VNF re-re-write of trapezoidal_threaded_rod()

This commit is contained in:
Garth Minette 2021-02-04 05:39:00 -08:00
parent 80cfc561c7
commit 01092713cb
3 changed files with 83 additions and 74 deletions

View file

@ -151,96 +151,105 @@ module trapezoidal_threaded_rod(
higbee, higbee1, higbee2,
center, anchor, spin, orient
) {
_r1 = get_radius(d1=d1, d=d, dflt=10);
_r2 = get_radius(d1=d2, d=d, dflt=10);
sides = quantup(segs(max(_r1,_r2)), starts);
rsc = internal? (1/cos(180/sides) + $slop*3) : 1;
threads = ceil(l/pitch/starts) + 2;
ll = threads * pitch * starts;
r1 = get_radius(d1=d1, d=d, dflt=10);
r2 = get_radius(d1=d2, d=d, dflt=10);
sides = quantup(segs(max(r1,r2)), starts);
rsc = internal? (1/cos(180/sides)) : 1;
islop = internal? $slop*3 : 0;
_r1 = r1 * rsc + islop;
_r2 = r2 * rsc + islop;
threads = quantup(l/pitch+2, 2*starts);
depth = min((thread_depth==undef? pitch/2 : thread_depth), pitch/2/tan(thread_angle));
pa_delta = min(pitch/4-0.01,depth*tan(thread_angle)/2)/pitch;
dir = left_handed? -1 : 1;
twist = 360 * l / pitch / starts;
_higbee1 = first_defined([higbee1, higbee, 0]);
_higbee2 = first_defined([higbee2, higbee, 0]);
higang1 = 360 * _higbee1 / (2 * PI * _r1);
higang2 = 360 * _higbee2 / (2 * PI * _r2);
higang1 = first_defined([higbee1, higbee, 0]);
higang2 = first_defined([higbee2, higbee, 0]);
assert(higang1 < twist/2);
assert(higang2 < twist/2);
higstart = twist/2 + 360/starts/4;
higbee_table = [
[-higstart*2, 0.01],
[-higstart-0.001, 0.01],
[-higstart+higang1, 1 ],
[+higstart-higang2, 1 ],
[+higstart+0.001, 0.01],
[+higstart*2, 0.01]
];
r1 = -depth/pitch;
rr1 = -depth/pitch;
z1 = 1/4-pa_delta;
z2 = 1/4+pa_delta;
profile = pitch * (
profile = (
profile!=undef? profile : [
[-z2, r1],
[-z2, rr1],
[-z1, 0],
[ z1, 0],
[ z2, r1],
[ z2, rr1],
]
);
prof3d = path3d(profile);
higthr1 = ceil(higang1 / 360);
higthr2 = ceil(higang2 / 360);
pdepth = -min(subindex(profile,1));
eprofile = [
each move([0,pdepth], p=profile),
move([pitch,pdepth], p=profile[0]),
dummy1 = assert(_r1>2*pdepth) assert(_r2>2*pdepth);
skew_mat = affine3d_skew(sxz=(_r2-_r1)/l);
side_mat = affine3d_xrot(90) *
affine3d_mirror([-1,1,0]) *
affine3d_scale([1,1,1] * pitch);
hig_table = [
[-twist, 0],
[-twist/2-0.00001, 0],
[-twist/2+higang1, 1],
[+twist/2-higang2, 1],
[+twist/2+0.00001, 0],
[+twist, 0],
];
angstep = 360 / sides;
angsteps = ceil(sides * (twist / 360 + 2));
zang = atan2(_r2-_r1,l);
start_steps = floor(sides / starts);
thread_verts = [
[for (i = idx(eprofile)) [0,0,-ll/2]],
for (thread = [0:1:threads-1], side=[0:1:sides-1]) let(
ang = ((thread - threads/2) + (side / sides)) * 360,
u = ang / twist,
r = lerp(_r1, _r2, u) * rsc,
hsc = higbee1==0 && higbee2==0? 1 : lookup(ang, higbee_table),
mat = affine3d_zrot(ang*dir) *
affine3d_translate([r-pdepth*pitch, 0, l*u]) *
affine3d_xrot(90) *
affine3d_skew_xz(xa=zang) *
affine3d_mirror([-1,1]) *
affine3d_scale([1,hsc,1]),
pts = apply(mat, path3d(eprofile))
) pts,
[for (x = eprofile) [0,0,+ll/2]],
];
thread_vnf = vnf_vertex_array(thread_verts, reverse=left_handed);
eplen = len(eprofile);
vlen = len(thread_vnf[0]);
thread_vnf2 = [
concat(thread_vnf[0], [[0,0,-ll/2], [0,0,+ll/2]]),
concat(thread_vnf[1], [
for (i = [0:1:sides/starts]) each
left_handed? [
[eplen*(i+1), eplen*i, vlen],
[vlen-eplen*(i+1)-1, vlen-eplen*(i+0)-1, vlen+1]
] : [
[eplen*i, eplen*(i+1), vlen],
[vlen-eplen*(i+0)-1, vlen-eplen*(i+1)-1, vlen+1]
]
])
for (step = [0:1:start_steps]) let(
ang = 360 * step/sides,
dz = pitch * step / start_steps,
mat1 = affine3d_zrot(ang*dir),
mat2 = affine3d_translate([(_r1 + _r2) / 2 - pdepth*pitch, 0, 0]) *
skew_mat *
affine3d_translate([0, 0, dz]),
prof = apply(side_mat, [
for (thread = [-threads/2:1:threads/2-1]) let(
tang = (thread/starts) * 360 + ang,
hsc =
abs(tang) > twist/2? 0 :
(higang1==0 && higang2==0)? 1 :
lookup(tang, hig_table),
mat3 = affine3d_translate([thread, 0, 0]) *
affine3d_scale([1, hsc, 1]) *
affine3d_translate([0,pdepth,0])
) each apply(mat3, prof3d)
])
) [
[0, 0, -l/2-pitch],
each apply(mat1*mat2, prof),
[0, 0, +l/2+pitch]
]
];
thread_vnfs = vnf_merge([
for (start = [0:1:starts-1]) zrot(start*360/starts, p=thread_vnf2)
], cleanup=true);
for (i=[0:1:starts-1])
zrot(i*360/starts, p=vnf_vertex_array(thread_verts, reverse=left_handed)),
for (i=[0:1:starts-1]) let(
rmat = zrot(i*360/starts),
pts = deduplicate(select(thread_verts[0], 0, len(prof3d)+1)),
faces = [for (i=idx(pts,e=-2)) [0, i+1, i]],
rfaces = left_handed? [for (x=faces) reverse(x)] : faces
) [apply(rmat,pts), rfaces],
for (i=[0:1:starts-1]) let(
rmat = zrot(i*360/starts),
pts = deduplicate(select(last(thread_verts), -len(prof3d)-2, -1)),
faces = [for (i=idx(pts,e=-2)) [len(pts)-1, i, i+1]],
rfaces = left_handed? [for (x=faces) reverse(x)] : faces
) [apply(rmat,pts), rfaces]
]);
anchor = get_anchor(anchor, center, BOT, CENTER);
attachable(anchor,spin,orient, r1=_r1, r2=_r2, l=l) {
difference() {
vnf_polyhedron(thread_vnfs, convexity=10);
zcopies(l+4*pitch*starts)
cylinder(h=4*pitch*starts, r=2*max(_r1,_r2)+1, center=true);
if (bevel)
cylinder_mask(r1=_r1, r2=_r2, l=l+0.01, chamfer=depth);
intersection() {
//vnf_validate(vnf_quantize(thread_vnfs), size=0.1);
vnf_polyhedron(vnf_quantize(thread_vnfs), convexity=10);
if (bevel) {
cyl(l=l, r1=_r1, r2=_r2, chamfer=depth);
} else {
cyl(l=l, r1=_r1, r2=_r2);
}
}
children();
}

