texture() cleanup.

This commit is contained in:
Garth Minette 2022-07-18 19:49:57 -07:00
parent f88bf2368d
commit 0104011918

549
skin.scad
View file

@ -2098,39 +2098,48 @@ function associate_vertices(polygons, split, curpoly=0) =
// Section: Texturing // Section: Texturing
// DefineHeader(Table;Headers=Texture Name|Type|Description): Texture Values // DefineHeader(Table;Headers=Texture Name|Args|Description): Heightfield Textures
// DefineHeader(Table;Headers=Texture Name|Args|Description): VNF Textures
// Function: texture() // Function: texture()
// Usage: // Usage:
// tx = texture(tex, [n], [m]); // tx = texture(tex, [n=], [inset=], [gap=], [roughness=]);
// Topics: Textures, Knurling // Topics: Textures, Knurling
// Description: // Description:
// Given a texture name, and two optional variables, returns a heightfield texture as a 2D array of scalars. // Given a texture name, returns a texture. Textures can come in two varieties:
// - Heightfield textures which are 2D arrays of scalars. These are faster to render, but are less precise and prone to triangulation errors.
// - VNF Tile textures, which are VNFs that completely tile the rectangle `[0,0]` to `[1,1]`. These tend to be slower to render, but are more precise.
// Sometimes the geometry of a shape to be textured will cause a heightfield texture to be badly triangulated.
// Switching to a similar VNF tile texture can solve this problem. Usually just by adding the prefix "vnf_".
// Heightfield Textures:
// "bricks" = `n`, `roughness` = A brick-wall pattern.
// "diamonds" = `n` = Diamond shapes with tips aligned with the axes. Useful for knurling.
// "hills" = `n` = Wavy sine-wave hills and valleys,
// "pyramids" = `n` = Pyramids shapes with flat sides aligned with the axes. Also useful for knurling.
// "ribs" = `n` = Vertically aligned triangular ribs.
// "rough" = `n`, `roughness` = A pseudo-randomized rough surace texture.
// "trunc_pyramids" = `n` = Like "pyramids" but with flattened tips.
// "trunc_ribs" = `n` = Like "ribs" but with flat rib tips.
// "wave_ribs" = `n` = Vertically aligned wavy ribs.
// VNF Textures:
// "vnf_bricks" = `inset`, `gap` = Like "bricks", but slower and more consistent in triangulation.
// "vnf_checkers" = `inset` = A pattern of alternating checkerboard squares.
// "vnf_cones" = `n`, `inset` = Raised conical spikes.
// "vnf_cubes" = none = Cornercubes texture.
// "vnf_diagonal_grid" = `inset` = A grid of thin lines at 45º angles.
// "vnf_diamonds" = none = Like "diamonds", but slower and more consistent in triangulation.
// "vnf_dimples" = `n`, `inset` = Small round divots.
// "vnf_dots" = `n`, `inset` = Raised small round bumps.
// "vnf_hex_grid" = `inset` = A hexagonal grid of thin lines.
// "vnf_pyramids" = none = Like "pyramids", but slower and more consistent in triangulation.
// "vnf_trunc_pyramids" = `inset` = Like "trunc_pyramids", but slower and more consistent in triangulation.
// Arguments: // Arguments:
// tex = The name of the texture to get. // tex = The name of the texture to get.
// n = Generally the number of vertices in one axis to make the texture from. Depends on the texture. // ---
// m = Generally the texture height. Depends on the texture. // n = The general number of vertices to use to refine the resolution of the texture.
// Texture Values: // inset = The amount to inset part of a VNF tile texture. Generally between 0 and 0.5.
// "bricks" = Heightfield = A brick-wall pattern. // gap = The gap between some parts of a VNF tile. (ie: gap between bricks, etc.)
// "diamonds" = Heightfield = Diamond shapes with tips aligned with the axes. Useful for knurling. // roughness = The amount of roughness used on the surface of some heightfield textures. Generally between 0 and 0.5.
// "hills" = Heightfield = Wavy sine-wave hills and valleys,
// "pyramids" = Heightfield = Pyramids shapes with flat sides aligned with the axes. Also useful for knurling.
// "ribs" = Heightfield = Vertically aligned triangular ribs.
// "rough" = Heightfield = A pseudo-randomized rough surace texture.
// "trunc_pyramids" = Heightfield = Like "pyramids" but with flattened tips.
// "trunc_ribs" = Heightfield = Like "ribs" but with flat rib tips.
// "wave_ribs" = Heightfield = Vertically aligned wavy ribs.
// "vnf_bricks" = VNF Tile = Like "bricks", but slower and more consistent in triangulation.
// "vnf_checkers" = VNF Tile = A pattern of alternating checkerboard squares.
// "vnf_cones" = VNF Tile = Raised conical spikes.
// "vnf_cubes" = VNF Tile = Cornercubes texture.
// "vnf_diagonal_grid" = VNF Tile = A grid of thin lines at 45º angles.
// "vnf_diamonds" = VNF Tile = Like "diamonds", but slower and more consistent in triangulation.
// "vnf_dimples" = VNF Tile = Small round divots.
// "vnf_dots" = VNF Tile = Raised small round bumps.
// "vnf_hex_grid" = VNF Tile = A hexagonal grid of thin lines.
// "vnf_pyramids" = VNF Tile = Like "pyramids", but slower and more consistent in triangulation.
// "vnf_trunc_pyramids" = VNF Tile = Like "trunc_pyramids", but slower and more consistent in triangulation.
// See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield(), texture() // See Also: textured_revolution(), textured_cylinder(), textured_linear_sweep(), heightfield(), cylindrical_heightfield(), texture()
// Example(3D): "ribs" texture. // Example(3D): "ribs" texture.
// tex = texture("ribs"); // tex = texture("ribs");
@ -2195,13 +2204,13 @@ function associate_vertices(polygons, split, curpoly=0) =
// Example(3D): "vnf_dots" texture. // Example(3D): "vnf_dots" texture.
// tex = texture("vnf_dots"); // tex = texture("vnf_dots");
// textured_linear_sweep( // textured_linear_sweep(
// rect(50), tex, h=40, tscale=3, // rect(50), tex, h=40, tscale=1,
// tex_size=[10,10] // tex_size=[10,10]
// ); // );
// Example(3D): "vnf_dimples" texture. // Example(3D): "vnf_dimples" texture.
// tex = texture("vnf_dimples"); // tex = texture("vnf_dimples");
// textured_linear_sweep( // textured_linear_sweep(
// rect(50), tex, h=40, tscale=3, // rect(50), tex, h=40, tscale=1,
// tex_size=[10,10] // tex_size=[10,10]
// ); // );
// Example(3D): "vnf_cones" texture. // Example(3D): "vnf_cones" texture.
@ -2246,195 +2255,290 @@ function associate_vertices(polygons, split, curpoly=0) =
// rect(50), tex, h=40, // rect(50), tex, h=40,
// tex_size=[10,10], style="min_edge" // tex_size=[10,10], style="min_edge"
// ); // );
function texture(tex,n,m,o) =
tex=="ribs"? [[1,0]] : function texture(tex, n, inset, gap, roughness) =
tex=="trunc_ribs"? [[each repeat(0,default(n,1)+1), each repeat(1,default(n,1)+1)]] : tex=="ribs"?
tex=="wave_ribs"? [[for(a=[0:360/default(n,8):359]) (cos(a)+1)/2]] : let(
tex=="diamonds"? let(m=default(m,1)) [[m,0],[0,m]] : n = quantup(default(n,2),2)
tex=="vnf_diamonds"? let(m=default(m,1)) [ ) [[
[ each lerpn(1,0,n/2,endpoint=false),
[0, 1,m], [1/2, 1,0], [1, 1,m], each lerpn(0,1,n/2,endpoint=false),
[0,1/2,0], [1/2,1/2,m], [1,1/2,0], ]] :
[0, 0,m], [1/2, 0,0], [1, 0,m], tex=="trunc_ribs"?
], [ let(
[0,1,3], [2,5,1], [8,7,5], [6,3,7], n = quantup(default(n,4),4)
[1,5,4], [5,7,4], [7,3,4], [4,3,1], ) [[
] each repeat(0,n/4),
] : each lerpn(0,1,n/4,endpoint=false),
tex=="pyramids"? let(m=default(m,1)) [[0,0],[0,m]] : each repeat(1,n/4),
tex=="vnf_pyramids"? let(m=default(m,1)) [ each lerpn(1,0,n/4,endpoint=false),
[ [0,1,0], [1,1,0], [1/2,1/2,m], [0,0,0], [1,0,0] ], ]] :
[ [2,0,1], [2,1,4], [2,4,3], [2,3,0] ] tex=="wave_ribs"?
] : let(
tex=="trunc_pyramids"? let(n=default(n,3), m=default(m,1)) [repeat(0,n+2), each repeat([0, each repeat(m,n+1)], n+1)] : n = max(6,default(n,8))
tex=="vnf_trunc_pyramids"? let(n=default(n,0.25), m=default(m,1)) [ ) [[
[ for(a=[0:360/n:360-EPSILON])
each path3d(square(1)), (cos(a)+1)/2
each move([1/2,1/2,m], p=path3d(rect(1-2*n))), ]] :
], [ tex=="diamonds"?
for (i=[0:3]) each [ let(
[i, (i+1)%4, i+4], n = quantup(default(n,2),2)
[(i+1)%4, (i+1)%4+4, i+4], ) [
let(
path = [
each lerpn(0,1,n/2,endpoint=false),
each lerpn(1,0,n/2,endpoint=false),
]
)
for (i=[0:1:n-1]) [
for (j=[0:1:n-1]) min(
select(path,i+j),
select(path,i-j)
)
], ],
[4,5,6], [4,6,7], ] :
] tex=="vnf_diamonds"?
