add linear_solve3()

This commit is contained in:
Adrian Mariano 2022-01-30 11:25:12 -05:00
parent f9dd6e7235
commit 03e4491e72

View file

@ -444,6 +444,28 @@ function linear_solve(A,b,pivot=true) =
m<n ? Q*back_substitute(R,transpose(P)*b,transpose=true) // Too messy to avoid input checks here m<n ? Q*back_substitute(R,transpose(P)*b,transpose=true) // Too messy to avoid input checks here
: P*_back_substitute(R, transpose(Q)*b); // Calling internal version skips input checks : P*_back_substitute(R, transpose(Q)*b); // Calling internal version skips input checks
// Function: linear_solve3()
// Usage:
// x = linear_solve3(A,b)
// Desription:
// Fast solution to a 3x3 linear system using Cramer's rule (which appears to be the fastest
// method in OpenSCAD). The input `A` must be a 3x3 matrix. Returns undef if `A` is singular.
// The input `b` must be a 3-vector. Note that Cramer's rule is not a stable algorithm, so for
// the highest accuracy on ill-conditioned problems you may want to use the general solver, which is about ten times slower.
function linear_solve3(A,b) =
// Arg sanity checking adds 7% overhead
assert(b*0==[0,0,0], "Input b must be a 3-vector")
assert(A*0==[[0,0,0],[0,0,0],[0,0,0]],"Input A must be a 3x3 matrix")
let(
Az = [for(i=[0:2])[A[i][0], A[i][1], b[i]]],
Ay = [for(i=[0:2])[A[i][0], b[i], A[i][2]]],
Ax = [for(i=[0:2])[b[i], A[i][1], A[i][2]]],
detA = det3(A)
)
detA==0 ? undef : [det3(Ax), det3(Ay), det3(Az)] / detA;
// Function: matrix_inverse() // Function: matrix_inverse()
// Usage: // Usage:
// mat = matrix_inverse(A) // mat = matrix_inverse(A)