mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 00:09:41 +00:00
Fixed bezier patch functions to all accept mixes of triangular and rectangular patches in the patches list, instead of having separate tris arguments.
This commit is contained in:
parent
3180704da4
commit
01a52cdac4
2 changed files with 61 additions and 70 deletions
127
beziers.scad
127
beziers.scad
|
@ -678,7 +678,7 @@ function bezier_patch_point(patch, u, v) = bez_point([for (bez = patch) bez_poin
|
|||
// [[0,-33,30], [25,16,30]],
|
||||
// [[50,-33,0]]
|
||||
// ];
|
||||
// trace_bezier_patches(tris=[tri], size=1, showcps=true);
|
||||
// trace_bezier_patches(patches=[tri], size=1, showcps=true);
|
||||
// pt = bezier_triangle_point(tri, 0.5, 0.2);
|
||||
// translate(pt) color("magenta") sphere(d=3, $fn=12);
|
||||
function bezier_triangle_point(tri, u, v) =
|
||||
|
@ -693,19 +693,35 @@ function bezier_triangle_point(tri, u, v) =
|
|||
|
||||
|
||||
|
||||
// Function: is_tripatch()
|
||||
// Description:
|
||||
// Returns true if the given item is a triangular bezier patch.
|
||||
function is_tripatch(x) = is_list(x) && is_list(x[0]) && is_vector(x[0][0]) && len(x[0])>1 && len(x[len(x)-1])==1;
|
||||
|
||||
|
||||
// Function: is_rectpatch()
|
||||
// Description:
|
||||
// Returns true if the given item is a rectangular bezier patch.
|
||||
function is_rectpatch(x) = is_list(x) && is_list(x[0]) && is_vector(x[0][0]) && len(x[0]) == len(x[len(x)-1]);
|
||||
|
||||
|
||||
// Function: is_patch()
|
||||
// Description:
|
||||
// Returns true if the given item is a bezier patch.
|
||||
function is_patch(x) = is_tripatch(x) || is_rectpatch(x);
|
||||
|
||||
|
||||
// Function: bezier_patch()
|
||||
// Usage:
|
||||
// bezier_patch(patch, [splinesteps], [vertices], [faces]);
|
||||
// Description:
|
||||
// Calculate vertices and faces for forming a partial polyhedron
|
||||
// from the given bezier rectangular patch. Returns a list containing
|
||||
// two elements. The first is the list of unique vertices. The
|
||||
// second is the list of faces, where each face is a list of indices
|
||||
// into the list of vertices. You can chain calls to this, to add
|
||||
// more vertices and faces for multiple bezier patches, to stitch
|
||||
// them together into a complete polyhedron.
|
||||
// Calculate vertices and faces for forming a partial polyhedron from the given bezier rectangular
|
||||
// or triangular patch. Returns a list containing two elements. The first is the list of unique
|
||||
// vertices. The second is the list of faces, where each face is a list of indices into the list of
|
||||
// vertices. You can chain calls to this, to add more vertices and faces for multiple bezier
|
||||
// patches, to stitch them together into a complete polyhedron.
|
||||
// Arguments:
|
||||
// patch = The rectangular array of endpoints and control points for this bezier patch.
|
||||
// patch = The rectangular or triangular array of endpoints and control points for this bezier patch.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// vertices = Vertex list to add new points to. Default: []
|
||||
// faces = Face list to add new faces to. Default: []
|
||||
|
@ -718,7 +734,16 @@ function bezier_triangle_point(tri, u, v) =
|
|||
// ];
|
||||
// vnf = bezier_patch(patch, splinesteps=16);
|
||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||
// Example(3D):
|
||||
// tri = [
|
||||
// [[-50,-33,0], [-25,16,50], [0,66,0]],
|
||||
// [[0,-33,50], [25,16,50]],
|
||||
// [[50,-33,0]]
|
||||
// ];
|
||||
// vnf = bezier_patch(tri, splinesteps=16);
|
||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||
function bezier_patch(patch, splinesteps=16, vertices=[], faces=[]) =
|
||||
is_tripatch(patch)? _bezier_triangle(patch, splinesteps=splinesteps, vertices=vertices, faces=faces) :
|
||||
let(
|
||||
base = len(vertices),
|
||||
pts = [for (v=[0:1:splinesteps], u=[0:1:splinesteps]) bezier_patch_point(patch, u/splinesteps, v/splinesteps)],
|
||||
|
@ -742,31 +767,7 @@ function bezier_patch(patch, splinesteps=16, vertices=[], faces=[]) =
|
|||
function _tri_count(n) = (n*(1+n))/2;
|
||||
|
||||
|
||||
// Function: bezier_triangle()
|
||||
// Usage:
|
||||
// bezier_triangle(tri, [splinesteps], [vertices], [faces]);
|
||||
// Description:
|
||||
// Calculate vertices and faces for forming a partial polyhedron
|
||||
// from the given bezier triangular patch. Returns a list containing
|
||||
// two elements. The first is the list of unique vertices. The
|
||||
// second is the list of faces, where each face is a list of indices
|
||||
// into the list of vertices. You can chain calls to this, to add
|
||||
// more vertices and faces for multiple bezier patches, to stitch
|
||||
// them together into a complete polyhedron.
