|
// l = The length of the drive bit.
|
2019-05-26 06:31:05 +00:00
|
|
|
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments#anchor). Default: `CENTER`
|
|
|
|
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments#spin). Default: `0`
|
|
|
|
// orient = Vector to rotate top towards, after spin. See [orient](attachments#orient). Default: `UP`
|
2018-11-19 23:24:44 +00:00
|
|
|
// Example:
|
|
|
|
// xdistribute(10) {
|
2019-03-23 04:13:18 +00:00
|
|
|
// phillips_drive(size="#1", shaft=4, l=20);
|
|
|
|
// phillips_drive(size="#2", shaft=6, l=20);
|
|
|
|
// phillips_drive(size="#3", shaft=6, l=20);
|
2018-11-19 23:24:44 +00:00
|
|
|
// }
|
2019-05-26 06:31:05 +00:00
|
|
|
module phillips_drive(size="#2", shaft=6, l=20, anchor=BOTTOM, spin=0, orient=UP) {
|
2018-11-19 23:24:44 +00:00
|
|
|
// These are my best guess reverse-engineered measurements of
|
|
|
|
// the tip diameters of various phillips screwdriver sizes.
|
|
|
|
ang = 11;
|
|
|
|
rads = [["#1", 1.25], ["#2", 1.77], ["#3", 2.65]];
|
|
|
|
radidx = search([size], rads)[0];
|
|
|
|
r = radidx == []? 0 : rads[radidx][1];
|
|
|
|
h = (r/2)/tan(ang);
|
|
|
|
cr = r/2;
|
2019-04-23 03:55:03 +00:00
|
|
|
orient_and_anchor([shaft, shaft, l], orient, anchor, chain=true) {
|
2019-03-23 04:13:18 +00:00
|
|
|
down(l/2) {
|
|
|
|
difference() {
|
|
|
|
intersection() {
|
|
|
|
union() {
|
|
|
|
clip = (shaft-1.2*r)/2/tan(26.5);
|
|
|
|
zrot(360/8/2) cylinder(h=clip, d1=1.2*r/cos(360/8/2), d2=shaft/cos(360/8/2), center=false, $fn=8);
|
|
|
|
up(clip-0.01) cylinder(h=l-clip, d=shaft, center=false, $fn=24);
|
|
|
|
}
|
|
|
|
cylinder(d=shaft, h=l, center=false, $fn=24);
|
|
|
|
}
|
|
|
|
zrot(45)
|
|
|
|
zring(n=4) {
|
|
|
|
yrot(ang) {
|
|
|
|
zrot(-45) {
|
|
|
|
off = (r/2-cr*(sqrt(2)-1))/sqrt(2);
|
|
|
|
translate([off, off, 0]) {
|
2019-04-23 03:55:03 +00:00
|
|
|
linear_extrude(height=l, convexity=4) {
|
2019-03-23 04:13:18 +00:00
|
|
|
difference() {
|
|
|
|
union() {
|
2019-04-23 03:55:03 +00:00
|
|
|
square([shaft/2, shaft/2], center=false);
|
|
|
|
mirror_copy([1,-1]) back(cr) zrot(1.125) square([shaft/2, shaft/2], center=false);
|
2019-03-23 04:13:18 +00:00
|
|
|
}
|
|
|
|
difference() {
|
|
|
|
square([cr*2, cr*2], center=true);
|
|
|
|
translate([cr,cr,0]) circle(r=cr, $fn=8);
|
|
|
|
}
|
|
|
|
}
|
2018-11-19 23:24:44 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2019-04-20 00:02:17 +00:00
|
|
|
children();
|
2018-11-19 23:24:44 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|