2019-04-20 00:02:17 +00:00
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
// LibFile: geometry.scad
|
|
|
|
// Geometry helpers.
|
|
|
|
// To use, add the following lines to the beginning of your file:
|
|
|
|
// ```
|
|
|
|
// use <BOSL2/std.scad>
|
|
|
|
// ```
|
|
|
|
//////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
// Section: Lines and Triangles
|
|
|
|
|
2019-05-02 02:28:02 +00:00
|
|
|
// Function: point_on_segment2d()
|
2019-04-20 00:02:17 +00:00
|
|
|
// Usage:
|
2019-05-02 02:28:02 +00:00
|
|
|
// point_on_segment2d(point, edge);
|
2019-04-20 00:02:17 +00:00
|
|
|
// Description:
|
|
|
|
// Determine if the point is on the line segment between two points.
|
|
|
|
// Returns true if yes, and false if not.
|
|
|
|
// Arguments:
|
2019-05-01 06:45:05 +00:00
|
|
|
// point = The point to test.
|
2019-04-20 00:02:17 +00:00
|
|
|
// edge = Array of two points forming the line segment to test against.
|
2019-05-02 02:28:02 +00:00
|
|
|
function point_on_segment2d(point, edge) =
|
2019-04-20 00:02:17 +00:00
|
|
|
point==edge[0] || point==edge[1] || // The point is an endpoint
|
|
|
|
sign(edge[0].x-point.x)==sign(point.x-edge[1].x) // point is in between the
|
|
|
|
&& sign(edge[0].y-point.y)==sign(point.y-edge[1].y) // edge endpoints
|
2019-05-02 02:28:02 +00:00
|
|
|
&& point_left_of_segment2d(point, edge)==0; // and on the line defined by edge
|
2019-04-20 00:02:17 +00:00
|
|
|
|
|
|
|
|
2019-05-02 02:28:02 +00:00
|
|
|
// Function: point_left_of_segment2d()
|
2019-04-20 00:02:17 +00:00
|
|
|
// Usage:
|
2019-05-02 02:28:02 +00:00
|
|
|
// point_left_of_segment2d(point, edge);
|
2019-04-20 00:02:17 +00:00
|
|
|
// Description:
|
|
|
|
// Return >0 if point is left of the line defined by edge.
|
|
|
|
// Return =0 if point is on the line.
|
|
|
|
// Return <0 if point is right of the line.
|
|
|
|
// Arguments:
|
|
|
|
// point = The point to check position of.
|
|
|
|
// edge = Array of two points forming the line segment to test against.
|
2019-05-02 02:28:02 +00:00
|
|
|
function point_left_of_segment2d(point, edge) =
|
2019-04-20 00:02:17 +00:00
|
|
|
(edge[1].x-edge[0].x) * (point.y-edge[0].y) - (point.x-edge[0].x) * (edge[1].y-edge[0].y);
|
|
|
|
|
|
|
|
|
|
|
|
// Internal non-exposed function.
|
|
|
|
function _point_above_below_segment(point, edge) =
|
|
|
|
edge[0].y <= point.y? (
|
2019-05-02 02:28:02 +00:00
|
|
|
(edge[1].y > point.y && point_left_of_segment2d(point, edge) > 0)? 1 : 0
|
2019-04-20 00:02:17 +00:00
|
|
|
) : (
|
2019-05-02 02:28:02 +00:00
|
|
|
(edge[1].y <= point.y && point_left_of_segment2d(point, edge) < 0)? -1 : 0
|
2019-04-20 00:02:17 +00:00
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
// Function: right_of_line2d()
|
|
|
|
// Usage:
|
|
|
|
// right_of_line2d(line, pt)
|
|
|
|
// Description:
|
2019-05-02 02:28:02 +00:00
|
|
|
// Returns true if the given point is to the left of the extended line defined by two points on it.
|
2019-04-20 00:02:17 +00:00
|
|
|
// Arguments:
|
|
|
|
// line = A list of two points.
|
|
|
|
// pt = The point to test.
|
|
|
|
function right_of_line2d(line, pt) =
|
|
|
|
triangle_area2d(line[0], line[1], pt) < 0;
|
|
|
|
|
|
|
|
|
|
|
|
// Function: collinear()
|
|
|
|
// Usage:
|
|
|
|
// collinear(a, b, c, [eps]);
|
|
|
|
// Description:
|
|
|
|
// Returns true if three points are co-linear.
|
|
|
|
// Arguments:
|
|
|
|
// a = First point.
|
|
|
|
// b = Second point.
