Merge pull request #798 from revarbat/revarbat_dev

Revarbat dev
This commit is contained in:
Revar Desmera 2022-03-07 23:21:58 -08:00 committed by GitHub
commit 0638785774
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 28 additions and 1056 deletions

View file

@ -50,6 +50,7 @@ PrioritizeFiles:
screw_drive.scad
DefineHeader(BulletList): Side Effects
DefineHeader(Table;Headers=Anchor Name|Position): Extra Anchors
DefineHeader(Table;Headers=Anchor Type|What it is): Anchor Types
DefineHeader(Table;Headers=Name|Definition): Terminology
DefineHeader(BulletList): Requirements

View file

@ -1,661 +0,0 @@
///////////////////////////////////////////
// LibFile: quaternions.scad
// Support for Quaternions.
// Includes:
// include <BOSL2/std.scad>
// FileGroup: Math
// FileSummary: Quaternion based rotations that avoid gimbal lock issues.
// FileFootnotes: STD=Included in std.scad
///////////////////////////////////////////
// Section: Quaternions
// Quaternions are fast methods of storing and calculating arbitrary rotations.
// Quaternions contain information on both axis of rotation, and rotation angle.
// You can chain multiple rotation together by multiplying quaternions together.
// They don't suffer from the gimbal-lock issues that `[X,Y,Z]` rotation angles do.
// Quaternions are stored internally as a 4-value vector:
// `[X,Y,Z,W]`, where the quaternion formula is `W+Xi+Yj+Zk`
// Internal
function _quat(a,s,w) = [a[0]*s, a[1]*s, a[2]*s, w];
function _qvec(q) = [q.x,q.y,q.z];
function _qreal(q) = q[3];
function _qset(v,r) = concat( v, r );
// normalizes without checking
function _qnorm(q) = q/norm(q);
// Function: is_quaternion()
// Usage:
// if(is_quaternion(q)) a=0;
// Description: Return true if q is a valid non-zero quaternion.
// Arguments:
// q = object to check.
function is_quaternion(q) = is_vector(q,4) && ! approx(norm(q),0) ;
// Function: quat()
// Usage:
// quat(ax, ang);
// Description: Create a normalized Quaternion from axis and angle of rotation.
// Arguments:
// ax = Vector of axis of rotation.
// ang = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function quat(ax=[0,0,1], ang=0) =
assert( is_vector(ax,3) && is_finite(ang), "Invalid input")
let( n = norm(ax) )
approx(n,0)
? _quat([0,0,0], sin(ang/2), cos(ang/2))
: _quat(ax/n, sin(ang/2), cos(ang/2));
// Function: quat_x()
// Usage:
// quat_x(a);
// Description: Create a normalized Quaternion for rotating around the X axis [1,0,0].
// Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function quat_x(a=0) =
assert( is_finite(a), "Invalid angle" )
quat([1,0,0],a);
// Function: quat_y()
// Usage:
// quat_y(a);
// Description: Create a normalized Quaternion for rotating around the Y axis [0,1,0].
// Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function quat_y(a=0) =
assert( is_finite(a), "Invalid angle" )
quat([0,1,0],a);
// Function: quat_z()
// Usage:
// quat_z(a);
// Description: Create a normalized Quaternion for rotating around the Z axis [0,0,1].
// Arguments:
// a = Number of degrees to rotate around the axis counter-clockwise, when facing the origin.
function quat_z(a=0) =
assert( is_finite(a), "Invalid angle" )
quat([0,0,1],a);
// Function: quat_xyz()
// Usage:
// quat_xyz([X,Y,Z])
// Description:
// Creates a normalized quaternion from standard [X,Y,Z] rotation angles in degrees.
// Arguments:
// a = The triplet of rotation angles, [X,Y,Z]
function quat_xyz(a=[0,0,0]) =
assert( is_vector(a,3), "Invalid angles")
let(
qx = quat_x(a[0]),
qy = quat_y(a[1]),
qz = quat_z(a[2])
)
q_mul(qz, q_mul(qy, qx));
// Function: q_from_to()
// Usage:
// q = q_from_to(v1, v2);
// Description:
// Returns the normalized quaternion that rotates the non zero 3D vector v1
// to the non zero 3D vector v2.
function q_from_to(v1, v2) =
assert( is_vector(v1,3) && is_vector(v2,3)
&& ! approx(norm(v1),0) && ! approx(norm(v2),0)
, "Invalid vector(s)")
let( ax = cross(v1,v2),
n = norm(ax) )
approx(n, 0)
? v1*v2>0 ? q_ident() : quat([ v1.y, -v1.x, 0], 180)
: quat(ax, atan2( n , v1*v2 ));
// Function: q_ident()
// Description: Returns the "Identity" zero-rotation Quaternion.
function q_ident() = [0, 0, 0, 1];
// Function: q_add_s()
// Usage:
// q_add_s(q, s)
// Description:
// Adds a scalar value `s` to the W part of a quaternion `q`.
// The returned quaternion is usually not normalized.
function q_add_s(q, s) =
assert( is_finite(s), "Invalid scalar" )
q+[0,0,0,s];
// Function: q_sub_s()
// Usage:
// q_sub_s(q, s)
// Description:
// Subtracts a scalar value `s` from the W part of a quaternion `q`.
// The returned quaternion is usually not normalized.
function q_sub_s(q, s) =
assert( is_finite(s), "Invalid scalar" )
q-[0,0,0,s];
// Function: q_mul_s()
// Usage:
// q_mul_s(q, s)
// Description:
// Multiplies each part of a quaternion `q` by a scalar value `s`.
// The returned quaternion is usually not normalized.
function q_mul_s(q, s) =
assert( is_finite(s), "Invalid scalar" )
q*s;
// Function: q_div_s()
// Usage:
// q_div_s(q, s)
// Description:
// Divides each part of a quaternion `q` by a scalar value `s`.
// The returned quaternion is usually not normalized.
function q_div_s(q, s) =
assert( is_finite(s) && ! approx(s,0) , "Invalid scalar" )
q/s;
// Function: q_add()
// Usage:
// q_add(a, b)
// Description:
// Adds each part of two quaternions together.