View file

@ -6,7 +6,7 @@
//////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,561];
BOSL_VERSION = [2,0,562];
// Section: BOSL Library Version Functions

View file

@ -608,7 +608,7 @@ function vnf_bend(vnf,r,d,axis="Z") =
// Usage: As Function
// fails = vnf_validate(vnf);
// Usage: As Module
// vnf_validate(vnf);
// vnf_validate(vnf, <size>);
// Description:
// When called as a function, returns a list of non-manifold errors with the given VNF.
// Each error has the format `[ERR_OR_WARN,CODE,MESG,POINTS,COLOR]`.
@ -855,16 +855,16 @@ module vnf_validate(vnf, size=1, show_warns=true, check_isects=false) {
echo(str(typ, " ", err, " (", clr ,"): ", msg, " at ", pts));
color(clr) {
if (len(pts)==2) {
stroke(pts, width=size);
stroke(pts, width=size, closed=true, endcaps="butt", hull=false, $fn=8);
} else if (len(pts)>2) {
stroke(pts, width=size, closed=true);
stroke(pts, width=size, closed=true, hull=false, $fn=8);
polyhedron(pts,[[for (i=idx(pts)) i]]);
} else {
move_copies(pts) sphere(d=size*3, $fn=18);
}
}
}
color([0.5,0.5,0.5,0.5]) vnf_polyhedron(vnf);
color([0.5,0.5,0.5,0.67]) vnf_polyhedron(vnf);
}
// Section: VNF transformations