|
|
|
|
// c = Third point.
|
2019-05-01 06:45:05 +00:00
|
|
|
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
2019-04-20 00:02:17 +00:00
|
|
|
function collinear(a, b, c, eps=EPSILON) =
|
2019-05-01 06:45:05 +00:00
|
|
|
distance_from_line([a,b], c) < eps;
|
2019-04-20 00:02:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
// Function: collinear_indexed()
|
|
|
|
// Usage:
|
|
|
|
// collinear_indexed(points, a, b, c, [eps]);
|
|
|
|
// Description:
|
|
|
|
// Returns true if three points are co-linear.
|
|
|
|
// Arguments:
|
|
|
|
// points = A list of points.
|
|
|
|
// a = Index in `points` of first point.
|
|
|
|
// b = Index in `points` of second point.
|
|
|
|
// c = Index in `points` of third point.
|
|
|
|
// eps = Acceptable max angle variance. Default: EPSILON (1e-9) degrees.
|
|
|
|
function collinear_indexed(points, a, b, c, eps=EPSILON) =
|
|
|
|
let(
|
|
|
|
p1=points[a],
|
|
|
|
p2=points[b],
|
|
|
|
p3=points[c]
|
2019-05-01 06:45:05 +00:00
|
|
|
) collinear(p1, p2, p3, eps);
|
|
|
|
|
|
|
|
|
|
|
|
// Function: distance_from_line()
|
|
|
|
// Usage:
|
|
|
|
// distance_from_line(line, pt);
|
|
|
|
// Description:
|
|
|
|
// Finds the perpendicular distance of a point `pt` from the line `line`.
|
|
|
|
// Arguments:
|
|
|
|
// line = A list of two points, defining a line that both are on.
|
|
|
|
// pt = A point to find the distance of from the line.
|
|
|
|
// Example:
|
|
|
|
// distance_from_line([[-10,0], [10,0]], [3,8]); // Returns: 8
|
|
|
|
function distance_from_line(line, pt) =
|
|
|
|
let(a=line[0], n=normalize(line[1]-a), d=a-pt)
|
|
|
|
norm(d - ((d * n) * n));
|
|
|
|
|
2019-04-20 00:02:17 +00:00
|
|
|
|
|
|
|
|
2019-05-29 01:44:41 +00:00
|
|
|
// Function: line_normal()
|
|
|
|
// Usage:
|
|
|
|
// line_normal([P1,P2])
|
|
|
|
// line_normal(p1,p2)
|
|
|
|
// Description: Returns the 2D normal vector to the given 2D line.
|
|
|
|
// Arguments:
|
|
|
|
// p1 = First point on 2D line.
|
|
|
|
// p2 = Second point on 2D line.
|
|
|
|
function line_normal(p1,p2) =
|
|
|
|
is_undef(p2)? line_normal(p1[0],p1[1]) :
|
|
|
|
normalize([p1.y-p2.y,p2.x-p1.x]);
|
|
|
|
|
|
|
|
|
|
|
|
// 2D Line intersection from two segments.
|
|
|
|
// This function returns [p,t,u] where p is the intersection point of
|
|
|
|
// the lines defined by the two segments, t is the bezier parameter
|
|
|
|
// for the intersection point on s1 and u is the bezier parameter for
|
|
|
|
// the intersection point on s2. The bezier parameter runs over [0,1]
|
|
|
|
// for each segment, so if it is in this range, then the intersection
|
|
|
|
// lies on the segment. Otherwise it lies somewhere on the extension
|
|
|
|
// of the segment.
|
|
|
|
function _general_line_intersection(s1,s2) =
|
|
|
|
let( denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]]),
|
|
|
|
t=det2([s1[0],s2[0]]-s2)/denominator,
|
|
|
|
u=det2([s1[0],s1[0]]-[s1[1],s2[1]])/denominator)
|
|
|
|
[denominator==0 ? undef : s1[0]+t*(s1[1]-s1[0]),t,u];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: line_intersection()
|
|
|
|
// Usage:
|
|
|
|
// line_intersection(l1, l2);
|
|
|
|
// Description:
|
|
|
|
// Returns the 2D intersection point of two unbounded 2D lines.
|
|
|
|
// Returns `undef` if the lines are parallel.
|
|
|
|
// Arguments:
|
|
|
|
// l1 = First 2D line, given as a list of two 2D points on the line.
|
|
|
|
// l2 = Second 2D line, given as a list of two 2D points on the line.