// The returned quaternion is usually not normalized.
function q_add(a, b) =
assert( is_quaternion(a) && is_quaternion(a), "Invalid quaternion(s)")
assert( ! approx(norm(a+b),0), "Quaternions cannot be opposed" )
a+b;
// Function: q_sub()
// Usage:
// q_sub(a, b)
// Description:
// Subtracts each part of quaternion `b` from quaternion `a`.
// The returned quaternion is usually not normalized.
function q_sub(a, b) =
assert( is_quaternion(a) && is_quaternion(a), "Invalid quaternion(s)")
assert( ! approx(a,b), "Quaternions cannot be equal" )
a-b;
// Function: q_mul()
// Usage:
// q_mul(a, b)
// Description:
// Multiplies quaternion `a` by quaternion `b`.
// The returned quaternion is normalized if both `a` and `b` are normalized
function q_mul(a, b) =
assert( is_quaternion(a) && is_quaternion(b), "Invalid quaternion(s)")
[
a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y,
a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x,
a[3]*b.z + a.x*b.y - a.y*b.x + a.z*b[3],
a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z,
];
// Function: q_cumulative()
// Usage:
// q_cumulative(v);
// Description:
// Given a list of Quaternions, cumulatively multiplies them, returning a list
// of each cumulative Quaternion product. It starts with the first quaternion
// given in the list, and applies successive quaternion rotations in list order.
// The quaternion in the returned list are normalized if each quaternion in v
// is normalized.
function q_cumulative(v, _i=0, _acc=[]) =
_i==len(v) ? _acc :
q_cumulative(
v, _i+1,
concat(
_acc,
[_i==0 ? v[_i] : q_mul(v[_i], last(_acc))]
)
);
// Function: q_dot()
// Usage:
// q_dot(a, b)
// Description: Calculates the dot product between quaternions `a` and `b`.
function q_dot(a, b) =
assert( is_quaternion(a) && is_quaternion(b), "Invalid quaternion(s)" )
a*b;
// Function: q_neg()
// Usage:
// q_neg(q)
// Description: Returns the negative of quaternion `q`.
function q_neg(q) =
assert( is_quaternion(q), "Invalid quaternion" )
-q;
// Function: q_conj()
// Usage:
// q_conj(q)
// Description: Returns the conjugate of quaternion `q`.
function q_conj(q) =
assert( is_quaternion(q), "Invalid quaternion" )
[-q.x, -q.y, -q.z, q[3]];
// Function: q_inverse()
// Usage:
// qc = q_inverse(q)
// Description: Returns the multiplication inverse of quaternion `q` that is normalized only if `q` is normalized.
function q_inverse(q) =
assert( is_quaternion(q), "Invalid quaternion" )
let(q = _qnorm(q) )
[-q.x, -q.y, -q.z, q[3]];
// Function: q_norm()
// Usage:
// q_norm(q)
// Description:
// Returns the `norm()` "length" of quaternion `q`.
// Normalized quaternions have unitary norm.
function q_norm(q) =
assert( is_quaternion(q), "Invalid quaternion" )
norm(q);
// Function: q_normalize()
// Usage:
// q_normalize(q)
// Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1.
function q_normalize(q) =
assert( is_quaternion(q) , "Invalid quaternion" )
q/norm(q);
// Function: q_dist()
// Usage:
// q_dist(q1, q2)
// Description: Returns the "distance" between two quaternions.
function q_dist(q1, q2) =
assert( is_quaternion(q1) && is_quaternion(q2), "Invalid quaternion(s)" )
norm(q2-q1);
// Function: q_slerp()
// Usage:
// q_slerp(q1, q2, u);
// Description:
// Returns a quaternion that is a spherical interpolation between two quaternions.
// Arguments:
// q1 = The first quaternion. (u=0)
// q2 = The second quaternion. (u=1)
// u = The proportional value, from 0 to 1, of what part of the interpolation to return.
// Example(3D): Giving `u` as a Scalar
// a = quat_y(-135);
// b = quat_xyz([0,-30,30]);
// for (u=[0:0.1:1])
// q_rot(q_slerp(a, b, u))
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): Giving `u` as a Range
// a = quat_z(-135);
// b = quat_xyz([90,0,-45]);
// for (q = q_slerp(a, b, [0:0.1:1]))
// q_rot(q) right(80) cube([10,10,1]);
// #sphere(r=80);
function q_slerp(q1, q2, u, _dot) =
is_undef(_dot)
? assert(is_finite(u) || is_range(u) || is_vector(u), "Invalid interpolation coefficient(s)")
assert(is_quaternion(q1) && is_quaternion(q2), "Invalid quaternion(s)" )
let(
_dot = q1*q2,
q1 = q1/norm(q1),
q2 = _dot<0 ? -q2/norm(q2) : q2/norm(q2),
dot = abs(_dot)
)
! is_finite(u) ? [for (uu=u) q_slerp(q1, q2, uu, dot)] :
q_slerp(q1, q2, u, dot)
: _dot>0.9995
? _qnorm(q1 + u*(q2-q1))
: let( theta = u*acos(_dot),
q3 = _qnorm(q2 - _dot*q1)
)
_qnorm(q1*cos(theta) + q3*sin(theta));
// Function: q_matrix3()
// Usage:
// q_matrix3(q);
// Description:
// Returns the 3x3 rotation matrix for the given normalized quaternion q.
function q_matrix3(q) =
let( q = q_normalize(q) )
[
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]],
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3]],
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1]]
];
// Function: q_matrix4()
// Usage:
// q_matrix4(q);
// Description:
// Returns the 4x4 rotation matrix for the given normalized quaternion q.
function q_matrix4(q) =
let( q = q_normalize(q) )
[
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0],
[ 2*q[0]*q[1]+2*q[2]*q[3], 1-2*q[0]*q[0]-2*q[2]*q[2], 2*q[1]*q[2]-2*q[0]*q[3], 0],
[ 2*q[0]*q[2]-2*q[1]*q[3], 2*q[1]*q[2]+2*q[0]*q[3], 1-2*q[0]*q[0]-2*q[1]*q[1], 0],
[ 0, 0, 0, 1]
];
// Function: q_axis()
// Usage:
// q_axis(q)
// Description:
// Returns the axis of rotation of a normalized quaternion `q`.