] :
tex=="hills"? let(n=default(n,12)) [
for (a=[0:360/n:359.999]) [
for (b=[0:360/n:359.999])
(cos(a)*cos(b)+1)/2
]
] :
tex=="bricks"? let(n=default(n,16), m=default(m,0.05)) [
for (y = [0:1:n*2-1])
rands(-m/2, m/2, 2*n, seed=12345+y*678) + [
for (x = [0:1:2*n-1])
(y%n <= max(1,n/16))? 0 :
let( even = floor(y/n)%2? n : 0 )
(x+even) % (2*n) <= max(1,n/16)? 0 : 0.5
]
] :
tex=="vnf_bricks"? let(
h=default(n,1),
gap=default(m,0.05),
inset=default(o,0.1)
) [
[ [
each path3d(square(1)), [
each move([gap/2, gap/2, 0], p=path3d(square([1-gap, 0.5-gap]))), [0, 1, 1], [1/2, 1, 0], [1, 1, 1],
each move([gap/2+inset/2, gap/2+inset/2, h], p=path3d(square([1-gap-inset, 0.5-gap-inset]))), [0, 1/2, 0], [1/2, 1/2, 1], [1, 1/2, 0],
each move([0, 0.5+gap/2, 0], p=path3d(square([0.5-gap/2, 0.5-gap]))), [0, 0, 1], [1/2, 0, 0], [1, 0, 1],
each move([0, 0.5+gap/2+inset/2, h], p=path3d(square([0.5-gap/2-inset/2, 0.5-gap-inset]))), ], [
each move([0.5+gap/2, 0.5+gap/2, 0], p=path3d(square([0.5-gap/2, 0.5-gap]))), [0,1,3], [2,5,1], [8,7,5], [6,3,7],
each move([0.5+gap/2+inset/2, 0.5+gap/2+inset/2, h], p=path3d(square([0.5-gap/2-inset/2, 0.5-gap-inset]))), [1,5,4], [5,7,4], [7,3,4], [4,3,1],
], [ ]
[ 8, 9,10], [ 8,10,11], [16,17,18], [16,18,19], [24,25,26], ] :
[24,26,27], [ 0, 1, 5], [ 0, 5, 4], [ 1,13, 6], [ 1, 6, 5], tex=="pyramids"?
[ 6,13,12], [ 6,12,21], [ 7,21,20], [ 6,21, 7], [ 0, 4, 7], let(
[ 0, 7,20], [21,12,15], [21,15,22], [ 3,23,22], [ 3,22,15], n = quantup(default(n,2),2)
[ 2,15,14], [ 2, 3,15], [23,27,26], [23,26,22], [21,22,26], ) [
[21,26,25], [21,25,24], [21,24,20], [12,16,19], [12,19,15], for (i = [0:1:n-1]) [
[14,15,19], [14,19,18], [13,17,16], [13,16,12], [ 6,10, 9], for (j = [0:1:n-1])
[ 6, 9, 5], [ 5, 9, 8], [ 5, 8, 4], [ 4, 8,11], [ 4,11, 7], 1 - (max(abs(i-n/2), abs(j-n/2)) / (n/2))
[ 7,11,10], [ 7,10, 6], ]
] ] :
] : tex=="vnf_pyramids"?
tex=="vnf_checkers"? let(n=default(n,0.05), m=default(m,1)) [
[ [
each move([0,0], p=path3d(square(0.5-n),m)), [ [0,1,0], [1,1,0], [1/2,1/2,1], [0,0,0], [1,0,0] ],
each move([0,0.5], p=path3d(square(0.5-n))), [ [2,0,1], [2,1,4], [2,4,3], [2,3,0] ]
each move([0.5,0], p=path3d(square(0.5-n))), ] :
each move([0.5,0.5], p=path3d(square(0.5-n),m)), tex=="trunc_pyramids"?
[1/2-n/2,1/2-n/2,m/2], [0,1,m], [1/2-n,1,m], let(
[1/2,1,0], [1-n,1,0], [1,0,m], [1,1/2-n,m], n = quantup(default(n,6),3)
[1,1/2,0], [1,1-n,0], [1,1,m], [1/2-n/2,1-n/2,m/2], ) [
[1-n/2,1-n/2,m/2], [1-n/2,1/2-n/2,m/2], for (i = [0:1:n-1]) [
], [ for (j = [0:1:n-1])
for (i=[0:4:12]) each [[i,i+1,i+2], [i, i+2, i+3]], (1 - (max(n/6, abs(i-n/2), abs(j-n/2)) / (n/2))) * 1.5
[10,13,11], [13,12,11], [2,5,4], [4,3,2], ]
[0,3,10], [10,9,0], [4,7,14], [4,14,13], ] :
[4,13,16], [10,16,13], [10,3,16], [3,4,16], tex=="vnf_trunc_pyramids"?
[7,6,17], [7,17,18], [14,19,20], [14,20,15], let(
[8,11,22], [8,22,21], [12,15,24], [12,24,23], inset = default(inset,0.25)
[7,18,26], [7,26,14], [14,26,19], [18,19,26], ) [
[15,20,27], [20,25,27], [24,27,25], [15,27,24], [
[11,12,28], [12,23,28], [11,28,22], [23,22,28], each path3d(square(1)),
] each move([1/2,1/2,1], p=path3d(rect(1-2*inset))),
] : ], [
tex=="vnf_cones"? let(n=quant(default(n,12),4), m=default(m,1)) [ for (i=[0:3]) each [
[i, (i+1)%4, i+4],
[(i+1)%4, (i+1)%4+4, i+4],
],
[4,5,6], [4,6,7],
]
] :
tex=="hills"?
let(
n = default(n,12)
) [
for (a=[0:360/n:359.999]) [
for (b=[0:360/n:359.999])
(cos(a)*cos(b)+1)/2
]
] :
tex=="bricks"?
let(
n = quantup(default(n,24),2),
rough = default(roughness,0.05)
) [
for (y = [0:1:n-1])
rands(-rough/2, rough/2, n, seed=12345+y*678) + [
for (x = [0:1:n-1])
(y%(n/2) <= max(1,n/16))? 0 :
let( even = floor(y/(n/2))%2? n/2 : 0 )
(x+even) % n <= max(1,n/16)? 0 : 0.5
]
] :
tex=="vnf_bricks"?
let(
inset = default(inset,0.05),
gap = default(gap,0.05)
) [
[
each path3d(square(1)),
each move([gap/2, gap/2, 0], p=path3d(square([1-gap, 0.5-gap]))),
each move([gap/2+inset/2, gap/2+inset/2, 1], p=path3d(square([1-gap-inset, 0.5-gap-inset]))),
each move([0, 0.5+gap/2, 0], p=path3d(square([0.5-gap/2, 0.5-gap]))),
each move([0, 0.5+gap/2+inset/2, 1], p=path3d(square([0.5-gap/2-inset/2, 0.5-gap-inset]))),
each move([0.5+gap/2, 0.5+gap/2, 0], p=path3d(square([0.5-gap/2, 0.5-gap]))),
each move([0.5+gap/2+inset/2, 0.5+gap/2+inset/2, 1], p=path3d(square([0.5-gap/2-inset/2, 0.5-gap-inset]))),
], [
[ 8, 9,10], [ 8,10,11], [16,17,18], [16,18,19], [24,25,26],
[24,26,27], [ 0, 1, 5], [ 0, 5, 4], [ 1,13, 6], [ 1, 6, 5],
[ 6,13,12], [ 6,12,21], [ 7,21,20], [ 6,21, 7], [ 0, 4, 7],
[ 0, 7,20], [21,12,15], [21,15,22], [ 3,23,22], [ 3,22,15],
[ 2,15,14], [ 2, 3,15], [23,27,26], [23,26,22], [21,22,26],
[21,26,25], [21,25,24], [21,24,20], [12,16,19], [12,19,15],
[14,15,19], [14,19,18], [13,17,16], [13,16,12], [ 6,10, 9],
[ 6, 9, 5], [ 5, 9, 8], [ 5, 8, 4], [ 4, 8,11], [ 4,11, 7],
[ 7,11,10], [ 7,10, 6],
]
] :
tex=="vnf_checkers"?
let(
inset = default(inset,0.05)
) [
[
each move([0,0], p=path3d(square(0.5-inset),1)),
each move([0,0.5], p=path3d(square(0.5-inset))),
each move([0.5,0], p=path3d(square(0.5-inset))),
each move([0.5,0.5], p=path3d(square(0.5-inset),1)),
[1/2-inset/2,1/2-inset/2,1/2], [0,1,1], [1/2-inset,1,1],
[1/2,1,0], [1-inset,1,0], [1,0,1], [1,1/2-inset,1],
[1,1/2,0], [1,1-inset,0], [1,1,1], [1/2-inset/2,1-inset/2,1/2],
[1-inset/2,1-inset/2,1/2], [1-inset/2,1/2-inset/2,1/2],
], [
for (i=[0:4:12]) each [[i,i+1,i+2], [i, i+2, i+3]],
[10,13,11], [13,12,11], [2,5,4], [4,3,2],
[0,3,10], [10,9,0], [4,7,14], [4,14,13],
[4,13,16], [10,16,13], [10,3,16], [3,4,16],
[7,6,17], [7,17,18], [14,19,20], [14,20,15],
[8,11,22], [8,22,21], [12,15,24], [12,24,23],
[7,18,26], [7,26,14], [14,26,19], [18,19,26],
[15,20,27], [20,25,27], [24,27,25], [15,27,24],
[11,12,28], [12,23,28], [11,28,22], [23,22,28],
]
] :
tex=="vnf_cones"?
let(
n = quant(default(n,12),4),
inset = default(inset,0)
)
assert(inset>=0 && inset<0.5)
[ [
each move([1/2,1/2], p=path3d(circle(d=1,$fn=n))), [
[1/2,1/2,m], each move([1/2,1/2], p=path3d(circle(d=1-inset,$fn=n))),
each path3d(square(1)), [1/2,1/2,1],
], [ each path3d(square(1)),
for (i=[0:1:n-1]) [i, (i+1)%n, n], ], [
for (i=[0:1:3], j=[0:1:n/4-1]) [n+1+i, (i*n/4+j+1)%n, i*n/4+j], for (i=[0:1:n-1]) [i, (i+1)%n, n],
] for (i=[0:1:3], j=[0:1:n/4-1]) [n+1+i, (i*n/4+j+1)%n, i*n/4+j],
] : if (inset > 0) for (i = [0:1:3]) [i+n+1, (i+1)%4+n+1, ((i+1)*n/4)%n],
tex=="vnf_cubes"? let(m=default(m,1)) [ ]
] :
tex=="vnf_cubes"?
[ [
[0,1,m/2], [1,1,m/2], [1/2,5/6,m], [0,4/6,0], [1,4/6,0], [
[1/2,3/6,m/2], [0,2/6,m], [1,2/6,m], [1/2,1/6,0], [0,0,m/2], [0,1,1/2], [1,1,1/2], [1/2,5/6,1], [0,4/6,0], [1,4/6,0],
[1,0,m/2], [1/2,3/6,1/2], [0,2/6,1], [1,2/6,1], [1/2,1/6,0], [0,0,1/2],
], [ [1,0,1/2],
[0,1,2], [0,2,3], [1,4,2], [2,5,3], [2,4,5], ], [
[6,3,5], [4,7,5], [7,8,5], [6,5,8], [10,8,7], [0,1,2], [0,2,3], [1,4,2], [2,5,3], [2,4,5],
[9,6,8], [10,9,8], [6,3,5], [4,7,5], [7,8,5], [6,5,8], [10,8,7],
] [9,6,8], [10,9,8],
] : ]
tex=="vnf_diagonal_grid"? let(m=default(m,1)) [ ] :
[ tex=="vnf_diagonal_grid"?
each move([1/2,1/2,0], p=path3d(circle(d=1,$fn=4))), let(
each move([1/2,1/2,m], p=path3d(circle(d=0.8,$fn=4))), inset = default(inset,0.1)
for (a=[0:90:359]) each move([1/2,1/2], p=zrot(-a, p=[[1/2,0.1,m], [0.1,1/2,m], [1/2,1/2,m]])) )
], [ assert(inset>0 && inset<0.5)
for (i=[0:3]) each let(j=i*3+8) [
[i,(i+1)%4,(i+1)%4+4], [i,(i+1)%4+4,i+4],
[j,j+1,j+2], [i, (i+3)%4, j], [(i+3)%4, j+1, j],
],
[4,5,6], [4,6,7],
]
] :
tex=="vnf_dimples" || tex=="vnf_dots" ? let(
n = quant(default(n,12),4),
m = default(m,0.05),
rows=ceil(n/4),
r=adj_ang_to_hyp(1/2-m,45),
dots = tex=="vnf_dots",
cp=[1/2, 1/2, r*sin(45)*(dots?-1:1)]
) [
[ [
each path3d(square(1)), [
for (p=[0:1:rows-1], t=[0:360/n:359.999]) each move([1/2,1/2,0], p=path3d(circle(d=1,$fn=4))),
cp + ( each move([1/2,1/2,1], p=path3d(circle(d=1-inset*2,$fn=4))),
dots? spherical_to_xyz(r, -t, 45-45*p/rows) : for (a=[0:90:359]) each move([1/2,1/2], p=zrot(-a, p=[[1/2,inset,1], [inset,1/2,1], [1/2,1/2,1]]))
spherical_to_xyz(r, -t, 135+45*p/rows) ], [
), for (i=[0:3]) each let(j=i*3+8) [
cp + r * (dots?UP:DOWN), [i,(i+1)%4,(i+1)%4+4], [i,(i+1)%4+4,i+4],
], [ [j,j+1,j+2], [i, (i+3)%4, j], [(i+3)%4, j+1, j],
for (i=[0:1:3], j=[0:1:n/4-1]) [i, 4+(i*n/4+j+1)%n, 4+i*n/4+j], ],
for (i=[0:1:rows-2], j=[0:1:n-1]) each [ [4,5,6], [4,6,7],
[4+i*n+j, 4+(i+1)*n+(j+1)%n, 4+(i+1)*n+j], ]
[4+i*n+j, 4+i*n+(j+1)%n, 4+(i+1)*n+(j+1)%n], ] :
tex=="vnf_dimples" || tex=="vnf_dots" ?