|
||||
// Arguments:
|
||||
// tri = The triangular array of endpoints and control points for this bezier patch.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// vertices = Vertex list to add new points to. Default: []
|
||||
// faces = Face list to add new faces to. Default: []
|
||||
// Example(3D):
|
||||
// tri = [
|
||||
// [[-50,-33,0], [-25,16,50], [0,66,0]],
|
||||
// [[0,-33,50], [25,16,50]],
|
||||
// [[50,-33,0]]
|
||||
// ];
|
||||
// vnf = bezier_triangle(tri, splinesteps=16);
|
||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||
function bezier_triangle(tri, splinesteps=16, vertices=[], faces=[]) =
|
||||
function _bezier_triangle(tri, splinesteps=16, vertices=[], faces=[]) =
|
||||
let(
|
||||
base = len(vertices),
|
||||
pts = [
|
||||
|
@ -906,7 +907,7 @@ function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=pat
|
|||
// bezier_surface(patches, [splinesteps], [vertices], [faces]);
|
||||
// Description:
|
||||
// Calculate vertices and faces for forming a (possibly partial)
|
||||
// polyhedron from the given rectangular and triangular bezier
|
||||
// polyhedron from the given rectangular and/or triangular bezier
|
||||
// patches. Returns a list containing two elements. The first is
|
||||
// the list of unique vertices. The second is the list of faces,
|
||||
// where each face is a list of indices into the list of vertices.
|
||||
|
@ -914,8 +915,7 @@ function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=pat
|
|||
// multiple bezier patches, to stitch them together into a complete
|
||||
// polyhedron.
|
||||
// Arguments:
|
||||
// patches = A list of rectangular bezier patches.
|
||||
// tris = A list of triangular bezier patches.
|
||||
// patches = A list of triangular and/or rectangular bezier patches.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// vertices = Vertex list to add new points to. Default: []
|
||||
// faces = Face list to add new faces to. Default: []
|
||||
|
@ -934,14 +934,12 @@ function patches_rotate(patches, a=undef, v=undef, cp=[0,0,0]) = [for (patch=pat
|
|||
// ];
|
||||
// vnf = bezier_surface(patches=[patch1, patch2], splinesteps=16);
|
||||
// polyhedron(points=vnf[0], faces=vnf[1]);
|
||||
function bezier_surface(patches=[], tris=[], splinesteps=16, i=0, vertices=[], faces=[]) =
|
||||
function bezier_surface(patches=[], splinesteps=16, i=0, vertices=[], faces=[]) =
|
||||
let(
|
||||
vnf = (i >= len(patches))? [vertices, faces] :
|
||||
bezier_patch(patches[i], splinesteps=splinesteps, vertices=vertices, faces=faces),
|
||||
vnf2 = (i >= len(tris))? vnf :
|
||||
bezier_triangle(tris[i], splinesteps=splinesteps, vertices=vnf[0], faces=vnf[1])
|
||||
) (i >= len(patches) && i >= len(tris))? vnf2 :
|
||||
bezier_surface(patches=patches, tris=tris, splinesteps=splinesteps, i=i+1, vertices=vnf2[0], faces=vnf2[1]);
|
||||
bezier_patch(patches[i], splinesteps=splinesteps, vertices=vertices, faces=faces)
|
||||
) (i >= len(patches))? vnf :
|
||||
bezier_surface(patches=patches, splinesteps=splinesteps, i=i+1, vertices=vnf[0], faces=vnf[1]);
|
||||
|
||||
|
||||
|
||||
|
@ -950,15 +948,14 @@ function bezier_surface(patches=[], tris=[], splinesteps=16, i=0, vertices=[], f
|
|||
|
||||
// Module: bezier_polyhedron()
|
||||
// Useage:
|
||||
// bezier_polyhedron(patches)
|
||||
// bezier_polyhedron(patches, [splinesteps], [vertices], [faces])
|
||||
// Description:
|
||||
// Takes a list of two or more bezier patches and attempts to make a complete polyhedron from them.
|
||||
// Arguments:
|
||||
// patches = A list of rectangular bezier patches.
|
||||
// tris = A list of triangular bezier patches.