// The input doesn't need to be normalized.
function q_axis(q) =
assert( is_quaternion(q) , "Invalid quaternion" )
let( d = norm(_qvec(q)) )
approx(d,0)? [0,0,1] : _qvec(q)/d;
// Function: q_angle()
// Usage:
// a = q_angle(q)
// a12 = q_angle(q1,q2);
// Description:
// If only q1 is given, returns the angle of rotation (in degrees) of that quaternion.
// If both q1 and q2 are given, returns the angle (in degrees) between them.
// The input quaternions don't need to be normalized.
function q_angle(q1,q2) =
assert(is_quaternion(q1) && (is_undef(q2) || is_quaternion(q2)), "Invalid quaternion(s)" )
let( n1 = is_undef(q2)? norm(_qvec(q1)): norm(q1) )
is_undef(q2)
? 2 * atan2(n1,_qreal(q1))
: let( q1 = q1/norm(q1),
q2 = q2/norm(q2) )
4 * atan2(norm(q1 - q2), norm(q1 + q2));
// Function&Module: q_rot()
// Usage: As Module
// q_rot(q) ...
// Usage: As Function
// pts = q_rot(q,p);
// Description:
// When called as a module, rotates all children by the rotation stored in quaternion `q`.
// When called as a function with a `p` argument, rotates the point or list of points in `p` by the rotation stored in quaternion `q`.
// When called as a function without a `p` argument, returns the affine3d rotation matrix for the rotation stored in quaternion `q`.
// Example(FlatSpin,VPD=225,VPT=[71,-26,16]):
// module shape() translate([80,0,0]) cube([10,10,1]);
// q = quat_xyz([90,-15,-45]);
// q_rot(q) shape();
// #shape();
// Example(NORENDER):
// q = quat_xyz([45,35,10]);
// mat4x4 = q_rot(q);
// Example(NORENDER):
// q = quat_xyz([45,35,10]);
// pt = q_rot(q, p=[4,5,6]);
// Example(NORENDER):
// q = quat_xyz([45,35,10]);
// pts = q_rot(q, p=[[2,3,4], [4,5,6], [9,2,3]]);
module q_rot(q) {
multmatrix(q_matrix4(q)) {
children();
}
}
function q_rot(q,p) =
is_undef(p)? q_matrix4(q) :
is_vector(p)? q_rot(q,[p])[0] :
apply(q_matrix4(q), p);
// Module: q_rot_copies()
// Usage:
// q_rot_copies(quats) ...
// Description:
// For each quaternion given in the list `quats`, rotates to that orientation and creates a copy
// of all children. This is equivalent to `for (q=quats) q_rot(q) ...`.
// Arguments:
// quats = A list containing all quaternions to rotate to and create copies of all children for.
// Example:
// a = quat_z(-135);
// b = quat_xyz([0,-30,30]);
// q_rot_copies(q_slerp(a, b, [0:0.1:1]))
// right(80) cube([10,10,1]);
// #sphere(r=80);
module q_rot_copies(quats) for (q=quats) q_rot(q) children();
// Function: q_rotation()
// Usage:
// q_rotation(R)
// Description:
// Returns a normalized quaternion corresponding to the rotation matrix R.
// R may be a 3x3 rotation matrix or a homogeneous 4x4 rotation matrix.
// The last row and last column of R are ignored for 4x4 matrices.
// It doesn't check whether R is in fact a rotation matrix.
// If R is not a rotation, the returned quaternion is an unpredictable quaternion .
function q_rotation(R) =
assert( is_matrix(R,3,3) || is_matrix(R,4,4) ,
"Matrix is neither 3x3 nor 4x4")
let( tr = R[0][0]+R[1][1]+R[2][2] ) // R trace
tr>0
? let( r = 1+tr )
_qnorm( _qset([ R[1][2]-R[2][1], R[2][0]-R[0][2], R[0][1]-R[1][0] ], -r ) )
: let( i = max_index([ R[0][0], R[1][1], R[2][2] ]),
r = 1 + 2*R[i][i] -R[0][0] -R[1][1] -R[2][2] )
i==0 ? _qnorm( _qset( [ 4*r, (R[1][0]+R[0][1]), (R[0][2]+R[2][0]) ], (R[2][1]-R[1][2])) ):
i==1 ? _qnorm( _qset( [ (R[1][0]+R[0][1]), 4*r, (R[2][1]+R[1][2]) ], (R[0][2]-R[2][0])) ):
_qnorm( _qset( [ (R[2][0]+R[0][2]), (R[1][2]+R[2][1]), 4*r ], (R[1][0]-R[0][1])) ) ;
// Function&Module: q_rotation_path()
// Usage: As a function
// path = q_rotation_path(q1, n, q2);
// path = q_rotation_path(q1, n);
// Usage: As a module
// q_rotation_path(q1, n, q2) ...
// Description:
// If q2 is undef and it is called as a function, the path, with length n+1 (n>=1), will be the
// cumulative multiplications of the matrix rotation of q1 by itself.
// If q2 is defined and it is called as a function, returns a rotation matrix path of length n+1 (n>=1)
// that interpolates two given rotation quaternions. The first matrix of the sequence is the
// matrix rotation of q1 and the last one, the matrix rotation of q2. The intermediary matrix
// rotations are an uniform interpolation of the path extreme matrices.
// When called as a module, applies to its children() each rotation of the sequence computed
// by the function.
// The input quaternions don't need to be normalized.
// Arguments:
// q1 = The quaternion of the first rotation.
// q2 = The quaternion of the last rotation.
// n = An integer defining the path length ( path length = n+1).