let(
n = quant(default(n,16),4),
inset = default(inset,0.05)
)
assert(inset>=0 && inset < 0.5)
let(
rows=ceil(n/4),
r=adj_ang_to_hyp(1/2-inset,45),
dots = tex=="vnf_dots",
cp = [1/2, 1/2, r*sin(45)*(dots?-1:1)],
sc = 1 / (r - abs(cp.z)),
uverts = [
each path3d(square(1)),
for (p=[0:1:rows-1], t=[0:360/n:359.999])
cp + (
dots? spherical_to_xyz(r, -t, 45-45*p/rows) :
spherical_to_xyz(r, -t, 135+45*p/rows)
),
cp + r * (dots?UP:DOWN),
], ],
for (i=[0:1:n-1]) [4+(rows-1)*n+i, 4+(rows-1)*n+(i+1)%n, 4+rows*n], verts = zscale(sc, p=uverts),
if (m>0) for (i=[0:3]) [i, (i+1)%4, 4+(i+1)%4*n/4] faces = [
] for (i=[0:1:3], j=[0:1:n/4-1]) [i, 4+(i*n/4+j+1)%n, 4+i*n/4+j],
] : for (i=[0:1:rows-2], j=[0:1:n-1]) each [
tex=="vnf_hex_grid"? let( [4+i*n+j, 4+(i+1)*n+(j+1)%n, 4+(i+1)*n+j],
h=default(n,1), inset=default(m,0.1), [4+i*n+j, 4+i*n+(j+1)%n, 4+(i+1)*n+(j+1)%n],
diag=opp_ang_to_hyp(inset,60), ],
side=adj_ang_to_opp(1,30), for (i=[0:1:n-1]) [4+(rows-1)*n+i, 4+(rows-1)*n+(i+1)%n, 4+rows*n],
hyp=adj_ang_to_hyp(0.5,30), if (inset>0) for (i=[0:3]) [i, (i+1)%4, 4+(i+1)%4*n/4]
check=assert(inset<0.5), ]
sc = 1/3/hyp, ) [verts, faces] :
hex=[ [1,2/6,0], [1/2,1/6,0], [0,2/6,0], [0,4/6,0], [1/2,5/6,0], [1,4/6,0] ] tex=="vnf_hex_grid"?
) [ let(
[ inset=default(inset,0.1)
each hex, )
each move([0.5,0.5], p=yscale(sc, p=path3d(ellipse(d=1-2*inset, circum=true, spin=-30,$fn=6),h))), assert(inset>=0 && inset<0.5)
hex[0]-[0,diag*sc,-h], let(
for (ang=[270+60,270-60]) hex[1]+yscale(sc, p=cylindrical_to_xyz(diag,ang,h)), diag=opp_ang_to_hyp(inset,60),
hex[2]-[0,diag*sc,-h], side=adj_ang_to_opp(1,30),
[0,0,h], [0.5-inset,0,h], [0.5,0,0], [0.5+inset,0,h], [1,0,h], hyp=adj_ang_to_hyp(0.5,30),
hex[3]+[0,diag*sc,h], sc = 1/3/hyp,
for (ang=[90+60,90-60]) hex[4]+yscale(sc, p=cylindrical_to_xyz(diag,ang,h)), hex=[ [1,2/6,0], [1/2,1/6,0], [0,2/6,0], [0,4/6,0], [1/2,5/6,0], [1,4/6,0] ]
hex[5]+[0,diag*sc,h], ) [
[0,1,h], [0.5-inset,1,h], [0.5,1,0], [0.5+inset,1,h], [1,1,h], [
], [ each hex,
for (i=[0:2:5]) let(b=6) [b+i, b+(i+1)%6, b+(i+2)%6], [6,8,10], each move([0.5,0.5], p=yscale(sc, p=path3d(ellipse(d=1-2*inset, circum=true, spin=-30,$fn=6),1))),
for (i=[0:1:5]) each [ [i, (i+1)%6, (i+1)%6+6], [i, (i+1)%6+6, i+6] ], hex[0]-[0,diag*sc,-1],
[19,13,12], [19,12,20], [17,16,15], [17,15,14], for (ang=[270+60,270-60]) hex[1]+yscale(sc, p=cylindrical_to_xyz(diag,ang,1)),
[21,25,26], [21,26,22], [23,28,29], [23,29,24], hex[2]-[0,diag*sc,-1],
[0,12,13], [0,13,1], [1,14,15], [1,15,2], [0,0,1], [0.5-inset,0,1], [0.5,0,0], [0.5+inset,0,1], [1,0,1],
[3,21,22], [3,22,4], [4,23,24], [4,24,5], hex[3]+[0,diag*sc,1],
[1,13,19], [1,19,18], [1,18,17], [1,17,14], for (ang=[90+60,90-60]) hex[4]+yscale(sc, p=cylindrical_to_xyz(diag,ang,1)),
[4,22,26], [4,26,27], [4,27,28], [4,28,23], hex[5]+[0,diag*sc,1],
] [0,1,1], [0.5-inset,1,1], [0.5,1,0], [0.5+inset,1,1], [1,1,1],
] : ], [
tex=="rough"? let(n=default(n,32), m=default(m,0.1)) [ for (i=[0:2:5]) let(b=6) [b+i, b+(i+1)%6, b+(i+2)%6], [6,8,10],
for (y = [0:1:n-1]) rands(0, m, n, seed=123456+29*y) for (i=[0:1:5]) each [ [i, (i+1)%6, (i+1)%6+6], [i, (i+1)%6+6, i+6] ],