|
|
|
|
function line_intersection(l1,l2) = let( isect = _general_line_intersection(l1,l2)) isect[0];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: segment_intersection()
|
|
|
|
// Usage:
|
|
|
|
// segment_intersection(s1, s2);
|
|
|
|
// Description:
|
|
|
|
// Returns the 2D intersection point of two 2D line segments.
|
|
|
|
// Returns `undef` if they do not intersect.
|
|
|
|
// Arguments:
|
|
|
|
// s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment.
|
|
|
|
// s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment.
|
2019-05-30 01:01:00 +00:00
|
|
|
function segment_intersection(s1,s2) =
|
|
|
|
let(
|
|
|
|
isect = _general_line_intersection(s1,s2),
|
|
|
|
eps=EPSILON
|
|
|
|
) isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0];
|
2019-05-29 01:44:41 +00:00
|
|
|
|
|
|
|
|
|
|
|
// Function: line_segment_intersection()
|
|
|
|
// Usage:
|
|
|
|
// line_segment_intersection(line, segment);
|
|
|
|
// Description:
|
|
|
|
// Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment.
|
|
|
|
// Returns `undef` if they do not intersect.
|
|
|
|
// Arguments:
|
|
|
|
// line = The unbounded 2D line, defined by two 2D points on the line.
|
|
|
|
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
|
2019-05-30 01:01:00 +00:00
|
|
|
function line_segment_intersection(line,segment) =
|
|
|
|
let(
|
|
|
|
isect = _general_line_intersection(line,segment),
|
|
|
|
eps = EPSILON
|
|
|
|
) isect[2]<0-eps || isect[2]>1+eps ? undef : isect[0];
|
|
|
|
|
2019-05-29 01:44:41 +00:00
|
|
|
|
2019-06-12 09:27:42 +00:00
|
|
|
// Function: find_circle_2tangents()
|
|
|
|
// Usage:
|
|
|
|
// find_circle_2tangents(pt1, pt2, pt3, r|d);
|
|
|
|
// Description:
|
|
|
|
// Returns [centerpoint, normal] of a circle of known size that is between and tangent to two rays with the same starting point.
|
|
|
|
// Both rays start at `pt2`, and one passes through `pt1`, while the other passes through `pt3`.
|
|
|
|
// If the rays given are 180º apart, `undef` is returned. If the rays are 3D, the normal returned is the plane normal of the circle.
|
|
|
|
// Arguments:
|
|
|
|
// pt1 = A point that the first ray passes though.
|
|
|
|
// pt2 = The starting point of both rays.
|
|
|
|
// pt3 = A point that the second ray passes though.
|
|
|
|
// r = The radius of the circle to find.
|
|
|
|
// d = The diameter of the circle to find.
|
|
|
|
function find_circle_2tangents(pt1, pt2, pt3, r=undef, d=undef) =
|
|
|
|
let(
|
|
|
|
r = get_radius(r=r, d=d, dflt=undef),
|
|
|
|
v1 = normalize(pt1 - pt2),
|
|
|
|
v2 = normalize(pt3 - pt2)
|
|
|
|
) approx(norm(v1+v2))? undef :
|
|
|
|
assert(r!=undef, "Must specify either r or d.")
|
|
|
|
let(
|
|
|
|
a = vector_angle(v1,v2),
|
|
|
|
n = vector_axis(v1,v2),
|
|
|
|
v = normalize(mean([v1,v2])),
|
|
|
|
s = r/sin(a/2),
|
|
|
|
cp = pt2 + s*v/norm(v)
|
|
|
|
) [cp, n];
|
|
|
|
|
|
|
|
|
2019-04-20 00:02:17 +00:00
|
|
|
// Function: triangle_area2d()
|
|
|
|
// Usage:
|
|
|
|
// triangle_area2d(a,b,c);
|
|
|
|
// Description:
|
|
|
|
// Returns the area of a triangle formed between three vertices.
|
|
|
|
// Result will be negative if the points are in clockwise order.
|
|
|
|
// Examples:
|
|
|
|
// triangle_area2d([0,0], [5,10], [10,0]); // Returns -50
|
|
|
|
// triangle_area2d([10,0], [5,10], [0,0]); // Returns 50
|
|
|
|
function triangle_area2d(a,b,c) =
|
|
|
|
(
|
|
|
|
a.x * (b.y - c.y) +
|
|
|
|
b.x * (c.y - a.y) +
|
|
|
|
c.x * (a.y - b.y)
|
|
|
|
) / 2;
|
|
|
|
|
|
|
|
|
2019-06-17 06:57:05 +00:00
|
|
|
|
2019-04-20 00:02:17 +00:00
|
|
|
// Section: Planes
|
|
|
|
|
|
|
|
// Function: plane3pt()
|
|
|
|
// Usage:
|
|
|
|
// plane3pt(p1, p2, p3);
|
|
|
|
// Description:
|
2019-05-01 06:45:05 +00:00
|
|
|
// Generates the cartesian equation of a plane from three non-collinear points on the plane.