// Example(3D): as a function
// a = quat_y(-135);
// b = quat_xyz([0,-30,30]);
// for (M=q_rotation_path(a, 10, b))
// multmatrix(M)
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): as a module
// a = quat_y(-135);
// b = quat_xyz([0,-30,30]);
// q_rotation_path(a, 10, b)
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): as a function
// a = quat_y(5);
// for (M=q_rotation_path(a, 10))
// multmatrix(M)
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): as a module
// a = quat_y(5);
// q_rotation_path(a, 10)
// right(80) cube([10,10,1]);
// #sphere(r=80);
function q_rotation_path(q1, n=1, q2) =
assert( is_quaternion(q1) && (is_undef(q2) || is_quaternion(q2) ), "Invalid quaternion(s)" )
assert( is_finite(n) && n>=1 && n==floor(n), "Invalid integer" )
assert( is_undef(q2) || ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" )
is_undef(q2)
? [for( i=0, dR=q_matrix4(q1), R=dR; i<=n; i=i+1, R=dR*R ) R]
: let( q2 = q_normalize( q1*q2<0 ? -q2: q2 ),
dq = q_pow( q_mul( q2, q_inverse(q1) ), 1/n ),
dR = q_matrix4(dq) )
[for( i=0, R=q_matrix4(q1); i<=n; i=i+1, R=dR*R ) R];
module q_rotation_path(q1, n=1, q2) {
for(Mi=q_rotation_path(q1, n, q2))
multmatrix(Mi)
children();
}
// Function: q_nlerp()
// Usage:
// q = q_nlerp(q1, q2, u);
// Description:
// Returns a quaternion that is a normalized linear interpolation between two quaternions
// when u is a number.
// If u is a list of numbers, computes the interpolations for each value in the
// list and returns the interpolated quaternions in a list.
// The input quaternions don't need to be normalized.
// Arguments:
// q1 = The first quaternion. (u=0)
// q2 = The second quaternion. (u=1)
// u = A value (or a list of values), between 0 and 1, of the proportion(s) of each quaternion in the interpolation.
// Example(3D): Giving `u` as a Scalar
// a = quat_y(-135);
// b = quat_xyz([0,-30,30]);
// for (u=[0:0.1:1])
// q_rot(q_nlerp(a, b, u))
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): Giving `u` as a Range
// a = quat_z(-135);
// b = quat_xyz([90,0,-45]);
// for (q = q_nlerp(a, b, [0:0.1:1]))
// q_rot(q) right(80) cube([10,10,1]);
// #sphere(r=80);
function q_nlerp(q1,q2,u) =
assert(is_finite(u) || is_range(u) || is_vector(u) ,
"Invalid interpolation coefficient(s)" )
assert(is_quaternion(q1) && is_quaternion(q2), "Invalid quaternion(s)" )
assert( ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" )
let( q1 = q_normalize(q1),
q2 = q_normalize(q2) )
is_num(u)
? _qnorm((1-u)*q1 + u*q2 )
: [for (ui=u) _qnorm((1-ui)*q1 + ui*q2 ) ];
// Function: q_squad()
// Usage:
// qn = q_squad(q1,q2,q3,q4,u);
// Description:
// Returns a quaternion that is a cubic spherical interpolation of the quaternions
// q1 and q4 taking the other two quaternions, q2 and q3, as parameter of a cubic
// on the sphere similar to the control points of a Bezier curve.
// If u is a number, usually between 0 and 1, returns the quaternion that results
// from the interpolation.
// If u is a list of numbers, computes the interpolations for each value in the
// list and returns the interpolated quaternions in a list.
// The input quaternions don't need to be normalized.
// Arguments:
// q1 = The start quaternion. (u=0)
// q1 = The first intermediate quaternion.
// q2 = The second intermediate quaternion.
// q4 = The end quaternion. (u=1)
// u = A value (or a list of values), of the proportion(s) of each quaternion in the cubic interpolation.
// Example(3D): Giving `u` as a Scalar
// a = quat_y(-135);
// b = quat_xyz([-50,-50,120]);
// c = quat_xyz([-50,-40,30]);
// d = quat_y(-45);
// color("red"){
// q_rot(b) right(80) cube([10,10,1]);
// q_rot(c) right(80) cube([10,10,1]);
// }
// for (u=[0:0.05:1])
// q_rot(q_squad(a, b, c, d, u))
// right(80) cube([10,10,1]);
// #sphere(r=80);
// Example(3D): Giving `u` as a Range
// a = quat_y(-135);
// b = quat_xyz([-50,-50,120]);
// c = quat_xyz([-50,-40,30]);
// d = quat_y(-45);
// for (q = q_squad(a, b, c, d, [0:0.05:1]))
// q_rot(q) right(80) cube([10,10,1]);
// #sphere(r=80);
function q_squad(q1,q2,q3,q4,u) =
assert(is_finite(u) || is_range(u) || is_vector(u) ,
"Invalid interpolation coefficient(s)" )
is_num(u)
? q_slerp( q_slerp(q1,q4,u), q_slerp(q2,q3,u), 2*u*(1-u))
: [for(ui=u) q_slerp( q_slerp(q1,q4,ui), q_slerp(q2,q3,ui), 2*ui*(1-ui) ) ];
// Function: q_exp()
// Usage:
// q2 = q_exp(q);
// Description:
// Returns the quaternion that is the exponential of the quaternion q in base e
// The returned quaternion is usually not normalized.
function q_exp(q) =
assert( is_vector(q,4), "Input is not a valid quaternion")
let( nv = norm(_qvec(q)) ) // q may be equal to zero here!
exp(_qreal(q))*quat(_qvec(q),2*nv);
// Function: q_ln()
// Usage:
// q2 = q_ln(q);
// Description:
// Returns the quaternion that is the natural logarithm of the quaternion q.
// The returned quaternion is usually not normalized and may be zero.
function q_ln(q) =
assert(is_quaternion(q), "Input is not a valid quaternion")
let(
nq = norm(q),
nv = norm(_qvec(q))
)
approx(nv,0) ? _qset([0,0,0] , ln(nq) ) :
_qset(_qvec(q)*atan2(nv,_qreal(q))/nv, ln(nq));
// Function: q_pow()
// Usage:
// q2 = q_pow(q, r);
// Description:
// Returns the quaternion that is the power of the quaternion q to the real exponent r.