] : [19,13,12], [19,12,20], [17,16,15], [17,15,14],
[21,25,26], [21,26,22], [23,28,29], [23,29,24],
[0,12,13], [0,13,1], [1,14,15], [1,15,2],
[3,21,22], [3,22,4], [4,23,24], [4,24,5],
[1,13,19], [1,19,18], [1,18,17], [1,17,14],
[4,22,26], [4,26,27], [4,27,28], [4,28,23],
]
] :
tex=="rough"?
let(
n = default(n,32),
rough = default(roughness, 0.2)
) [
for (y = [0:1:n-1])
rands(0, rough, n, seed=123456+29*y)
] :
assert(false, str("Unrecognized texture name: ", tex)); assert(false, str("Unrecognized texture name: ", tex));
@ -2487,7 +2591,7 @@ function texture(tex,n,m,o) =
// Example: "pyramids" texture. // Example: "pyramids" texture.
// textured_linear_sweep( // textured_linear_sweep(
// rect(50), "pyramids", tex_size=[10,10], // rect(50), "pyramids", tex_size=[10,10],
// h=40, style="concave"); // h=40, style="convex");
// Example: "vnf_bricks" texture. // Example: "vnf_bricks" texture.
// path = glued_circles(r=15, spread=40, tangent=45); // path = glued_circles(r=15, spread=40, tangent=45);
// textured_linear_sweep( // textured_linear_sweep(
@ -2524,6 +2628,7 @@ function texture(tex,n,m,o) =
// path, h=40, "trunc_pyramids", tex_size=[5,5], // path, h=40, "trunc_pyramids", tex_size=[5,5],
// tscale=1, style="convex"); // tscale=1, style="convex");
// vnf_polyhedron(vnf, convexity=10); // vnf_polyhedron(vnf, convexity=10);
function textured_linear_sweep( function textured_linear_sweep(
region, texture, region, texture,
tex_size=[5,5], h, counts, tex_size=[5,5], h, counts,
@ -2574,10 +2679,10 @@ function textured_linear_sweep(
assert(all_defined(tex_dim), "Heightfield texture must be a 2D square array of scalar heights."), assert(all_defined(tex_dim), "Heightfield texture must be a 2D square array of scalar heights."),
sorted_tile = sorted_tile =
!is_vnf(texture)? texture : !is_vnf(texture)? texture :
samples<=1? texture :
let( let(
s = 1/samples, s = 1 / max(1, samples),
vnf = vnf_slice(texture, "X", list([s:s:1-s/2])) vnf = samples<=1? texture :
vnf_slice(texture, "X", list([s:s:1-s/2]))
) _vnf_sort_vertices(vnf, idx=[1,0]), ) _vnf_sort_vertices(vnf, idx=[1,0]),
vertzs = !is_vnf(sorted_tile)? undef : vertzs = !is_vnf(sorted_tile)? undef :
group_sort(sorted_tile[0], idx=1), group_sort(sorted_tile[0], idx=1),
@ -2796,6 +2901,7 @@ function _find_vnf_tile_edge_path(vnf, val) =
// angle = The number of degrees counter-clockwise from X+ to revolve around the Z axis. Default: `360` // angle = The number of degrees counter-clockwise from X+ to revolve around the Z axis. Default: `360`
// style = The triangulation style used. See {{vnf_vertex_array()}} for valid styles. Used only with heightfield type textures. Default: `"min_edge"` // style = The triangulation style used. See {{vnf_vertex_array()}} for valid styles. Used only with heightfield type textures. Default: `"min_edge"`
// counts = If given instead of tex_size, gives the tile repetition counts for textures over the surface length and height. // counts = If given instead of tex_size, gives the tile repetition counts for textures over the surface length and height.
// samples = Minimum number of "bend points" to have in VNF texture tiles. Default: 8
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
@ -2844,6 +2950,7 @@ function _find_vnf_tile_edge_path(vnf, val) =
// right(40, p=circle(d=40,$fn=6)), // right(40, p=circle(d=40,$fn=6)),
// ]; // ];
// textured_revolution(rgn, texture="diamonds", tex_size=[10,10], tscale=1, angle=240, style="concave"); // textured_revolution(rgn, texture="diamonds", tex_size=[10,10], tscale=1, angle=240, style="concave");
function textured_revolution( function textured_revolution(
shape, texture, tex_size, tscale=1, shape, texture, tex_size, tscale=1,
inset=false, rot=false, inset=false, rot=false,
@ -3169,6 +3276,7 @@ module textured_revolution(
// rounding = If given, rounds the top and bottom of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder. // rounding = If given, rounds the top and bottom of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder.
// rounding1 = If given, rounds the bottom of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder. // rounding1 = If given, rounds the bottom of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder.
// rounding2 = If given, rounds the top of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder. // rounding2 = If given, rounds the top of the cylinder to the given radius. If given a negative size, creates a roundover that juts *outward* from the cylinder.
// samples = Minimum number of "bend points" to have in VNF texture tiles. Default: 8
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0` // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP` // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#subsection-orient). Default: `UP`
@ -3177,15 +3285,17 @@ module textured_revolution(
// textured_cylinder(h=40, r=20, texture="diamonds", tex_size=[5,5]); // textured_cylinder(h=40, r=20, texture="diamonds", tex_size=[5,5]);
// textured_cylinder(h=40, r1=20, r2=15, texture="pyramids", tex_size=[5,5], style="convex"); // textured_cylinder(h=40, r1=20, r2=15, texture="pyramids", tex_size=[5,5], style="convex");
// textured_cylinder(h=40, r1=20, r2=15, texture="trunc_pyramids", tex_size=[5,5], chamfer=5, style="convex"); // textured_cylinder(h=40, r1=20, r2=15, texture="trunc_pyramids", tex_size=[5,5], chamfer=5, style="convex");
// textured_cylinder(h=40, r1=20, r2=15, texture="vnf_dots", tex_size=[5,5], rounding=8); // textured_cylinder(h=40, r1=20, r2=15, texture="vnf_dots", tex_size=[5,5], rounding=9, samples=6);
// textured_cylinder(h=50, r1=25, r2=20, shift=[0,10], texture="bricks", rounding1=-10, tex_size=[10,10], tscale=0.5, style="concave"); // textured_cylinder(h=50, r1=25, r2=20, shift=[0,10], texture="bricks", rounding1=-10, tex_size=[10,10], tscale=0.5, style="concave");
function textured_cylinder( function textured_cylinder(
h, r, texture, tex_size=[1,1], counts, h, r, texture, tex_size=[1,1], counts,
tscale=1, inset=false, rot=false, tscale=1, inset=false, rot=false,
caps=true, style="min_edge", caps=true, style="min_edge",
shift=[0,0], l, r1, r2, d, d1, d2, shift=[0,0], l, r1, r2, d, d1, d2,
chamfer, chamfer1, chamfer2, chamfer, chamfer1, chamfer2,
rounding, rounding1, rounding2 rounding, rounding1, rounding2,
samples
) = ) =
let( let(
h = first_defined([h, l, 1]), h = first_defined([h, l, 1]),
@ -3214,7 +3324,8 @@ function textured_cylinder(
reverse(path), texture, closed=false, reverse(path), texture, closed=false,
tex_size=tex_size, counts=counts, tex_size=tex_size, counts=counts,
tscale=tscale, inset=inset, rot=rot, tscale=tscale, inset=inset, rot=rot,
style=style, shift=shift style=style, shift=shift,
samples=samples
) )
) vnf; ) vnf;
@ -3226,7 +3337,7 @@ module textured_cylinder(
l, r1, r2, d, d1, d2, l, r1, r2, d, d1, d2,
chamfer, chamfer1, chamfer2, chamfer, chamfer1, chamfer2,
rounding, rounding1, rounding2, rounding, rounding1, rounding2,
convexity=10, convexity=10, samples,
anchor=CENTER, spin=0, orient=UP anchor=CENTER, spin=0, orient=UP
) { ) {
h = first_defined([h, l, 1]); h = first_defined([h, l, 1]);
@ -3241,7 +3352,7 @@ module textured_cylinder(
tscale=tscale, inset=inset, rot=rot, tscale=tscale, inset=inset, rot=rot,
counts=counts, tex_size=tex_size, counts=counts, tex_size=tex_size,
caps=true, style=style, caps=true, style=style,
shift=shift, shift=shift, samples=samples,
chamfer1=chamf1, chamfer2=chamf2, chamfer1=chamf1, chamfer2=chamf2,
rounding1=round1, rounding2=round2 rounding1=round1, rounding2=round2
); );