From 0100a51e35e17b8afb3f41aa5c3f1a29b64021d2 Mon Sep 17 00:00:00 2001
From: Alex Matulich <anachronist@gmail.com>
Date: Wed, 22 Jan 2025 23:03:29 -0800
Subject: [PATCH] Isosurfaces and metaballs, new features (corrected for
 2021.01)

---
 isosurface.scad | 12 ++++++------
 1 file changed, 6 insertions(+), 6 deletions(-)

diff --git a/isosurface.scad b/isosurface.scad
index 57b589f..86afc9f 100644
--- a/isosurface.scad
+++ b/isosurface.scad
@@ -691,7 +691,7 @@ _MCTriangleTable_reverse = [
 //   
 //   bbox = [[-100,-100,-100], [100,100,100]];
 //   isosurface(voxel_size=5, bounding_box=bbox, isovalue=0,
-//              gyroid, additional=200, close_clip=false);
+//       field_function=gyroid, additional=200, close_clip=false);
 // Example(3D,NoAxes): If we remove the `close_clip` parameter or set it to true, the isosurface algorithm encloses the entire half-space bounded by the "inner" gyroid surface, leaving only the "outer" surface exposed. This is a manifold shape but not what we want if trying to model a gyroid.
 //   gyroid = function (xyz, wavelength) let(
 //       p = 360/wavelength,
@@ -702,7 +702,7 @@ _MCTriangleTable_reverse = [
 //   
 //   bbox = [[-100,-100,-100], [100,100,100]];
 //   isosurface(voxel_size=5, bounding_box=bbox, isovalue=0,
-//              gyroid, additional=200);
+//       field_function=gyroid, additional=200);
 // Example(3D,ThrownTogether,NoAxes): To make the gyroid a double-sided surface, we need to specify a small range around zero for `isovalue`. Now we have a double-sided surface although with `clip_close=false` the edges are not closed where the surface is clipped by the bounding box.
 //   gyroid = function (xyz, wavelength) let(
 //       p = 360/wavelength,
@@ -713,7 +713,7 @@ _MCTriangleTable_reverse = [
 //   
 //   bbox = [[-100,-100,-100], [100,100,100]];
 //   isosurface(voxel_size=5, bounding_box=bbox, isovalue=[-0.3, 0.3],
-//              gyroid, additional=200, close_clip=false);
+//       field_function=gyroid, additional=200, close_clip=false);
 // Example(3D,ThrownTogether,NoAxes): To make the gyroid a valid manifold 3D object, we remove the `close_clip` parameter (same as setting `close_clip=true`), which closes the edges where the surface is clipped by the bounding box. The resulting object can be tiled, the VNF returned by the functional version can be wrapped around an axis using `{{vnf_bend()}}`, and other operations.
 //   gyroid = function (xyz, wavelength) let(
 //       p = 360/wavelength,
@@ -724,7 +724,7 @@ _MCTriangleTable_reverse = [
 //   
 //   bbox = [[-100,-100,-100], [100,100,100]];
 //   isosurface(voxel_size=5, bounding_box=bbox, isovalue=[-0.3, 0.3],
-//              gyroid, additional=200);
+//       field_function=gyroid, additional=200);
 // Example(3D,NoAxes): An approximation of the triply-periodic minimal surface known as [Schwartz P](https://en.wikipedia.org/wiki/Schwarz_minimal_surface).
 //   schwartz_p = function (xyz, wavelength) let(
 //       p = 360/wavelength,
@@ -735,7 +735,7 @@ _MCTriangleTable_reverse = [
 //   
 //   bbox = [[-100,-100,-100], [100,100,100]];
 //   isosurface(voxel_size=4, bounding_box=bbox, isovalue=[-0.2,0.2],
-//              schwartz_p, additional=100);
+//       field_function=schwartz_p, additional=100);
 // Example(3D,NoAxes): Another approximation of the triply-periodic minimal surface known as [Neovius](https://en.wikipedia.org/wiki/Neovius_surface).
 //   neovius = function (xyz, wavelength) let(
 //       p = 360/wavelength,
@@ -746,7 +746,7 @@ _MCTriangleTable_reverse = [
 //   
 //   bbox = [[-100,-100,-100], [100,100,100]];
 //   isosurface(voxel_size=4, bounding_box=bbox, isovalue=[-0.3,0.3],
-//              neovius, additional=200);
+//       field_function=neovius, additional=200);
 
 module isosurface(voxel_size, bounding_box, isovalue, field_function, additional, reverse=false, close_clip=true, show_stats=false) {
     vnf = isosurface(voxel_size, bounding_box, isovalue, field_function, additional, reverse, close_clip, show_stats);