// The returned quaternion is normalized if `q` is normalized.
function q_pow(q,r=1) =
assert( is_quaternion(q) && is_finite(r), "Invalid inputs")
let( theta = 2*atan2(norm(_qvec(q)),_qreal(q)) )
quat(_qvec(q), r*theta); // q_exp(r*q_ln(q));
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -84,10 +84,15 @@ module square(size=1, center, anchor, spin) {
// When called as a function, returns a 2D path/list of points for a square/rectangle of the given size.
// Arguments:
// size = The size of the rectangle to create. If given as a scalar, both X and Y will be the same size.
// ---
// rounding = The rounding radius for the corners. If negative, produces external roundover spikes on the X axis. If given as a list of four numbers, gives individual radii for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no rounding)
// chamfer = The chamfer size for the corners. If negative, produces external chamfer spikes on the X axis. If given as a list of four numbers, gives individual chamfers for each corner, in the order [X+Y+,X-Y+,X-Y-,X+Y-]. Default: 0 (no chamfer)
// atype = The type of anchoring to use with `anchor=`. Valid opptions are "box" and "perim". This lets you choose between putting anchors on the rounded or chamfered perimeter, or on the square bounding box of the shape. Default: "box"
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#subsection-anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#subsection-spin). Default: `0`
// Anchor Types:
// box = Anchor is with respect to the rectangular bounding box of the shape.
// perim = Anchors are placed along the rounded or chamfered perimeter of the shape.
// Example(2D):
// rect(40);
// Example(2D): Anchored
@ -102,13 +107,21 @@ module square(size=1, center, anchor, spin) {
// rect([40,30], chamfer=-5);
// Example(2D): Negative-Rounded Rect
// rect([40,30], rounding=-5);
// Example(2D): Default "box" Anchors
// color("red") rect([40,30]);
// rect([40,30], rounding=10)
// show_anchors();
// Example(2D): "perim" Anchors
// rect([40,30], rounding=10, atype="perim")
// show_anchors();
// Example(2D): Mixed Chamferring and Rounding
// rect([40,30],rounding=[5,0,10,0],chamfer=[0,8,0,15],$fa=1,$fs=1);
// Example(2D): Called as Function
// path = rect([40,30], chamfer=5, anchor=FRONT, spin=30);
// stroke(path, closed=true);
// move_copies(path) color("blue") circle(d=2,$fn=8);
module rect(size=1, rounding=0, chamfer=0, anchor=CENTER, spin=0) {
module rect(size=1, rounding=0, atype="box", chamfer=0, anchor=CENTER, spin=0) {
errchk = assert(in_list(atype, ["box", "perim"]));
size = is_num(size)? [size,size] : point2d(size);
if (rounding==0 && chamfer==0) {
attachable(anchor, spin, two_d=true, size=size) {
@ -117,19 +130,27 @@ module rect(size=1, rounding=0, chamfer=0, anchor=CENTER, spin=0) {
}
} else {
pts = rect(size=size, rounding=rounding, chamfer=chamfer);
if (atype == "perim") {
attachable(anchor, spin, two_d=true, path=pts) {
polygon(pts);
children();
}
} else {
attachable(anchor, spin, two_d=true, size=size) {
polygon(pts);
children();
}
}
}
}
function rect(size=1, rounding=0, chamfer=0, anchor=CENTER, spin=0) =
function rect(size=1, rounding=0, chamfer=0, atype="box", anchor=CENTER, spin=0) =
assert(is_num(size) || is_vector(size))
assert(is_num(chamfer) || len(chamfer)==4)
assert(is_num(rounding) || len(rounding)==4)
assert(in_list(atype, ["box", "perim"]))
let(
anchor=point2d(anchor),
size = is_num(size)? [size,size] : point2d(size),
@ -176,7 +197,7 @@ function rect(size=1, rounding=0, chamfer=0, anchor=CENTER, spin=0) =
)
each move(cp, p=qrpts)
]
) complex?
) complex && atype=="perim"?
reorient(anchor,spin, two_d=true, path=path, p=path) :
reorient(anchor,spin, two_d=true, size=size, p=path);

View file

@ -27,7 +27,6 @@ include <math.scad>
include <linalg.scad>
include <trigonometry.scad>
include <vectors.scad>
include <quaternions.scad>
include <affine.scad>
include <coords.scad>
include <geometry.scad>

View file

@ -1,388 +0,0 @@
include <../std.scad>
function _q_standard(q) = sign([for(qi=q) if( ! approx(qi,0)) qi,0 ][0])*q;
module test_is_quaternion() {
assert_approx(is_quaternion([0]),false);
assert_approx(is_quaternion([0,0,0,0]),false);
assert_approx(is_quaternion([1,0,2,0]),true);