|
||||
// patches = A list of triangular and/or rectangular bezier patches.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// vertices = Vertex list for additional non-bezier faces. Default: []
|
||||
// faces = Additional non-bezier faces. Default: []
|
||||
// splinesteps = Number of steps to divide each bezier segment into. Default: 16
|
||||
// Example:
|
||||
// patch1 = [
|
||||
// [[18,18,0], [33, 0, 0], [ 67, 0, 0], [ 82, 18,0]],
|
||||
|
@ -973,9 +970,9 @@ function bezier_surface(patches=[], tris=[], splinesteps=16, i=0, vertices=[], f
|
|||
// [[18,82,0], [33,100, 0], [ 67,100, 0], [ 82, 82,0]],
|
||||
// ];
|
||||
// bezier_polyhedron([patch1, patch2], splinesteps=8);
|
||||
module bezier_polyhedron(patches=[], tris=[], splinesteps=16, vertices=[], faces=[])
|
||||
module bezier_polyhedron(patches=[], splinesteps=16, vertices=[], faces=[])
|
||||
{
|
||||
sfc = bezier_surface(patches=patches, tris=tris, splinesteps=splinesteps, vertices=vertices, faces=faces);
|
||||
sfc = bezier_surface(patches=patches, splinesteps=splinesteps, vertices=vertices, faces=faces);
|
||||
polyhedron(points=sfc[0], faces=sfc[1]);
|
||||
}
|
||||
|
||||
|
@ -984,13 +981,10 @@ module bezier_polyhedron(patches=[], tris=[], splinesteps=16, vertices=[], faces
|
|||
// Module: trace_bezier_patches()
|
||||
// Usage:
|
||||
// trace_bezier_patches(patches, [size], [showcps], [splinesteps]);
|
||||
// trace_bezier_patches(tris, [size], [showcps], [splinesteps]);
|
||||
// trace_bezier_patches(patches, tris, [size], [showcps], [splinesteps]);
|
||||
// Description:
|
||||
// Shows the surface, and optionally, control points of a list of bezier patches.
|
||||
// Arguments:
|
||||
// patches = A list of rectangular bezier patches.
|
||||
// tris = A list of triangular bezier patches.
|
||||
// splinesteps = Number of steps to divide each bezier segment into. default=16
|
||||
// showcps = If true, show the controlpoints as well as the surface.
|
||||
// size = Size to show control points and lines.
|
||||
|
@ -1008,32 +1002,29 @@ module bezier_polyhedron(patches=[], tris=[], splinesteps=16, vertices=[], faces
|
|||
// [[15,85,0], [33,100, 0], [ 67,100, 0], [ 85, 85,0]],
|
||||
// ];
|
||||
// trace_bezier_patches(patches=[patch1, patch2], splinesteps=8, showcps=true);
|
||||
module trace_bezier_patches(patches=[], tris=[], size=1, showcps=false, splinesteps=16)
|
||||
module trace_bezier_patches(patches=[], size=1, showcps=false, splinesteps=16)
|
||||
{
|
||||
if (showcps) {
|
||||
for (patch = patches) {
|
||||
place_copies(flatten(patch)) color("red") sphere(d=size*2);
|
||||
color("cyan")
|
||||
for (i=[0:1:len(patch)-1], j=[0:1:len(patch[i])-1]) {
|
||||
if (i<len(patch)-1) extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
|
||||
if (j<len(patch[i])-1) extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
|
||||
if (is_tripatch(patch)) {
|
||||
for (i=[0:1:len(patch)-2], j=[0:1:len(patch[i])-2]) {
|
||||
extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
|
||||
extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
|
||||
extrude_from_to(patch[i+1][j], patch[i][j+1]) circle(d=size);
|
||||
}
|
||||
} else {
|
||||
for (i=[0:1:len(patch)-1], j=[0:1:len(patch[i])-1]) {
|
||||
if (i<len(patch)-1) extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
|
||||
if (j<len(patch[i])-1) extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
|
||||
}
|
||||
}
|
||||
vnf = bezier_patch(patch, splinesteps=splinesteps);
|
||||
color("blue") place_copies(vnf[0]) sphere(d=size);
|
||||
}
|
||||
for (patch = tris) {
|
||||
place_copies(flatten(patch)) color("red") sphere(d=size*2);
|
||||
color("cyan")
|
||||
for (i=[0:1:len(patch)-2], j=[0:1:len(patch[i])-2]) {
|
||||
extrude_from_to(patch[i][j], patch[i+1][j]) circle(d=size);
|
||||
extrude_from_to(patch[i][j], patch[i][j+1]) circle(d=size);
|
||||
extrude_from_to(patch[i+1][j], patch[i][j+1]) circle(d=size);
|
||||
}
|
||||
vnf = bezier_triangle(patch, splinesteps=splinesteps);
|
||||
color("blue") place_copies(vnf[0]) sphere(d=size);
|
||||
}
|
||||
}
|
||||
bezier_polyhedron(patches=patches, tris=tris, splinesteps=splinesteps);
|
||||
bezier_polyhedron(patches=patches, splinesteps=splinesteps);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -104,9 +104,9 @@ module CR_cube(size=[100,100,100], r=10, splinesteps=8, cheat=false, debug=false
|
|||
hull() bezier_polyhedron(patches=corners, splinesteps=splinesteps);
|
||||
} else {
|
||||
if (debug) {
|
||||
trace_bezier_patches(patches=concat(edges, faces), tris=corners, showcps=true, splinesteps=splinesteps);
|
||||
trace_bezier_patches(patches=concat(edges, faces, corners), showcps=true, splinesteps=splinesteps);
|
||||
} else {
|
||||
bezier_polyhedron(patches=concat(edges, faces), tris=corners, splinesteps=splinesteps);
|
||||
bezier_polyhedron(patches=concat(edges, faces, corners), splinesteps=splinesteps);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue