Merge pull request #877 from revarbat/revarbat_dev

Fix for issue #876: cuboid() rounding min size checking.
This commit is contained in:
Revar Desmera 2022-05-25 01:47:26 -07:00 committed by GitHub
commit 0596ccd69e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 97 additions and 27 deletions

View file

@ -173,6 +173,8 @@ function cube(size=1, center, anchor, spin=0, orient=UP) =
// edges=[TOP,BOT], except=RIGHT,
// trimcorners=false, $fn=24
// );
// Example: Roundings and Chamfers can be as large as the full size of the cuboid, so long as the edges would not interfere.
// cuboid([4,2,1], rounding=2, edges=[FWD+RIGHT,BACK+LEFT]);
// Example: Standard Connectors
// cuboid(40) show_anchors();
module cuboid(
@ -189,6 +191,18 @@ module cuboid(
spin=0,
orient=UP
) {
module trunc_cube(s,corner) {
multmatrix(
(corner.x<0? xflip() : ident(4)) *
(corner.y<0? yflip() : ident(4)) *
(corner.z<0? zflip() : ident(4)) *
scale(s+[1,1,1]*0.01) *
move(-[1,1,1]/2)
) polyhedron(
[[1,1,1],[1,1,0],[1,0,0],[0,1,1],[0,1,0],[1,0,1],[0,0,1]],
[[0,1,2],[2,5,0],[0,5,6],[0,6,3],[0,3,4],[0,4,1],[1,4,2],[3,6,4],[5,2,6],[2,4,6]]
);
}
module xtcyl(l,r) {
if (teardrop) {
teardrop(r=r, l=l, cap_h=r, ang=teardrop, spin=90, orient=DOWN);
@ -221,14 +235,51 @@ module cuboid(
c3 = v_mul(corner,c-[1,1,1]*m/2);
$fn = is_finite(chamfer)? 4 : quantup(segs(r),4);
translate(v_mul(corner, size/2-c)) {
intersection() {
if (cnt == 0 || approx(r,0)) {
translate(c3) cube(m, center=true);
} else if (cnt == 1) {
if (e.x) right(c3.x) xtcyl(l=m, r=r);
if (e.y) back (c3.y) ytcyl(l=m, r=r);
if (e.z) up (c3.z) zcyl(l=m, r=r);
if (e.x) {
mat = (corner.y<0? yflip() : ident(4)) *
(corner.z<0? zflip() : ident(4)) *
yrot(-90) * move(-[1,1]*0.01);
right(c3.x) {
intersection() {
xtcyl(l=m, r=r);
multmatrix(mat)
linear_extrude(height=m+0.1, center=true)
scale(r+0.02)
polygon([[1,0],[0,1],[1,1]]);
}
}
} else if (e.y) {
mat = (corner.x<0? xflip() : ident(4)) *
(corner.z<0? zflip() : ident(4)) *
xrot(90) * move(-[1,1]*0.01);
back(c3.y) {
intersection() {
ytcyl(l=m, r=r);
multmatrix(mat)
linear_extrude(height=m+0.1, center=true)
scale(r+0.02)
polygon([[1,0],[0,1],[1,1]]);
}
}
} else if (e.z) {
mat = (corner.x<0? xflip() : ident(4)) *
(corner.y<0? yflip() : ident(4)) *
move(-[1,1]*0.01);
up(c3.z) {
intersection() {
zcyl(l=m, r=r);
multmatrix(mat)
linear_extrude(height=m+0.1, center=true)
scale(r+0.02)
polygon([[1,0],[0,1],[1,1]]);
}
}
}
} else if (cnt == 2) {
intersection() {
if (!e.x) {
intersection() {
ytcyl(l=c.y*2, r=r);
@ -245,7 +296,10 @@ module cuboid(
ytcyl(l=c.y*2, r=r);
}
}
translate(c2) trunc_cube(c,corner); // Trim to just the octant.
}
} else {
intersection() {
if (trimcorners) {
tsphere(r=r);
} else {
@ -255,8 +309,8 @@ module cuboid(
zcyl(l=c.z*2, r=r);
}
}
translate(c2) trunc_cube(c,corner); // Trim to just the octant.
}
translate(c2) cube(c, center=true); // Trim to just the octant.
}
}
}
@ -289,15 +343,30 @@ module cuboid(
} else {
rr = max(default(chamfer,0), default(rounding,0));
if (rr>0) {
rv = [for (i=[0:2])
[for (j=[0:3])
(edges[i][j]>0?rr:0) * v_abs(EDGE_OFFSETS[i][j])
]
];
grays = pair([0,1,3,2],wrap=true); // gray code ordering.
minx = max([for (i=[1,2], j=grays) rv[i][j[0]].x + rv[i][j[1]].x]);
miny = max([for (i=[0,2], j=grays) rv[i][j[0]].y + rv[i][j[1]].y]);
minz = max([for (i=[0,1], j=grays) rv[i][j[0]].z + rv[i][j[1]].z]);
minx = max(
edges.y[0] + edges.y[1], edges.y[2] + edges.y[3],
edges.z[0] + edges.z[1], edges.z[2] + edges.z[3],
edges.y[0] + edges.z[1], edges.y[0] + edges.z[3],
edges.y[1] + edges.z[0], edges.y[1] + edges.z[2],
edges.y[2] + edges.z[1], edges.y[2] + edges.z[3],
edges.y[3] + edges.z[0], edges.y[3] + edges.z[2]
) * rr;
miny = max(
edges.x[0] + edges.x[1], edges.x[2] + edges.x[3],
edges.z[0] + edges.z[2], edges.z[1] + edges.z[3],
edges.x[0] + edges.z[2], edges.x[0] + edges.z[3],
edges.x[1] + edges.z[0], edges.x[1] + edges.z[1],
edges.x[2] + edges.z[2], edges.x[2] + edges.z[3],
edges.x[3] + edges.z[0], edges.x[3] + edges.z[1]
) * rr;
minz = max(
edges.x[0] + edges.x[2], edges.x[1] + edges.x[3],
edges.y[0] + edges.y[2], edges.y[1] + edges.y[3],
edges.x[0] + edges.y[2], edges.x[0] + edges.y[3],
edges.x[1] + edges.y[2], edges.x[1] + edges.y[3],
edges.x[2] + edges.y[0], edges.x[2] + edges.y[1],
edges.x[3] + edges.y[0], edges.x[3] + edges.y[1]
) * rr;
check =
assert(minx <= size.x, "Rounding or chamfering too large for cuboid size in the X axis.")
assert(miny <= size.y, "Rounding or chamfering too large for cuboid size in the Y axis.")
@ -719,9 +788,10 @@ module octahedron(size=1, anchor=CENTER, spin=0, orient=UP) {
function octahedron(size=1, anchor=CENTER, spin=0, orient=UP) =
let(
size = scalar_vec3(size),
s = size/2,
vnf = [
[ [0,0,s], [s,0,0], [0,s,0], [-s,0,0], [0,-s,0], [0,0,-s] ],
[ [0,0,s.z], [s.x,0,0], [0,s.y,0], [-s.x,0,0], [0,-s.y,0], [0,0,-s.z] ],
[ [0,2,1], [0,3,2], [0,4,3], [0,1,4], [5,1,2], [5,2,3], [5,3,4], [5,4,1] ]
]
) reorient(anchor,spin,orient, vnf=vnf, extent=true, p=vnf);
@ -2984,7 +3054,7 @@ function cylindrical_heightfield(
maxr = max(r1,r2),
circ = 2 * PI * maxr,
astep = 360 / circ * stepx,
arc = astep * xlen,
arc = astep * (xlen-1),
bsteps = round(segs(maxr-base) * arc / 360),
bstep = arc / bsteps
)
@ -2995,7 +3065,7 @@ function cylindrical_heightfield(
z = yi * stepy - l/2,
rr = lerp(r1, r2, yi/(ylen-1))
) [
cylindrical_to_xyz(rr-base, 0, z),
cylindrical_to_xyz(rr-base, -arc/2, z),
for (xi = idx(xvals)) let( a = xi*astep )
let(
rad = transpose? (
@ -3005,9 +3075,9 @@ function cylindrical_heightfield(
),
rad2 = constrain(rad, 0.01-base, maxh)
)
cylindrical_to_xyz(rr+rad2, a, z),
cylindrical_to_xyz(rr-base, arc, z),
for (b = [1:1:bsteps-1]) let( a = arc-b*bstep )
cylindrical_to_xyz(rr+rad2, a-arc/2, z),
cylindrical_to_xyz(rr-base, arc/2, z),
for (b = [1:1:bsteps-1]) let( a = arc/2-b*bstep )
cylindrical_to_xyz((z>0?r2:r1)-base, a, l/2*(z>0?1:-1)),
]
],

View file

@ -178,7 +178,7 @@ function vnf_vertex_array(
let(
d42=norm(pts[i4]-pts[i2]),
d13=norm(pts[i1]-pts[i3]),
shortedge = d42<=d13 ? [[i1,i4,i2],[i2,i4,i3]]
shortedge = d42<d13+EPSILON ? [[i1,i4,i2],[i2,i4,i3]]
: [[i1,i3,i2],[i1,i4,i3]]
)
shortedge