assert_approx(is_quaternion([1,0,2,0,0]),false);
}
test_is_quaternion();
module test_quat() {
assert_approx(quat(UP,0),[0,0,0,1]);
assert_approx(quat(FWD,0),[0,0,0,1]);
assert_approx(quat(LEFT,0),[0,0,0,1]);
assert_approx(quat(UP,45),[0,0,0.3826834324,0.9238795325]);
assert_approx(quat(LEFT,45),[-0.3826834324, 0, 0, 0.9238795325]);
assert_approx(quat(BACK,45),[0,0.3826834323,0,0.9238795325]);
assert_approx(quat(FWD+RIGHT,30),[0.1830127019, -0.1830127019, 0, 0.9659258263]);
}
test_quat();
module test_quat_x() {
assert_approx(quat_x(0),[0,0,0,1]);
assert_approx(quat_x(35),[0.3007057995,0,0,0.9537169507]);
assert_approx(quat_x(45),[0.3826834324,0,0,0.9238795325]);
}
test_quat_x();
module test_quat_y() {
assert_approx(quat_y(0),[0,0,0,1]);
assert_approx(quat_y(35),[0,0.3007057995,0,0.9537169507]);
assert_approx(quat_y(45),[0,0.3826834323,0,0.9238795325]);
}
test_quat_y();
module test_quat_z() {
assert_approx(quat_z(0),[0,0,0,1]);
assert_approx(quat_z(36),[0,0,0.3090169944,0.9510565163]);
assert_approx(quat_z(45),[0,0,0.3826834324,0.9238795325]);
}
test_quat_z();
module test_quat_xyz() {
assert_approx(quat_xyz([0,0,0]), [0,0,0,1]);
assert_approx(quat_xyz([30,0,0]), [0.2588190451, 0, 0, 0.9659258263]);
assert_approx(quat_xyz([90,0,0]), [0.7071067812, 0, 0, 0.7071067812]);
assert_approx(quat_xyz([-270,0,0]), [-0.7071067812, 0, 0, -0.7071067812]);
assert_approx(quat_xyz([180,0,0]), [1,0,0,0]);
assert_approx(quat_xyz([270,0,0]), [0.7071067812, 0, 0, -0.7071067812]);
assert_approx(quat_xyz([-90,0,0]), [-0.7071067812, 0, 0, 0.7071067812]);
assert_approx(quat_xyz([360,0,0]), [0,0,0,-1]);
assert_approx(quat_xyz([0,0,0]), [0,0,0,1]);
assert_approx(quat_xyz([0,30,0]), [0, 0.2588190451, 0, 0.9659258263]);
assert_approx(quat_xyz([0,90,0]), [0, 0.7071067812, 0, 0.7071067812]);
assert_approx(quat_xyz([0,-270,0]), [0, -0.7071067812, 0, -0.7071067812]);
assert_approx(quat_xyz([0,180,0]), [0,1,0,0]);
assert_approx(quat_xyz([0,270,0]), [0, 0.7071067812, 0, -0.7071067812]);
assert_approx(quat_xyz([0,-90,0]), [0, -0.7071067812, 0, 0.7071067812]);
assert_approx(quat_xyz([0,360,0]), [0,0,0,-1]);
assert_approx(quat_xyz([0,0,0]), [0,0,0,1]);
assert_approx(quat_xyz([0,0,30]), [0, 0, 0.2588190451, 0.9659258263]);
assert_approx(quat_xyz([0,0,90]), [0, 0, 0.7071067812, 0.7071067812]);
assert_approx(quat_xyz([0,0,-270]), [0, 0, -0.7071067812, -0.7071067812]);
assert_approx(quat_xyz([0,0,180]), [0,0,1,0]);
assert_approx(quat_xyz([0,0,270]), [0, 0, 0.7071067812, -0.7071067812]);
assert_approx(quat_xyz([0,0,-90]), [0, 0, -0.7071067812, 0.7071067812]);
assert_approx(quat_xyz([0,0,360]), [0,0,0,-1]);
assert_approx(quat_xyz([30,30,30]), [0.1767766953, 0.3061862178, 0.1767766953, 0.9185586535]);
assert_approx(quat_xyz([12,34,56]), [-0.04824789229, 0.3036636044, 0.4195145429, 0.8540890495]);
}
test_quat_xyz();
module test_q_from_to() {
assert_approx(q_mul(q_from_to([1,2,3], [4,5,2]),q_from_to([4,5,2], [1,2,3])), q_ident());
assert_approx(q_matrix4(q_from_to([1,2,3], [4,5,2])), rot(from=[1,2,3],to=[4,5,2]));
assert_approx(q_rot(q_from_to([1,2,3], -[1,2,3]),[1,2,3]), -[1,2,3]);
assert_approx(unit(q_rot(q_from_to([1,2,3], [4,5,2]),[1,2,3])), unit([4,5,2]));
}
test_q_from_to();
module test_q_ident() {
assert_approx(q_ident(), [0,0,0,1]);
}
test_q_ident();
module test_q_add_s() {
assert_approx(q_add_s([0,0,0,1],3),[0,0,0,4]);
assert_approx(q_add_s([0,0,1,0],3),[0,0,1,3]);
assert_approx(q_add_s([0,1,0,0],3),[0,1,0,3]);
assert_approx(q_add_s([1,0,0,0],3),[1,0,0,3]);
assert_approx(q_add_s(quat(LEFT+FWD,23),1),[-0.1409744184, -0.1409744184, 0, 1.979924705]);
}
test_q_add_s();
module test_q_sub_s() {
assert_approx(q_sub_s([0,0,0,1],3),[0,0,0,-2]);
assert_approx(q_sub_s([0,0,1,0],3),[0,0,1,-3]);
assert_approx(q_sub_s([0,1,0,0],3),[0,1,0,-3]);
assert_approx(q_sub_s([1,0,0,0],3),[1,0,0,-3]);
assert_approx(q_sub_s(quat(LEFT+FWD,23),1),[-0.1409744184, -0.1409744184, 0, -0.02007529538]);
}
test_q_sub_s();
module test_q_mul_s() {
assert_approx(q_mul_s([0,0,0,1],3),[0,0,0,3]);
assert_approx(q_mul_s([0,0,1,0],3),[0,0,3,0]);
assert_approx(q_mul_s([0,1,0,0],3),[0,3,0,0]);
assert_approx(q_mul_s([1,0,0,0],3),[3,0,0,0]);
assert_approx(q_mul_s([1,0,0,1],3),[3,0,0,3]);
assert_approx(q_mul_s(quat(LEFT+FWD,23),4),[-0.5638976735, -0.5638976735, 0, 3.919698818]);
}
test_q_mul_s();
module test_q_div_s() {
assert_approx(q_div_s([0,0,0,1],3),[0,0,0,1/3]);
assert_approx(q_div_s([0,0,1,0],3),[0,0,1/3,0]);
assert_approx(q_div_s([0,1,0,0],3),[0,1/3,0,0]);
assert_approx(q_div_s([1,0,0,0],3),[1/3,0,0,0]);
assert_approx(q_div_s([1,0,0,1],3),[1/3,0,0,1/3]);
assert_approx(q_div_s(quat(LEFT+FWD,23),4),[-0.03524360459, -0.03524360459, 0, 0.2449811762]);
}
test_q_div_s();
module test_q_add() {
assert_approx(q_add([2,3,4,5],[-1,-1,-1,-1]),[1,2,3,4]);
assert_approx(q_add([2,3,4,5],[-3,-3,-3,-3]),[-1,0,1,2]);
assert_approx(q_add([2,3,4,5],[0,0,0,0]),[2,3,4,5]);
assert_approx(q_add([2,3,4,5],[1,1,1,1]),[3,4,5,6]);
assert_approx(q_add([2,3,4,5],[1,0,0,0]),[3,3,4,5]);
assert_approx(q_add([2,3,4,5],[0,1,0,0]),[2,4,4,5]);
assert_approx(q_add([2,3,4,5],[0,0,1,0]),[2,3,5,5]);
assert_approx(q_add([2,3,4,5],[0,0,0,1]),[2,3,4,6]);
assert_approx(q_add([2,3,4,5],[2,1,2,1]),[4,4,6,6]);
assert_approx(q_add([2,3,4,5],[1,2,1,2]),[3,5,5,7]);
}
test_q_add();
module test_q_sub() {
assert_approx(q_sub([2,3,4,5],[-1,-1,-1,-1]),[3,4,5,6]);
assert_approx(q_sub([2,3,4,5],[-3,-3,-3,-3]),[5,6,7,8]);
assert_approx(q_sub([2,3,4,5],[0,0,0,0]),[2,3,4,5]);
assert_approx(q_sub([2,3,4,5],[1,1,1,1]),[1,2,3,4]);
assert_approx(q_sub([2,3,4,5],[1,0,0,0]),[1,3,4,5]);
assert_approx(q_sub([2,3,4,5],[0,1,0,0]),[2,2,4,5]);
assert_approx(q_sub([2,3,4,5],[0,0,1,0]),[2,3,3,5]);
assert_approx(q_sub([2,3,4,5],[0,0,0,1]),[2,3,4,4]);
assert_approx(q_sub([2,3,4,5],[2,1,2,1]),[0,2,2,4]);
assert_approx(q_sub([2,3,4,5],[1,2,1,2]),[1,1,3,3]);
}
test_q_sub();
module test_q_mul() {
assert_approx(q_mul(quat_z(30),quat_x(57)),[0.4608999698, 0.1234977747, 0.2274546059, 0.8488721457]);
assert_approx(q_mul(quat_y(30),quat_z(23)),[0.05160021841, 0.2536231763, 0.1925746368, 0.94653458]);
}
test_q_mul();
module test_q_cumulative() {
assert_approx(q_cumulative([quat_z(30),quat_x(57),quat_y(18)]),[[0, 0, 0.2588190451, 0.9659258263], [0.4608999698, -0.1234977747, 0.2274546059, 0.8488721457], [0.4908072659, 0.01081554785, 0.1525536221, 0.8577404293]]);
}
test_q_cumulative();
module test_q_dot() {
assert_approx(q_dot(quat_z(30),quat_x(57)),0.8488721457);
assert_approx(q_dot(quat_y(30),quat_z(23)),0.94653458);
}
test_q_dot();
module test_q_neg() {
assert_approx(q_neg([1,0,0,1]),[-1,0,0,-1]);
assert_approx(q_neg([0,1,1,0]),[0,-1,-1,0]);
assert_approx(q_neg(quat_xyz([23,45,67])),[0.0533818345,-0.4143703268,-0.4360652669,-0.7970537592]);
}
test_q_neg();
module test_q_conj() {
assert_approx(q_conj([1,0,0,1]),[-1,0,0,1]);
assert_approx(q_conj([0,1,1,0]),[0,-1,-1,0]);
assert_approx(q_conj(quat_xyz([23,45,67])),[0.0533818345, -0.4143703268, -0.4360652669, 0.7970537592]);
}
test_q_conj();
module test_q_inverse() {
assert_approx(q_inverse([1,0,0,1]),[-1,0,0,1]/sqrt(2));
assert_approx(q_inverse([0,1,1,0]),[0,-1,-1,0]/sqrt(2));
assert_approx(q_inverse(quat_xyz([23,45,67])),q_conj(quat_xyz([23,45,67])));
assert_approx(q_mul(q_inverse(quat_xyz([23,45,67])),quat_xyz([23,45,67])),q_ident());
}
test_q_inverse();
module test_q_Norm() {
assert_approx(q_norm([1,0,0,1]),1.414213562);
assert_approx(q_norm([0,1,1,0]),1.414213562);
assert_approx(q_norm(quat_xyz([23,45,67])),1);
}
test_q_Norm();
module test_q_normalize() {
assert_approx(q_normalize([1,0,0,1]),[0.7071067812, 0, 0, 0.7071067812]);
assert_approx(q_normalize([0,1,1,0]),[0, 0.7071067812, 0.7071067812, 0]);
assert_approx(q_normalize(quat_xyz([23,45,67])),[-0.0533818345, 0.4143703268, 0.4360652669, 0.7970537592]);
}
test_q_normalize();
module test_q_dist() {
assert_approx(q_dist(quat_xyz([23,45,67]),quat_xyz([23,45,67])),0);
assert_approx(q_dist(quat_xyz([23,45,67]),quat_xyz([12,34,56])),0.1257349854);
}
test_q_dist();
module test_q_slerp() {
assert_approx(q_slerp(quat_x(45),quat_y(30),0.0),quat_x(45));
assert_approx(q_slerp(quat_x(45),quat_y(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]);
assert_approx(q_slerp(quat_x(45),quat_y(30),1.0),quat_y(30));
}
test_q_slerp();
module test_q_matrix3() {
assert_approx(q_matrix3(quat_z(37)),affine2d_zrot(37));
assert_approx(q_matrix3(quat_z(-49)),affine2d_zrot(-49));
}
test_q_matrix3();
module test_q_matrix4() {
assert_approx(q_matrix4(quat_z(37)),rot(37));
assert_approx(q_matrix4(quat_z(-49)),rot(-49));