|
2019-04-20 00:02:17 +00:00
|
|
|
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
|
|
|
|
// Arguments:
|
|
|
|
// p1 = The first point on the plane.
|
|
|
|
// p2 = The second point on the plane.
|
|
|
|
// p3 = The third point on the plane.
|
|
|
|
function plane3pt(p1, p2, p3) =
|
2019-05-01 06:45:05 +00:00
|
|
|
let(
|
|
|
|
p1=point3d(p1),
|
|
|
|
p2=point3d(p2),
|
|
|
|
p3=point3d(p3),
|
|
|
|
normal = normalize(cross(p3-p1, p2-p1))
|
|
|
|
) concat(normal, [normal*p1]);
|
2019-04-20 00:02:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
// Function: plane3pt_indexed()
|
|
|
|
// Usage:
|
|
|
|
// plane3pt_indexed(points, i1, i2, i3);
|
|
|
|
// Description:
|
|
|
|
// Given a list of points, and the indexes of three of those points,
|
|
|
|
// generates the cartesian equation of a plane that those points all
|
|
|
|
// lie on. Requires that the three indexed points be non-collinear.
|
|
|
|
// Returns [A,B,C,D] where Ax+By+Cz+D=0 is the equation of a plane.
|
|
|
|
// Arguments:
|
|
|
|
// points = A list of points.
|
|
|
|
// i1 = The index into `points` of the first point on the plane.
|
|
|
|
// i2 = The index into `points` of the second point on the plane.
|
|
|
|
// i3 = The index into `points` of the third point on the plane.
|
|
|
|
function plane3pt_indexed(points, i1, i2, i3) =
|
|
|
|
let(
|
|
|
|
p1 = points[i1],
|
|
|
|
p2 = points[i2],
|
2019-05-01 06:45:05 +00:00
|
|
|
p3 = points[i3]
|
|
|
|
) plane3pt(p1,p2,p3);
|
2019-04-20 00:02:17 +00:00
|
|
|
|
|
|
|
|
2019-05-29 01:44:41 +00:00
|
|
|
// Function: plane_normal()
|
|
|
|
// Usage:
|
|
|
|
// plane_normal(plane);
|
|
|
|
// Description:
|
|
|
|
// Returns the normal vector for the given plane.
|
|
|
|
function plane_normal(plane) = [for (i=[0:2]) plane[i]];
|
|
|
|
|
|
|
|
|
2019-04-20 00:02:17 +00:00
|
|
|
// Function: distance_from_plane()
|
|
|
|
// Usage:
|
|
|
|
// distance_from_plane(plane, point)
|
|
|
|
// Description:
|
|
|
|
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
|
|
|
// is Ax+By+Cz+D=0, determines how far from that plane the given point is.
|
|
|
|
// The returned distance will be positive if the point is in front of the
|
|
|
|
// plane; on the same side of the plane as the normal of that plane points
|
|
|
|
// towards. If the point is behind the plane, then the distance returned
|
|
|
|
// will be negative. The normal of the plane is the same as [A,B,C].
|
|
|
|
// Arguments:
|
|
|
|
// plane = The [A,B,C,D] values for the equation of the plane.
|
|
|
|
// point = The point to test.
|
|
|
|
function distance_from_plane(plane, point) =
|
|
|
|
[plane.x, plane.y, plane.z] * point - plane[3];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: coplanar()
|
|
|
|
// Usage:
|
|
|
|
// coplanar(plane, point);
|
|
|
|
// Description:
|
|
|
|
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
|
|
|
// is Ax+By+Cz+D=0, determines if the given point is on that plane.
|
|
|
|
// Returns true if the point is on that plane.
|
|
|
|
// Arguments:
|
|
|
|
// plane = The [A,B,C,D] values for the equation of the plane.
|
|
|
|
// point = The point to test.
|
|
|
|
function coplanar(plane, point) =
|
|
|
|
abs(distance_from_plane(plane, point)) <= EPSILON;
|
|
|
|
|
|
|
|
|
|
|
|
// Function: in_front_of_plane()
|
|
|
|
// Usage:
|
|
|
|
// in_front_of_plane(plane, point);
|
|
|
|
// Description:
|
|
|
|
// Given a plane as [A,B,C,D] where the cartesian equation for that plane
|
|
|
|
// is Ax+By+Cz+D=0, determines if the given point is on the side of that
|
|
|
|
// plane that the normal points towards. The normal of the plane is the
|
|
|
|
// same as [A,B,C].
|
|
|
|
// Arguments:
|
|
|
|
// plane = The [A,B,C,D] values for the equation of the plane.
|
|
|
|
// point = The point to test.
|
|
|
|
function in_front_of_plane(plane, point) =
|
|
|
|
distance_from_plane(plane, point) > EPSILON;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Section: Paths and Polygons
|
|
|
|
|
|
|
|
|
|
|
|
// Function: simplify_path()
|
|
|
|
// Description:
|
|
|
|
// Takes a path and removes unnecessary collinear points.
|
|
|
|
// Usage:
|
|
|
|
// simplify_path(path, [eps])
|
|
|
|
// Arguments:
|
|
|
|
// path = A list of 2D path points.
|
2019-05-02 02:28:02 +00:00
|
|
|
// eps = Largest positional variance allowed. Default: `EPSILON` (1-e9)
|
|
|
|
function simplify_path(path, eps=EPSILON) =
|
|
|
|
len(path)<=2? path : let(
|
2019-05-27 05:34:46 +00:00
|
|
|
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(path, i-1, i, i+1, eps=eps)) i], [len(path)-1])
|
2019-05-02 02:28:02 +00:00
|
|
|
) [for (i = indices) path[i]];
|
|
|
|
|
2019-04-20 00:02:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
// Function: simplify_path_indexed()
|
|
|
|
// Description:
|
|
|
|
// Takes a list of points, and a path as a list of indexes into `points`,
|
|
|
|
// and removes all path points that are unecessarily collinear.
|
|
|
|
// Usage:
|
|
|
|
// simplify_path_indexed(path, eps)
|
|
|
|
// Arguments:
|
|
|
|
// points = A list of points.
|
|
|
|
// path = A list of indexes into `points` that forms a path.
|
|
|
|
// eps = Largest angle variance allowed. Default: EPSILON (1-e9) degrees.
|
2019-05-02 02:28:02 +00:00
|
|
|
function simplify_path_indexed(points, path, eps=EPSILON) =
|
|
|
|
len(path)<=2? path : let(
|
2019-05-27 05:34:46 +00:00
|
|
|
indices = concat([0], [for (i=[1:1:len(path)-2]) if (!collinear_indexed(points, path[i-1], path[i], path[i+1], eps=eps)) i], [len(path)-1])
|
2019-05-02 02:28:02 +00:00
|
|
|
) [for (i = indices) path[i]];
|
|
|
|
|
2019-04-20 00:02:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
// Function: point_in_polygon()
|
|
|
|
// Usage:
|
|
|
|
// point_in_polygon(point, path)
|
|
|
|
// Description:
|
|
|
|
// This function tests whether the given point is inside, outside or on the boundary of
|
2019-05-29 01:44:41 +00:00
|
|
|
// the specified 2D polygon using the Winding Number method.
|
|
|
|
// The polygon is given as a list of 2D points, not including the repeated end point.
|
2019-04-20 00:02:17 +00:00
|
|
|
// Returns -1 if the point is outside the polyon.
|
|
|
|
// Returns 0 if the point is on the boundary.
|
|
|
|
// Returns 1 if the point lies in the interior.
|
|
|
|
// The polygon does not need to be simple: it can have self-intersections.
|
|
|
|
// But the polygon cannot have holes (it must be simply connected).
|
|
|
|
// Rounding error may give mixed results for points on or near the boundary.
|
|
|
|
// Arguments:
|
|
|
|
// point = The point to check position of.
|
|
|
|
// path = The list of 2D path points forming the perimeter of the polygon.
|
|
|
|
function point_in_polygon(point, path) =
|
|
|
|
// Does the point lie on any edges? If so return 0.
|
2019-05-27 05:34:46 +00:00
|
|
|
sum([for(i=[0:1:len(path)-1]) point_on_segment2d(point, select(path, i, i+1))?1:0])>0 ? 0 :
|
2019-04-20 00:02:17 +00:00
|
|
|
// Otherwise compute winding number and return 1 for interior, -1 for exterior
|
2019-05-27 05:34:46 +00:00
|
|
|
sum([for(i=[0:1:len(path)-1]) _point_above_below_segment(point, select(path, i, i+1))]) != 0 ? 1 : -1;
|
2019-04-20 00:02:17 +00:00
|
|
|
|
|
|
|
|
2019-06-17 06:57:05 +00:00
|
|
|
// Function: point_in_region()
|
|
|
|
// Usage:
|
|
|
|
// point_in_region(point, region);
|
|
|
|
// Description:
|
|
|
|
// Tests if a point is inside, outside, or on the border of a region.
|
|
|
|
// Returns -1 if the point is outside the region.
|
|
|
|
// Returns 0 if the point is on the boundary.
|
|
|
|
// Returns 1 if the point lies inside the region.
|
|
|
|
// Arguments:
|
|
|
|
// point = The point to test.
|
|
|
|
// region = The region to test against. Given as a list of polygon paths.
|
|
|
|
function point_in_region(point, region, _i=0, _cnt=0) =
|
|
|
|
(_i >= len(region))? ((_cnt%2==1)? 1 : -1) : let(
|
|
|
|
pip = point_in_polygon(point, region[_i])
|
|
|
|
) pip==0? 0 : point_in_region(point, region, _i+1, _cnt + (pip>0? 1 : 0));
|
|
|
|
|
|
|
|
|
2019-04-20 00:02:17 +00:00
|
|
|
// Function: pointlist_bounds()
|
|
|
|
// Usage:
|
|
|
|
// pointlist_bounds(pts);
|
|
|
|
// Description:
|
2019-05-29 01:44:41 +00:00
|
|
|
// Finds the bounds containing all the 2D or 3D points in `pts`.
|
2019-04-20 00:02:17 +00:00
|
|
|
// Returns [[minx, miny, minz], [maxx, maxy, maxz]]
|
|
|
|
// Arguments:
|
|
|
|
// pts = List of points.
|
|
|
|
function pointlist_bounds(pts) = [
|
|
|
|
[for (a=[0:2]) min([ for (x=pts) point3d(x)[a] ]) ],
|
|
|
|
[for (a=[0:2]) max([ for (x=pts) point3d(x)[a] ]) ]
|
|
|
|
];
|
|
|
|
|
|
|
|
|
2019-05-29 01:44:41 +00:00
|
|
|
// Function: polygon_clockwise()
|
|
|
|
// Usage:
|
|
|
|
// polygon_clockwise(path);
|
|
|
|
// Description:
|
|
|
|
// Return true if the given 2D simple polygon is in clockwise order, false otherwise.
|
|
|
|
// Results for complex (self-intersecting) polygon are indeterminate.
|
|
|
|
// Arguments:
|
|
|
|
// path = The list of 2D path points for the perimeter of the polygon.
|
|
|
|
function polygon_clockwise(path) =
|
|
|
|
let(
|
2019-05-30 00:22:24 +00:00
|
|
|
minx = min(subindex(path,0)),
|
2019-05-29 01:44:41 +00:00
|
|
|
lowind = search(minx, path, 0, 0),
|
|
|
|
lowpts = select(path, lowind),
|
2019-05-30 00:22:24 +00:00
|
|
|
miny = min(subindex(lowpts, 1)),
|
2019-05-29 01:44:41 +00:00
|
|
|
extreme_sub = search(miny, lowpts, 1, 1)[0],
|
|
|
|
extreme = select(lowind,extreme_sub)
|
|
|
|
)
|
|
|
|
det2( [select(path,extreme+1)-path[extreme], select(path, extreme-1)-path[extreme]])<0;
|
|
|
|
|
|
|
|
|
2019-06-17 06:57:05 +00:00
|
|
|
|
|
|
|
// Section: Regions and Boolean 2D Geometry
|
|
|
|
|
|
|
|
|
|
|
|
// Function: is_region()
|
|
|
|
// Usage:
|
|
|
|
// is_region(x);
|
|
|
|
// Description:
|
|
|
|
// Returns true if the given item looks like a region, which is a list of paths.
|
|
|
|
function is_region(x) = is_list(x) && is_path(x.x);
|
|
|
|
|
|
|
|
|
|
|
|
// Function: close_region(path)
|
|
|
|
// Usage:
|
|
|
|
// close_region(region);
|
|
|
|
// Description:
|
|
|
|
// Closes all paths within a given region.
|
|
|
|
function close_region(region) = [for (path=region) close_path(path)];
|
|
|
|
|
|
|
|
|
|
|
|
// Function: region_path_crossings()
|
|
|
|
// Usage:
|
|
|
|
// region_path_crossings(path, region);
|
|
|
|
// Description:
|
|
|
|
// Returns a sorted list of [SEGMENT, U] that describe where a given path is crossed by a second path.
|
|
|
|
// Arguments:
|
|
|
|
// path = The path to find crossings on.
|
|
|
|
// region = Region to test for crossings of.
|
|
|
|
function region_path_crossings(path, region) = sort([
|
|
|
|
for (s1=enumerate(pair_wrap(path)), path=region, s2=pair_wrap(path)) let(
|
|
|
|
isect = _general_line_intersection(s1.y,s2),
|
|
|
|
eps = 1e-9
|
|
|
|
) if (
|
|
|
|
!is_undef(isect) &&
|
|
|
|
isect[1] >= 0-eps && isect[1] < 1-eps &&
|
|
|
|
isect[2] >= 0-eps && isect[2] < 1-eps
|
|
|
|
) [s1.x, isect[1]]
|
|
|
|
]);
|
|
|
|
|
|
|
|
|
|
|
|
function _split_path_at_region_crossings(path, region, eps=1e-6) =
|
|
|
|
let(
|
|
|
|
path = deduplicate(path, eps=eps),
|
|
|
|
region = [for (path=region) deduplicate(path, eps=eps)],
|
|
|
|
crossings = deduplicate(concat(
|
|
|
|
[[0,0]],
|
|
|
|
region_path_crossings(path, region),
|
|
|
|
[[len(path)-2,1]]
|
|
|
|
))
|
|
|
|
) [for (p = pair(crossings)) path_subselect(path, p[0][0], p[0][1], p[1][0], p[1][1])];
|
|
|
|
|
|
|
|
|
|
|
|
function _tag_subpaths(path, region) =
|
|
|
|
let(
|
|
|
|
subpaths = _split_path_at_region_crossings(path, region),
|
|
|
|
tagged = [
|
|
|
|
for (subpath = subpaths) let(
|
|
|
|
midpt = lerp(subpath[0], subpath[1], 0.5),
|
|
|
|
rel = point_in_region(midpt,region)
|
|
|
|
) rel<0? ["O", subpath] : rel>0? ["I", subpath] : let(
|
|
|
|
sidept = midpt + rot(90, planar=true, p=normalize(subpath[0][1]-subpath[0][0])*0.01),
|
|
|
|
rel2 = (point_in_region(sidept,region)>0) == (point_in_region(sidept,region)>0)
|
|
|
|
) rel2? ["S", subpath] : ["U", subpath]
|
|
|
|
]
|
|
|
|
) tagged;
|
|
|
|
|
|
|
|
|
|
|
|
function _tag_region_subpaths(region1, region2) =
|
|
|
|
[for (path=region1) each _tag_subpaths(path, region2)];
|
|
|
|
|
|
|
|
|
|
|
|
function _tagged_region(region1,region2,keep1,keep2) =
|
|
|
|
let(
|
|
|
|
region1 = close_region(region1),
|
|
|
|
region2 = close_region(region2),
|
|
|
|
tagged1 = _tag_region_subpaths(region1,region2),
|
|
|
|
tagged2 = _tag_region_subpaths(region2,region1),
|
|
|
|
tagged = concat(
|
|
|
|
[for (tagpath = tagged1) if (in_list(tagpath[0], keep1)) tagpath[1]],
|
|
|
|
[for (tagpath = tagged2) if (in_list(tagpath[0], keep2)) tagpath[1]]
|
|
|
|
),
|
|
|
|
outregion = assemble_path_fragments(tagged)
|
|
|
|
) outregion;
|
|
|
|
|
|
|
|
|
|
|
|
// Function: union()
|
|
|
|
// Usage:
|
|
|
|
// union(regions);
|
|
|
|
// Description:
|
|
|
|
// Given a list of regions, where each region is a list of closed 2D paths, returns the region boolean union of all given regions.
|
|
|
|
// Arguments:
|
|
|
|
// regions = List of regions to union. Each region is a list of closed paths.
|
|
|
|
// Example(2D):
|
|
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
|
|
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, close=true);
|
|
|
|
// color("green") region(union(shape1,shape2));
|
|
|
|
function union(regions=[],b=undef,c=undef) =
|
|
|
|
b!=undef? union(concat([regions],[b],c==undef?[]:[c])) :
|
|
|
|
len(regions)<=1? regions[0] :
|
|
|
|
union(
|
|
|
|
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
|
|
|
concat(
|
|
|
|
[_tagged_region(regions[0],regions[1],["O","S"],["O"])],
|
|
|
|
[for (i=[2:1:len(regions)-1]) regions[i]]
|
|
|
|
)
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
// Function: difference()
|
|
|
|
// Usage:
|
|
|
|
// difference(regions);
|
|
|
|
// Description:
|
|
|
|
// Given a list of regions, where each region is a list of closed 2D paths, takes the first
|
|
|
|
// region and differences away all other regions from it. The resulting region is returned.
|
|
|
|
// Arguments:
|
|
|
|
// regions = List of regions to difference. Each region is a list of closed paths.
|
|
|
|
// Example(2D):
|
|
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
|
|
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, close=true);
|
|
|
|
// color("green") region(difference(shape1,shape2));
|
|
|
|
function difference(regions=[],b=undef,c=undef) =
|
|
|
|
b!=undef? difference(concat([regions],[b],c==undef?[]:[c])) :
|
|
|
|
len(regions)<=1? regions[0] :
|
|
|
|
difference(
|
|
|
|
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
|
|
|
concat(
|
|
|
|
[_tagged_region(regions[0],regions[1],["O","U"],["I"])],
|
|
|
|
[for (i=[2:1:len(regions)-1]) regions[i]]
|
|
|
|
)
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
// Function: intersection()
|
|
|
|
// Usage:
|
|
|
|
// intersection(regions);
|
|
|
|
// Description:
|
|
|
|
// Given a list of regions, where each region is a list of closed 2D paths, returns the region boolean intersection of all given regions.
|
|
|
|
// Arguments:
|
|
|
|
// regions = List of regions to intersection. Each region is a list of closed paths.
|
|
|
|
// Example(2D):
|
|
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
|
|
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, close=true);
|
|
|
|
// color("green") region(intersection(shape1,shape2));
|
|
|
|
function intersection(regions=[],b=undef,c=undef) =
|
|
|
|
b!=undef? intersection(concat([regions],[b],c==undef?[]:[c])) :
|
|
|
|
len(regions)<=1? regions[0] :
|
|
|
|
intersection(
|
|
|
|
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
|
|
|
concat(
|
|
|
|
[_tagged_region(regions[0],regions[1],["I","S"],["I"])],
|
|
|
|
[for (i=[2:1:len(regions)-1]) regions[i]]
|
|
|
|
)
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
// Function: exclusive_or()
|
|
|
|
// Usage:
|
|
|
|
// exclusive_or(regions);
|
|
|
|
// Description:
|
|
|
|
// Given a list of regions, where each region is a list of closed 2D paths, returns the region boolean exclusive_or of all given regions.
|
|
|
|
// Arguments:
|
|
|
|
// regions = List of regions to exclusive_or. Each region is a list of closed paths.
|
|
|
|
// Example(2D):
|
|
|
|
// shape1 = move([-8,-8,0], p=circle(d=50));
|
|
|
|
// shape2 = move([ 8, 8,0], p=circle(d=50));
|
|
|
|
// for (shape = [shape1,shape2]) color("red") stroke(shape, width=0.5, close=true);
|
|
|
|
// color("green") region(exclusive_or(shape1,shape2));
|
|
|
|
function exclusive_or(regions=[],b=undef,c=undef) =
|
|
|
|
b!=undef? exclusive_or(concat([regions],[b],c==undef?[]:[c])) :
|
|
|
|
len(regions)<=1? regions[0] :
|
|
|
|
exclusive_or(
|
|
|
|
let(regions=[for (r=regions) is_path(r)? [r] : r])
|
|
|
|
concat(
|
|
|
|
[union([
|
|
|
|
difference([regions[0],regions[1]]),
|
|
|
|
difference([regions[1],regions[0]])
|
|
|
|
])],
|
|
|
|
[for (i=[2:1:len(regions)-1]) regions[i]]
|
|
|
|
)
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
// Module: region()
|
|
|
|
// Usage:
|
|
|
|
// region(r);
|
|
|
|
// Description:
|
|
|
|
// Creates 2D polygons for the given region.
|
|
|
|
// Example(2D):
|
|
|
|
// shape1 = circle(d=50);
|
|
|
|
// shape2 = circle(d=30);
|
|
|
|
// region([shape1,shape2]);
|
|
|
|
module region(r)
|
|
|
|
{
|
|
|
|
points = flatten(r);
|
|
|
|
paths = [
|
|
|
|
for (i=[0:1:len(r)-1]) let(
|
|
|
|
start = default(sum([for (j=[0:1:i-1]) len(r[j])]),0)
|
|
|
|
) [for (k=[0:1:len(r[i])-1]) start+k]
|
|
|
|
];
|
|
|
|
polygon(points=points, paths=paths);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2019-04-20 00:02:17 +00:00
|
|
|
// vim: noexpandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|