assert_approx(q_matrix4(quat_x(37)),rot([37,0,0]));
assert_approx(q_matrix4(quat_y(37)),rot([0,37,0]));
assert_approx(q_matrix4(quat_xyz([12,34,56])),rot([12,34,56]));
}
test_q_matrix4();
module test_q_axis() {
assert_approx(q_axis(quat_x(37)),RIGHT);
assert_approx(q_axis(quat_x(-37)),LEFT);
assert_approx(q_axis(quat_y(37)),BACK);
assert_approx(q_axis(quat_y(-37)),FWD);
assert_approx(q_axis(quat_z(37)),UP);
assert_approx(q_axis(quat_z(-37)),DOWN);
}
test_q_axis();
module test_q_angle() {
assert_approx(q_angle(quat_x(0)),0);
assert_approx(q_angle(quat_y(0)),0);
assert_approx(q_angle(quat_z(0)),0);
assert_approx(q_angle(quat_x(37)),37);
assert_approx(q_angle(quat_x(-37)),37);
assert_approx(q_angle(quat_y(37)),37);
assert_approx(q_angle(quat_y(-37)),37);
assert_approx(q_angle(quat_z(37)),37);
assert_approx(q_angle(quat_z(-37)),37);
assert_approx(q_angle(quat_z(-37),quat_z(-37)), 0);
assert_approx(q_angle(quat_z( 37.123),quat_z(-37.123)), 74.246);
assert_approx(q_angle(quat_x( 37),quat_y(-37)), 51.86293283);
}
test_q_angle();
module test_q_rot() {
assert_approx(q_rot(quat_xyz([12,34,56])),rot([12,34,56]));
assert_approx(q_rot(quat_xyz([12,34,56]),p=[2,3,4]),rot([12,34,56],p=[2,3,4]));
assert_approx(q_rot(quat_xyz([12,34,56]),p=[[2,3,4],[4,9,6]]),rot([12,34,56],p=[[2,3,4],[4,9,6]]));
}
test_q_rot();
module test_q_rotation() {
assert_approx(_q_standard(q_rotation(q_matrix3(quat([12,34,56],33)))),_q_standard(quat([12,34,56],33)));
assert_approx(q_matrix3(q_rotation(q_matrix3(quat_xyz([12,34,56])))),
q_matrix3(quat_xyz([12,34,56])));
}
test_q_rotation();
module test_q_rotation_path() {
assert_approx(q_rotation_path(quat_x(135), 5, quat_y(13.5))[0] , q_matrix4(quat_x(135)));
assert_approx(q_rotation_path(quat_x(135), 11, quat_y(13.5))[11] , yrot(13.5));
assert_approx(q_rotation_path(quat_x(135), 16, quat_y(13.5))[8] , q_rotation_path(quat_x(135), 8, quat_y(13.5))[4]);
assert_approx(q_rotation_path(quat_x(135), 16, quat_y(13.5))[7] ,
q_rotation_path(quat_y(13.5),16, quat_x(135))[9]);
assert_approx(q_rotation_path(quat_x(11), 5)[0] , xrot(11));
assert_approx(q_rotation_path(quat_x(11), 5)[4] , xrot(55));
}
test_q_rotation_path();
module test_q_nlerp() {
assert_approx(q_nlerp(quat_x(45),quat_y(30),0.0),quat_x(45));
assert_approx(q_nlerp(quat_x(45),quat_y(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]);
assert_approx(q_rotation_path(quat_x(135), 16, quat_y(13.5))[8] , q_matrix4(q_nlerp(quat_x(135), quat_y(13.5),0.5)));
assert_approx(q_nlerp(quat_x(45),quat_y(30),1.0),quat_y(30));
}
test_q_nlerp();
module test_q_squad() {
assert_approx(q_squad(quat_x(45),quat_z(30),quat_x(90),quat_y(30),0.0),quat_x(45));
assert_approx(q_squad(quat_x(45),quat_z(30),quat_x(90),quat_y(30),1.0),quat_y(30));
assert_approx(q_squad(quat_x(0),quat_x(30),quat_x(90),quat_x(120),0.5),
q_slerp(quat_x(0),quat_x(120),0.5));
assert_approx(q_squad(quat_y(0),quat_y(0),quat_x(120),quat_x(120),0.3),
q_slerp(quat_y(0),quat_x(120),0.3));
}
test_q_squad();
module test_q_exp() {
assert_approx(q_exp(q_ident()), exp(1)*q_ident());
assert_approx(q_exp([0,0,0,33.7]), exp(33.7)*q_ident());
assert_approx(q_exp(q_ln(q_ident())), q_ident());
assert_approx(q_exp(q_ln([1,2,3,0])), [1,2,3,0]);
assert_approx(q_exp(q_ln(quat_xyz([31,27,34]))), quat_xyz([31,27,34]));
let(q=quat_xyz([12,23,34]))
assert_approx(q_exp(q+q_inverse(q)),q_mul(q_exp(q),q_exp(q_inverse(q))));
}
test_q_exp();
module test_q_ln() {
assert_approx(q_ln([1,2,3,0]), [24.0535117721, 48.1070235442, 72.1605353164, 1.31952866481]);
assert_approx(q_ln(q_ident()), [0,0,0,0]);
assert_approx(q_ln(5.5*q_ident()), [0,0,0,ln(5.5)]);
assert_approx(q_ln(q_exp(quat_xyz([13,37,43]))), quat_xyz([13,37,43]));
assert_approx(q_ln(quat_xyz([12,23,34]))+q_ln(q_inverse(quat_xyz([12,23,34]))), [0,0,0,0]);
}
test_q_ln();
module test_q_pow() {
q = quat([1,2,3],77);
assert_approx(q_pow(q,1), q);
assert_approx(q_pow(q,0), q_ident());
assert_approx(q_pow(q,-1), q_inverse(q));
assert_approx(q_pow(q,2), q_mul(q,q));
assert_approx(q_pow(q,3), q_mul(q,q_pow(q,2)));
assert_approx(q_mul(q_pow(q,0.456),q_pow(q,0.544)), q);
assert_approx(q_mul(q_pow(q,0.335),q_mul(q_pow(q,.552),q_pow(q,.113))), q);
}
test_q_pow();
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap