mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Revert "Revert "Revert "Correction of C_times validation"""
This reverts commit e8499baba1
.
This commit is contained in:
parent
e8499baba1
commit
069432021b
5 changed files with 131 additions and 390 deletions
125
arrays.scad
125
arrays.scad
|
@ -708,108 +708,36 @@ function _sort_vectors4(arr) =
|
|||
y ]
|
||||
) concat( _sort_vectors4(lesser), equal, _sort_vectors4(greater) );
|
||||
|
||||
// sort a list of vectors
|
||||
function _sort_vectors(arr, _i=0) =
|
||||
len(arr)<=1 || _i>=len(arr[0]) ? arr :
|
||||
let(
|
||||
pivot = arr[floor(len(arr)/2)][_i],
|
||||
lesser = [ for (entry=arr) if (entry[_i] < pivot ) entry ],
|
||||
equal = [ for (entry=arr) if (entry[_i] == pivot ) entry ],
|
||||
greater = [ for (entry=arr) if (entry[_i] > pivot ) entry ]
|
||||
)
|
||||
concat(
|
||||
_sort_vectors(lesser, _i ),
|
||||
_sort_vectors(equal, _i+1 ),
|
||||
_sort_vectors(greater, _i ) );
|
||||
|
||||
// given pairs of an index and a vector, return the list of indices of the list sorted by the vectors
|
||||
function _sort_vectors_indexed(arr, _i=0) =
|
||||
arr==[] ? [] :
|
||||
len(arr)==1 || _i>=len(arr[0][1]) ? [for(ai=arr) ai[0]] :
|
||||
let(
|
||||
pivot = arr[floor(len(arr)/2)][1][_i],
|
||||
lesser = [ for (entry=arr) if (entry[1][_i] < pivot ) entry ],
|
||||
equal = [ for (entry=arr) if (entry[1][_i] == pivot ) entry ],
|
||||
greater = [ for (entry=arr) if (entry[1][_i] > pivot ) entry ]
|
||||
)
|
||||
concat(
|
||||
_sort_vectors_indexed(lesser, _i ),
|
||||
_sort_vectors_indexed(equal, _i+1 ),
|
||||
_sort_vectors_indexed(greater, _i ) );
|
||||
|
||||
|
||||
// when idx==undef, returns the sorted array
|
||||
// otherwise, returns the indices of the sorted array
|
||||
function _sort_general(arr, idx=undef) =
|
||||
len(arr)<=1 ? arr :
|
||||
(len(arr)<=1) ? arr :
|
||||
is_undef(idx)
|
||||
? _simple_sort(arr)
|
||||
// : _lexical_sort(arr)
|
||||
? _sort_scalar(arr)
|
||||
: let( arrind=[for(k=[0:len(arr)-1], ark=[arr[k]]) [ k, [for (i=idx) ark[i]] ] ] )
|
||||
_indexed_sort(arrind );
|
||||
|
||||
// sort simple lists with compare_vals()
|
||||
function _simple_sort(arr) =
|
||||
arr==[] || len(arr)==1 ? arr :
|
||||
let(
|
||||
pivot = arr[floor(len(arr)/2)],
|
||||
lesser = [ for (entry=arr) if (compare_vals(entry, pivot) <0 ) entry ],
|
||||
equal = [ for (entry=arr) if (compare_vals(entry, pivot)==0 ) entry ],
|
||||
greater = [ for (entry=arr) if (compare_vals(entry, pivot) >0 ) entry ]
|
||||
)
|
||||
concat(
|
||||
_simple_sort(lesser),
|
||||
equal,
|
||||
_simple_sort(greater)
|
||||
);
|
||||
|
||||
|
||||
_indexed_sort(arrind);
|
||||
|
||||
// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair
|
||||
// it uses compare_vals()
|
||||
function _lexical_sort(arr, _i=0) =
|
||||
arr==[] || len(arr)==1 || _i>=len(arr[0]) ? arr :
|
||||
// the sorting is done using compare_vals()
|
||||
function _indexed_sort(arrind) =
|
||||
arrind==[] ? [] : len(arrind)==1? [arrind[0][0]] :
|
||||
let( pivot = arrind[floor(len(arrind)/2)][1] )
|
||||
let(
|
||||
pivot = arr[floor(len(arr)/2)][_i],
|
||||
lesser = [ for (entry=arr) if (compare_vals(entry[_i], pivot) <0 ) entry ],
|
||||
equal = [ for (entry=arr) if (compare_vals(entry[_i], pivot)==0 ) entry ],
|
||||
greater = [ for (entry=arr) if (compare_vals(entry[_i], pivot) >0 ) entry ]
|
||||
lesser = [ for (entry=arrind) if (compare_vals(entry[1], pivot) <0 ) entry ],
|
||||
equal = [ for (entry=arrind) if (compare_vals(entry[1], pivot)==0 ) entry[0] ],
|
||||
greater = [ for (entry=arrind) if (compare_vals(entry[1], pivot) >0 ) entry ]
|
||||
)
|
||||
concat(
|
||||
_lexical_sort(lesser, _i ),
|
||||
_lexical_sort(equal, _i+1 ),
|
||||
_lexical_sort(greater, _i )
|
||||
);
|
||||
|
||||
|
||||
// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair
|
||||
// it uses compare_vals()
|
||||
function _indexed_sort(arr, _i=0) =
|
||||
arr==[] ? [] :
|
||||
len(arr)==1? [arr[0][0]] :
|
||||
_i>=len(arr[0][1]) ? [for(ai=arr) ai[0]] :
|
||||
let(
|
||||
pivot = arr[floor(len(arr)/2)][1][_i],
|
||||
lesser = [ for (entry=arr) if (compare_vals(entry[1][_i], pivot) <0 ) entry ],
|
||||
equal = [ for (entry=arr) if (compare_vals(entry[1][_i], pivot)==0 ) entry ],
|
||||
greater = [ for (entry=arr) if (compare_vals(entry[1][_i], pivot) >0 ) entry ]
|
||||
)
|
||||
concat(
|
||||
_indexed_sort(lesser, _i ),
|
||||
_indexed_sort(equal, _i+1 ),
|
||||
_indexed_sort(greater, _i ) );
|
||||
concat(_indexed_sort(lesser), equal, _indexed_sort(greater));
|
||||
|
||||
|
||||
// returns true for valid index specifications idx in the interval [imin, imax)
|
||||
// note that idx can't have any value greater or EQUAL to imax
|
||||
// this allows imax=INF as a bound to numerical lists
|
||||
function _valid_idx(idx,imin,imax) =
|
||||
is_undef(idx)
|
||||
|| ( is_finite(idx) && idx>=imin && idx< imax )
|
||||
|| ( is_list(idx) && min(idx)>=imin && max(idx)< imax )
|
||||
|| ( ! is_list(idx) // it implicitly is a range
|
||||
&& (idx[1]>0 && idx[0]>=imin && idx[2]< imax)
|
||||
||
|
||||
(idx[0]<imax && idx[2]>=imin) );
|
||||
|| ( valid_range(idx) && idx[0]>=imin && idx[2]< imax );
|
||||
|
||||
|
||||
// Function: sort()
|
||||
|
@ -830,7 +758,7 @@ function _valid_idx(idx,imin,imax) =
|
|||
function sort(list, idx=undef) =
|
||||
!is_list(list) || len(list)<=1 ? list :
|
||||
is_def(idx)
|
||||
? assert( _valid_idx(idx,0,len(list[0])) , "Invalid indices or out of range.")
|
||||
? assert( _valid_idx(idx,0,len(list)) , "Invalid indices.")
|
||||
let( sarr = _sort_general(list,idx) )
|
||||
[for(i=[0:len(sarr)-1]) list[sarr[i]] ]
|
||||
: let(size = array_dim(list))
|
||||
|
@ -845,31 +773,6 @@ function sort(list, idx=undef) =
|
|||
)
|
||||
: _sort_general(list);
|
||||
|
||||
function sort(list, idx=undef) =
|
||||
!is_list(list) || len(list)<=1 ? list :
|
||||
is_vector(list)
|
||||
? assert( _valid_idx(idx,0,len(list[0])) , str("Invalid indices or out of range. ",list))
|
||||
is_def(idx)
|
||||
? sort_vector_indexed([for(i=[0:len(list)-1]) [i, [list(i)] ] ])
|
||||
: sort_scalar(list)
|
||||
: is_matrix(list)
|
||||
? list==[] || list[0]==[] ? list :
|
||||
assert( _valid_idx(idx,0,len(list[0])) , "Invalid indices or out of range.")
|
||||
is_def(idx)
|
||||
? sort_vector_indexed([for(i=[0:len(list)-1], li=[list[i]]) [i, [for(ind=idx) li(ind)] ] ])
|
||||
: sort_vector(list)
|
||||
: list==[] || list[0]==[] ? list :
|
||||
let( llen = [for(li=list) !is_list(li) || is_string(li) ? 0: len(li)],
|
||||
m = min(llen),
|
||||
M = max(llen)
|
||||
)
|
||||
M==0 ? _simple_sort(list) :
|
||||
assert( m>0 && _valid_idx(idx,m-1,M) , "Invalid indices or out of range.")
|
||||
is_def(idx)
|
||||
? _sort_general(list,idx)
|
||||
: let( ils = _sort_general(list, [m:M]) )
|
||||
[for(i=[0:len(list)-1]) list[ils[i]] ];
|
||||
|
||||
|
||||
// Function: sortidx()
|
||||
// Description:
|
||||
|
|
|
@ -1175,7 +1175,7 @@ function deriv3(data, h=1, closed=false) =
|
|||
// Description:
|
||||
// Multiplies two complex numbers represented by 2D vectors.
|
||||
function C_times(z1,z2) =
|
||||
assert( is_matrix([z1,z2],2,2), "Complex numbers should be represented by 2D vectors" )
|
||||
assert( is_vector(z1+z2,2), "Complex numbers should be represented by 2D vectors." )
|
||||
[ z1.x*z2.x - z1.y*z2.y, z1.x*z2.y + z1.y*z2.x ];
|
||||
|
||||
// Function: C_div()
|
||||
|
|
170
quaternions.scad
170
quaternions.scad
|
@ -27,7 +27,7 @@ function _Qreal(q) = q[3];
|
|||
function _Qset(v,r) = concat( v, r );
|
||||
|
||||
// normalizes without checking
|
||||
function _Qunit(q) = q/norm(q);
|
||||
function _Qnorm(q) = q/norm(q);
|
||||
|
||||
|
||||
// Function: Q_is_quat()
|
||||
|
@ -36,7 +36,7 @@ function _Qunit(q) = q/norm(q);
|
|||
// Description: Return true if q is a valid non-zero quaternion.
|
||||
// Arguments:
|
||||
// q = object to check.
|
||||
function Q_is_quat(q) = is_vector(q,4) ;//&& ! approx(norm(q),0) ;
|
||||
function Q_is_quat(q) = is_vector(q,4) && ! approx(norm(q),0) ;
|
||||
|
||||
|
||||
// Function: Quat()
|
||||
|
@ -101,7 +101,7 @@ function QuatXYZ(a=[0,0,0]) =
|
|||
qy = QuatY(a[1]),
|
||||
qz = QuatZ(a[2])
|
||||
)
|
||||
_Qmul(qz, _Qmul(qy, qx));
|
||||
Q_Mul(qz, Q_Mul(qy, qx));
|
||||
|
||||
|
||||
// Function: Q_From_to()
|
||||
|
@ -202,36 +202,32 @@ function Q_Sub(a, b) =
|
|||
// The returned quaternion is normalized if both `a` and `b` are normalized
|
||||
function Q_Mul(a, b) =
|
||||
assert( Q_is_quat(a) && Q_is_quat(b), "Invalid quaternion(s)")
|
||||
_Qmul(a,b);
|
||||
|
||||
function _Qmul(a,b) =
|
||||
[
|
||||
a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y,
|
||||
a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x,
|
||||
a[3]*b.z + a.x*b.y - a.y*b.x + a.z*b[3],
|
||||
a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z
|
||||
a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z,
|
||||
];
|
||||
// [ [a[3], -a.z, a.y, a.x],
|
||||
// [ a.z, a[3], -a.x, a.y],
|
||||
// [-a.y, a.x, a[3], a.z],
|
||||
// [-a.x, -a.y, -a.z, a[3]] ]*[b.x,b.y,b.z,b[3]]
|
||||
|
||||
|
||||
|
||||
// Function: Q_Cumulative()
|
||||
// Usage:
|
||||
// Q_Cumulative(ql);
|
||||
// Q_Cumulative(v);
|
||||
// Description:
|
||||
// Given a list of Quaternions, cumulatively multiplies them, returning a list
|
||||
// of each cumulative Quaternion product. It starts with the first quaternion
|
||||
// given in the list, and applies successive quaternion rotations in list order.
|
||||
// The quaternion in the returned list are normalized if each quaternion in v
|
||||
// is normalized.
|
||||
function Q_Cumulative(ql) =
|
||||
assert( is_matrix(ql,undef,4) && len(ql)>0, "Invalid list of quaternions." )
|
||||
[for( i = 0, q = ql[0];
|
||||
i<=len(ql);
|
||||
i = i+1, q = (i==len(ql))? 0: _Qmul(q,ql[i]) )
|
||||
q ];
|
||||
function Q_Cumulative(v, _i=0, _acc=[]) =
|
||||
_i==len(v) ? _acc :
|
||||
Q_Cumulative(
|
||||
v, _i+1,
|
||||
concat(
|
||||
_acc,
|
||||
[_i==0 ? v[_i] : Q_Mul(v[_i], select(_acc,-1))]
|
||||
)
|
||||
);
|
||||
|
||||
|
||||
// Function: Q_Dot()
|
||||
|
@ -256,7 +252,7 @@ function Q_Neg(q) =
|
|||
// Q_Conj(q)
|
||||
// Description: Returns the conjugate of quaternion `q`.
|
||||
function Q_Conj(q) =
|
||||
assert( Q_is_quat(q), str("Invalid quaternion",q) )
|
||||
assert( Q_is_quat(q), "Invalid quaternion" )
|
||||
[-q.x, -q.y, -q.z, q[3]];
|
||||
|
||||
|
||||
|
@ -266,7 +262,7 @@ function Q_Conj(q) =
|
|||
// Description: Returns the multiplication inverse of quaternion `q` that is normalized only if `q` is normalized.
|
||||
function Q_Inverse(q) =
|
||||
assert( Q_is_quat(q), "Invalid quaternion" )
|
||||
// let(q = q/norm(q) )
|
||||
let(q = _Qnorm(q) )
|
||||
[-q.x, -q.y, -q.z, q[3]];
|
||||
|
||||
|
||||
|
@ -287,9 +283,7 @@ function Q_Norm(q) =
|
|||
// Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1.
|
||||
function Q_Normalize(q) =
|
||||
assert( Q_is_quat(q) , "Invalid quaternion" )
|
||||
approx(_Qvec(q), [0,0,0])
|
||||
? Q_Ident()
|
||||
: q/norm(q);
|
||||
q/norm(q);
|
||||
|
||||
|
||||
// Function: Q_Dist()
|
||||
|
@ -324,32 +318,31 @@ function Q_Dist(q1, q2) =
|
|||
// Qrot(q) right(80) cube([10,10,1]);
|
||||
// #sphere(r=80);
|
||||
function Q_Slerp(q1, q2, u, _dot) =
|
||||
assert(is_finite(u) || is_range(u) || is_vector(u), "Invalid interpolation coefficient(s)")
|
||||
assert(Q_is_quat(q1) && Q_is_quat(q2), "Invalid quaternion(s)" )
|
||||
let(
|
||||
_dot = q1*q2,
|
||||
q1 = q1/norm(q1),
|
||||
q2 = _dot<0 ? -q2/norm(q2) : q2/norm(q2),
|
||||
dot = abs(_dot),
|
||||
q3 = dot>0.9995? q2: _Qunit(q2 - dot*q1)
|
||||
)
|
||||
! is_num(u)
|
||||
? [for (uu=u) _Qslerp(q1, q3, uu, dot)]
|
||||
: _Qslerp(q1, q3, u, dot);
|
||||
is_undef(_dot)
|
||||
? assert(is_finite(u) || is_range(u) || is_vector(u), "Invalid interpolation coefficient(s)")
|
||||
assert(Q_is_quat(q1) && Q_is_quat(q2), "Invalid quaternion(s)" )
|
||||
let(
|
||||
_dot = q1*q2,
|
||||
q1 = q1/norm(q1),
|
||||
q2 = _dot<0 ? -q2/norm(q2) : q2/norm(q2),
|
||||
dot = abs(_dot)
|
||||
)
|
||||
! is_finite(u) ? [for (uu=u) Q_Slerp(q1, q2, uu, dot)] :
|
||||
Q_Slerp(q1, q2, u, dot)
|
||||
: _dot>0.9995
|
||||
? _Qnorm(q1 + u*(q2-q1))
|
||||
: let( theta = u*acos(_dot),
|
||||
q3 = _Qnorm(q2 - _dot*q1)
|
||||
)
|
||||
_Qnorm(q1*cos(theta) + q3*sin(theta));
|
||||
|
||||
function _Qslerp(q1, q2, u, dot) =
|
||||
dot>0.9995
|
||||
? _Qunit(q1 + u*(q2-q1))
|
||||
: let( theta = u*acos(dot) )
|
||||
_Qunit(q1*cos(theta) + q2*sin(theta));
|
||||
|
||||
|
||||
// Function: Q_to_matrix3()
|
||||
// Function: Q_Matrix3()
|
||||
// Usage:
|
||||
// Q_to_matrix3(q);
|
||||
// Q_Matrix3(q);
|
||||
// Description:
|
||||
// Returns the 3x3 rotation matrix for the given normalized quaternion q.
|
||||
function Q_to_matrix3(q) =
|
||||
function Q_Matrix3(q) =
|
||||
let( q = Q_Normalize(q) )
|
||||
[
|
||||
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]],
|
||||
|
@ -358,12 +351,12 @@ function Q_to_matrix3(q) =
|
|||
];
|
||||
|
||||
|
||||
// Function: Q_to_matrix4()
|
||||
// Function: Q_Matrix4()
|
||||
// Usage:
|
||||
// Q_to_matrix4(q);
|
||||
// Q_Matrix4(q);
|
||||
// Description:
|
||||
// Returns the 4x4 rotation matrix for the given normalized quaternion q.
|
||||
function Q_to_matrix4(q) =
|
||||
function Q_Matrix4(q) =
|
||||
let( q = Q_Normalize(q) )
|
||||
[
|
||||
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0],
|
||||
|
@ -373,35 +366,6 @@ function Q_to_matrix4(q) =
|
|||
];
|
||||
|
||||
|
||||
// Function: Q_from_matrix()
|
||||
// Usage:
|
||||
// Q_from_matrix(M)
|
||||
// Description:
|
||||
// Returns a normalized quaternion corresponding to the rotation matrix M.
|
||||
// M may be a 3x3 rotation matrix or a homogeneous 4x4 rotation matrix.
|
||||
// The last row and last column of M are ignored for 4x4 matrices.
|
||||
// It doesn't check whether M is in fact a rotation matrix.
|
||||
// If M is not a rotation, the returned quaternion is unpredictable.
|
||||
//
|
||||
// based on https://en.wikipedia.org/wiki/Rotation_matrix
|
||||
//
|
||||
function Q_from_matrix(M) =
|
||||
assert( is_matrix(M) && (len(M)==3 || len(M)==4) && (len(M[0])==3 || len(M[0])==4),
|
||||
"The matrix should be 3x3 or 4x4")
|
||||
let( tr = M[0][0]+M[1][1]+M[2][2] ) // M trace
|
||||
tr>0
|
||||
? let( r = sqrt(1+tr), s = -1/r/2 )
|
||||
_Qunit( _Qset([ M[1][2]-M[2][1], M[2][0]-M[0][2], M[0][1]-M[1][0] ]*s, r/2 ) )
|
||||
: let(
|
||||
i = max_index([ M[0][0], M[1][1], M[2][2] ]),
|
||||
r = sqrt(1 + 2*M[i][i] -M[0][0] -M[1][1] -M[2][2] ),
|
||||
s = 1/r/2
|
||||
)
|
||||
i==0 ? _Qunit( _Qset( [ r/2, s*(M[1][0]+M[0][1]), s*(M[0][2]+M[2][0]) ], s*(M[2][1]-M[1][2])) ):
|
||||
i==1 ? _Qunit( _Qset( [ s*(M[1][0]+M[0][1]), r/2, s*(M[2][1]+M[1][2]) ], s*(M[0][2]-M[2][0])) )
|
||||
: _Qunit( _Qset( [ s*(M[2][0]+M[0][2]), s*(M[1][2]+M[2][1]), r/2 ], s*(M[1][0]-M[0][1])) ) ;
|
||||
|
||||
|
||||
// Function: Q_Axis()
|
||||
// Usage:
|
||||
// Q_Axis(q)
|
||||
|
@ -454,15 +418,15 @@ function Q_Angle(q1,q2) =
|
|||
// q = QuatXYZ([45,35,10]);
|
||||
// pts = Qrot(q, p=[[2,3,4], [4,5,6], [9,2,3]]);
|
||||
module Qrot(q) {
|
||||
multmatrix(Q_to_matrix4(q)) {
|
||||
multmatrix(Q_Matrix4(q)) {
|
||||
children();
|
||||
}
|
||||
}
|
||||
|
||||
function Qrot(q,p) =
|
||||
is_undef(p)? Q_to_matrix4(q) :
|
||||
is_undef(p)? Q_Matrix4(q) :
|
||||
is_vector(p)? Qrot(q,[p])[0] :
|
||||
apply(Q_to_matrix4(q), p);
|
||||
apply(Q_Matrix4(q), p);
|
||||
|
||||
|
||||
// Module: Qrot_copies()
|
||||
|
@ -482,6 +446,29 @@ function Qrot(q,p) =
|
|||
module Qrot_copies(quats) for (q=quats) Qrot(q) children();
|
||||
|
||||
|
||||
// Function: Q_Rotation()
|
||||
// Usage:
|
||||
// Q_Rotation(R)
|
||||
// Description:
|
||||
// Returns a normalized quaternion corresponding to the rotation matrix R.
|
||||
// R may be a 3x3 rotation matrix or a homogeneous 4x4 rotation matrix.
|
||||
// The last row and last column of R are ignored for 4x4 matrices.
|
||||
// It doesn't check whether R is in fact a rotation matrix.
|
||||
// If R is not a rotation, the returned quaternion is an unpredictable quaternion .
|
||||
function Q_Rotation(R) =
|
||||
assert( is_matrix(R,3,3) || is_matrix(R,4,4) ,
|
||||
"Matrix is neither 3x3 nor 4x4")
|
||||
let( tr = R[0][0]+R[1][1]+R[2][2] ) // R trace
|
||||
tr>0
|
||||
? let( r = 1+tr )
|
||||
_Qnorm( _Qset([ R[1][2]-R[2][1], R[2][0]-R[0][2], R[0][1]-R[1][0] ], -r ) )
|
||||
: let( i = max_index([ R[0][0], R[1][1], R[2][2] ]),
|
||||
r = 1 + 2*R[i][i] -R[0][0] -R[1][1] -R[2][2] )
|
||||
i==0 ? _Qnorm( _Qset( [ 4*r, (R[1][0]+R[0][1]), (R[0][2]+R[2][0]) ], (R[2][1]-R[1][2])) ):
|
||||
i==1 ? _Qnorm( _Qset( [ (R[1][0]+R[0][1]), 4*r, (R[2][1]+R[1][2]) ], (R[0][2]-R[2][0])) ):
|
||||
_Qnorm( _Qset( [ (R[2][0]+R[0][2]), (R[1][2]+R[2][1]), 4*r ], (R[1][0]-R[0][1])) ) ;
|
||||
|
||||
|
||||
// Function&Module: Q_Rotation_path(q1, n, [q2])
|
||||
// Usage: As a function
|
||||
// path = Q_Rotation_path(q1, n, q2);
|
||||
|
@ -531,11 +518,11 @@ function Q_Rotation_path(q1, n=1, q2) =
|
|||
assert( is_finite(n) && n>=1 && n==floor(n), "Invalid integer" )
|
||||
assert( is_undef(q2) || ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" )
|
||||
is_undef(q2)
|
||||
? [for( i=0, dR=Q_to_matrix4(q1), R=dR; i<=n; i=i+1, R=dR*R ) R]
|
||||
? [for( i=0, dR=Q_Matrix4(q1), R=dR; i<=n; i=i+1, R=dR*R ) R]
|
||||
: let( q2 = Q_Normalize( q1*q2<0 ? -q2: q2 ),
|
||||
dq = Q_pow( _Qmul( q2, Q_Inverse(q1) ), 1/n ),
|
||||
dR = Q_to_matrix4(dq) )
|
||||
[for( i=0, R=Q_to_matrix4(q1); i<=n; i=i+1, R=dR*R ) R];
|
||||
dq = Q_pow( Q_Mul( q2, Q_Inverse(q1) ), 1/n ),
|
||||
dR = Q_Matrix4(dq) )
|
||||
[for( i=0, R=Q_Matrix4(q1); i<=n; i=i+1, R=dR*R ) R];
|
||||
|
||||
module Q_Rotation_path(q1, n=1, q2) {
|
||||
for(Mi=Q_Rotation_path(q1, n, q2))
|
||||
|
@ -578,8 +565,8 @@ function Q_Nlerp(q1,q2,u) =
|
|||
let( q1 = Q_Normalize(q1),
|
||||
q2 = Q_Normalize(q2) )
|
||||
is_num(u)
|
||||
? _Qunit((1-u)*q1 + u*q2 )
|
||||
: [for (ui=u) _Qunit((1-ui)*q1 + ui*q2 ) ];
|
||||
? _Qnorm((1-u)*q1 + u*q2 )
|
||||
: [for (ui=u) _Qnorm((1-ui)*q1 + ui*q2 ) ];
|
||||
|
||||
|
||||
// Function: Q_Squad()
|
||||
|
@ -629,17 +616,6 @@ function Q_Squad(q1,q2,q3,q4,u) =
|
|||
: [for(ui=u) Q_Slerp( Q_Slerp(q1,q4,ui), Q_Slerp(q2,q3,ui), 2*ui*(1-ui) ) ];
|
||||
|
||||
|
||||
function Q_Scubic(q1,q2,q3,q4,u) =
|
||||
assert(is_finite(u) || is_range(u) || is_vector(u) ,
|
||||
"Invalid interpolation coefficient(s)" )
|
||||
is_num(u)
|
||||
? let( q12 = Q_Slerp(q1,q2,u),
|
||||
q23 = Q_Slerp(q2,q3,u),
|
||||
q34 = Q_Slerp(q3,q4,u) )
|
||||
Q_Slerp(Q_Slerp(q12,q23,u),Q_Slerp(q23,q34,u),u)
|
||||
: [for(ui=u) Q_Scubic( q1,q2,q3,q4,ui) ];
|
||||
|
||||
|
||||
// Function: Q_exp()
|
||||
// Usage:
|
||||
// q2 = Q_exp(q);
|
||||
|
|
|
@ -1,28 +0,0 @@
|
|||
//include<hull.scad>
|
||||
include<polyhedra.scad>
|
||||
include<test_affine.scad>
|
||||
include<test_arrays.scad>
|
||||
include<test_common.scad>
|
||||
include<test_coords.scad>
|
||||
include<test_cubetruss.scad>
|
||||
include<test_debug.scad>
|
||||
include<test_edges.scad>
|
||||
include<test_geometry.scad>
|
||||
include<test_linear_bearings.scad>
|
||||
include<test_math.scad>
|
||||
include<test_mutators.scad>
|
||||
include<test_primitives.scad>
|
||||
//include<test_quaternions.scad>
|
||||
include<test_queues.scad>
|
||||
include<test_shapes.scad>
|
||||
include<test_shapes2d.scad>
|
||||
include<test_skin.scad>
|
||||
include<test_stacks.scad>
|
||||
include<test_strings.scad>
|
||||
include<test_structs.scad>
|
||||
include<test_transforms.scad>
|
||||
include<test_vectors.scad>
|
||||
include<test_version.scad>
|
||||
include<test_vnf.scad>
|
||||
|
||||
|
|
@ -1,80 +1,6 @@
|
|||
include <../std.scad>
|
||||
include <../strings.scad>
|
||||
|
||||
function plane_fit(points) =
|
||||
assert( is_matrix(points,undef,3) , "Improper point list." )
|
||||
len(points)< 2 ? [] :
|
||||
len(points)==3 ? plane3pt(points[0],points[1],points[2]) :
|
||||
let(
|
||||
A = [for(pi=points) concat(pi,-1) ],
|
||||
qr = qr_factor(A),
|
||||
R = select(qr[1],0,3),
|
||||
x=[for(ri=R) echo(R=ri)0],
|
||||
//y=[for(qi=qr[0]) echo(Q=qi)0],
|
||||
s = back_substitute
|
||||
( R,
|
||||
sum([for(qi=qr[0])[for(j=[0:3]) qi[j] ] ])
|
||||
)
|
||||
//, s0 = echo(ls=linear_solve(A,[for(p=points) 0]))
|
||||
,w=s==[]? echo("s == []")0:echo(s=s)0
|
||||
)
|
||||
s==[]
|
||||
? // points are collinear
|
||||
[]
|
||||
: // plane through the origin?
|
||||
approx(norm([s.x, s.y, s.z]), 0)
|
||||
? let(
|
||||
k = max_index([for(i=[0:2]) abs(s[i]) ]),
|
||||
A = [[1,0,0], for(pi=points) pi ],
|
||||
b = [1, for(i=[1:len(points)]) 0],
|
||||
s = linear_solve(A,b)
|
||||
, y=echo(s2=s)
|
||||
)
|
||||
s==[]? []:
|
||||
concat(s, 0)/norm(s)
|
||||
: s/norm([s.x, s.y, s.z]) ;
|
||||
|
||||
function plane_fit(points) =
|
||||
assert( is_matrix(points,undef,3) , "Improper point list." )
|
||||
len(points)< 2 ? [] :
|
||||
len(points)==3 ? plane3pt(points[0],points[1],points[2]) :
|
||||
let(
|
||||
A = [for(pi=points) concat(pi,-1) ],
|
||||
B = [ for(pi=points) [0,1] ],
|
||||
sB = transpose(linear_solve(A,B)),
|
||||
s = sB==[] ? []
|
||||
: norm(sB[1])<EPSILON
|
||||
? sB[0]
|
||||
: sB[1]
|
||||
, x = echo(s=s)
|
||||
)
|
||||
s==[]
|
||||
? // points are collinear
|
||||
[]
|
||||
: // plane through the origin?
|
||||
approx(norm([s.x, s.y, s.z]), 0)
|
||||
? let(
|
||||
k = max_index([for(i=[0:2]) abs(s[i]) ]),
|
||||
A = [[1,0,0], for(pi=points) pi ],
|
||||
b = [1, for(i=[1:len(points)]) 0],
|
||||
s = linear_solve(A,b)
|
||||
, y=echo(s2=s)
|
||||
)
|
||||
s==[]? []:
|
||||
concat(s, 0)/norm(s)
|
||||
: s/norm([s.x, s.y, s.z]) ;
|
||||
|
||||
pts0 = [ //[-1,-1,-1],
|
||||
[1,-1,-1],[1,1,-1],[-1,1,-1],
|
||||
[-1,-1, 1],[1,-1, 1],[-1,1, 1]
|
||||
//,[1,1, 1]
|
||||
];
|
||||
N = 10;
|
||||
pts = [for(i=[0:N]) i>N/2? 10*[1,1,1]: rands(-1,1,3) ];
|
||||
pf = plane_fit(pts);
|
||||
echo(pf);
|
||||
//pm = concat(sum(pts)/len(pts), -1);
|
||||
//echo(pmfit=pm*pf);
|
||||
|
||||
function rec_cmp(a,b,eps=1e-9) =
|
||||
typeof(a)!=typeof(b)? false :
|
||||
|
@ -82,18 +8,7 @@ function rec_cmp(a,b,eps=1e-9) =
|
|||
is_list(a)? len(a)==len(b) && all([for (i=idx(a)) rec_cmp(a[i],b[i],eps=eps)]) :
|
||||
a == b;
|
||||
|
||||
function standardize(v) =
|
||||
v==[]
|
||||
? []
|
||||
: sign(first_nonzero(v))*v;
|
||||
|
||||
function first_nonzero(v) =
|
||||
v==[] ? 0
|
||||
: is_num(v) ? v
|
||||
: [for(vi=v) if(!is_list(vi) && ! approx(vi,0)) vi
|
||||
else if(is_list(vi)) first_nonzero(vi), 0 ][0];
|
||||
|
||||
module assert_std(vc,ve) { assert_approx(standardize(vc),standardize(ve)); }
|
||||
function Qstandard(q) = sign([for(qi=q) if( ! approx(qi,0)) qi,0 ][0])*q;
|
||||
|
||||
module verify_f(actual,expected) {
|
||||
if (!rec_cmp(actual,expected)) {
|
||||
|
@ -110,7 +25,7 @@ module verify_f(actual,expected) {
|
|||
|
||||
module test_is_quat() {
|
||||
verify_f(Q_is_quat([0]),false);
|
||||
verify_f(Q_is_quat([0,0,0,0]),true);
|
||||
verify_f(Q_is_quat([0,0,0,0]),false);
|
||||
verify_f(Q_is_quat([1,0,2,0]),true);
|
||||
verify_f(Q_is_quat([1,0,2,0,0]),false);
|
||||
}
|
||||
|
@ -189,7 +104,7 @@ test_QuatXYZ();
|
|||
|
||||
module test_Q_From_to() {
|
||||
verify_f(Q_Mul(Q_From_to([1,2,3], [4,5,2]),Q_From_to([4,5,2], [1,2,3])), Q_Ident());
|
||||
verify_f(Q_to_matrix4(Q_From_to([1,2,3], [4,5,2])), rot(from=[1,2,3],to=[4,5,2]));
|
||||
verify_f(Q_Matrix4(Q_From_to([1,2,3], [4,5,2])), rot(from=[1,2,3],to=[4,5,2]));
|
||||
verify_f(Qrot(Q_From_to([1,2,3], -[1,2,3]),[1,2,3]), -[1,2,3]);
|
||||
verify_f(unit(Qrot(Q_From_to([1,2,3], [4,5,2]),[1,2,3])), unit([4,5,2]));
|
||||
}
|
||||
|
@ -285,7 +200,7 @@ test_Q_Mul();
|
|||
module test_Q_Cumulative() {
|
||||
verify_f(Q_Cumulative([QuatZ(30),QuatX(57),QuatY(18)]),[[0, 0, 0.2588190451, 0.9659258263], [0.4608999698, -0.1234977747, 0.2274546059, 0.8488721457], [0.4908072659, 0.01081554785, 0.1525536221, 0.8577404293]]);
|
||||
}
|
||||
*test_Q_Cumulative();
|
||||
test_Q_Cumulative();
|
||||
|
||||
|
||||
module test_Q_Dot() {
|
||||
|
@ -304,18 +219,18 @@ test_Q_Neg();
|
|||
|
||||
|
||||
module test_Q_Conj() {
|
||||
ang = rands(0,360,3);
|
||||
verify_f(Q_Conj([1,0,0,1]),[-1,0,0,1]);
|
||||
verify_f(Q_Conj([0,1,1,0]),[0,-1,-1,0]);
|
||||
verify_f(Q_Conj(QuatXYZ([23,45,67])),[0.0533818345, -0.4143703268, -0.4360652669, 0.7970537592]);
|
||||
verify_f(Q_Mul(Q_Conj(QuatXYZ(ang)),QuatXYZ(ang)),Q_Ident());
|
||||
}
|
||||
test_Q_Conj();
|
||||
|
||||
|
||||
module test_Q_Inverse() {
|
||||
verify_f(Q_Inverse([1,0,0,1]),[-1,0,0,1]);
|
||||
verify_f(Q_Inverse([0,1,1,0]),[0,-1,-1,0]);
|
||||
|
||||
verify_f(Q_Inverse([1,0,0,1]),[-1,0,0,1]/sqrt(2));
|
||||
verify_f(Q_Inverse([0,1,1,0]),[0,-1,-1,0]/sqrt(2));
|
||||
verify_f(Q_Inverse(QuatXYZ([23,45,67])),Q_Conj(QuatXYZ([23,45,67])));
|
||||
verify_f(Q_Mul(Q_Inverse(QuatXYZ([23,45,67])),QuatXYZ([23,45,67])),Q_Ident());
|
||||
}
|
||||
test_Q_Inverse();
|
||||
|
@ -332,7 +247,7 @@ test_Q_Norm();
|
|||
module test_Q_Normalize() {
|
||||
verify_f(Q_Normalize([1,0,0,1]),[0.7071067812, 0, 0, 0.7071067812]);
|
||||
verify_f(Q_Normalize([0,1,1,0]),[0, 0.7071067812, 0.7071067812, 0]);
|
||||
// verify_f(Q_Normalize(QuatXYZ([23,45,67])),[-0.0533818345, 0.4143703268, 0.4360652669, 0.7970537592]);
|
||||
verify_f(Q_Normalize(QuatXYZ([23,45,67])),[-0.0533818345, 0.4143703268, 0.4360652669, 0.7970537592]);
|
||||
}
|
||||
test_Q_Normalize();
|
||||
|
||||
|
@ -345,47 +260,28 @@ test_Q_Dist();
|
|||
|
||||
|
||||
module test_Q_Slerp() {
|
||||
u = rands(0,1,1)[0];
|
||||
ul = rands(0,1,5);
|
||||
ul2 = [1,1,1,1,1]-ul;
|
||||
a1 = rands(0,360,1)[0];
|
||||
a2 = rands(0,360,1)[0];
|
||||
a3 = rands(0,360,1)[0];
|
||||
verify_f(standardize(Q_Slerp(QuatX(a1),QuatY(a2),0.0)), standardize(QuatX(a1)));
|
||||
verify_f(standardize(Q_Slerp(QuatX(45),QuatY(30),0.5)),
|
||||
[0.1967063121, 0.1330377423, 0, 0.9713946602]);
|
||||
verify_f(standardize(Q_Slerp(QuatX(a1),QuatY(a2),1.0)), standardize(QuatY(a2)));
|
||||
verify_f(standardize(Q_Slerp(QuatXYZ([a1,a2,0]),-QuatY(a2),u)),
|
||||
standardize(Q_Slerp(QuatXYZ([a1,a2,0]), QuatY(a2),u)));
|
||||
verify_f(standardize(Q_Slerp(QuatX(a1),QuatX(a1),u)), standardize(QuatX(a1)));
|
||||
verify_f(standardize(Q_Slerp(QuatXYZ([a1,a2,0]),QuatXYZ([a2,0,a1]),u)),
|
||||
standardize(Q_Slerp(QuatXYZ([a2,0,a1]),QuatXYZ([a1,a2,0]),1-u)));
|
||||
verify_f(standardize(Q_Slerp(QuatXYZ([a1,a2,0]),QuatXYZ([a2,0,a1]),ul)),
|
||||
standardize(Q_Slerp(QuatXYZ([a2,0,a1]),QuatXYZ([a1,a2,0]),ul2)));
|
||||
verify_f(Q_Slerp(QuatX(45),QuatY(30),0.0),QuatX(45));
|
||||
verify_f(Q_Slerp(QuatX(45),QuatY(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]);
|
||||
verify_f(Q_Slerp(QuatX(45),QuatY(30),1.0),QuatY(30));
|
||||
}
|
||||
test_Q_Slerp();
|
||||
|
||||
|
||||
module test_Q_to_matrix3() {
|
||||
rotZ_37 = rot(37);
|
||||
rotZ_37_3 = [for(i=[0:2]) [for(j=[0:2]) rotZ_37[i][j] ] ];
|
||||
angs = [12,-49,40];
|
||||
rot4 = rot(angs);
|
||||
rot3 = [for(i=[0:2]) [for(j=[0:2]) rot4[i][j] ] ];
|
||||
verify_f(Q_to_matrix3(QuatZ(37)),rotZ_37_3);
|
||||
verify_f(Q_to_matrix3(QuatXYZ(angs)),rot3);
|
||||
module test_Q_Matrix3() {
|
||||
verify_f(Q_Matrix3(QuatZ(37)),rot(37,planar=true));
|
||||
verify_f(Q_Matrix3(QuatZ(-49)),rot(-49,planar=true));
|
||||
}
|
||||
test_Q_to_matrix3();
|
||||
test_Q_Matrix3();
|
||||
|
||||
|
||||
module test_Q_to_matrix4() {
|
||||
verify_f(Q_to_matrix4(QuatZ(37)),rot(37));
|
||||
verify_f(Q_to_matrix4(QuatZ(-49)),rot(-49));
|
||||
verify_f(Q_to_matrix4(QuatX(37)),rot([37,0,0]));
|
||||
verify_f(Q_to_matrix4(QuatY(37)),rot([0,37,0]));
|
||||
verify_f(Q_to_matrix4(QuatXYZ([12,34,56])),rot([12,34,56]));
|
||||
module test_Q_Matrix4() {
|
||||
verify_f(Q_Matrix4(QuatZ(37)),rot(37));
|
||||
verify_f(Q_Matrix4(QuatZ(-49)),rot(-49));
|
||||
verify_f(Q_Matrix4(QuatX(37)),rot([37,0,0]));
|
||||
verify_f(Q_Matrix4(QuatY(37)),rot([0,37,0]));
|
||||
verify_f(Q_Matrix4(QuatXYZ([12,34,56])),rot([12,34,56]));
|
||||
}
|
||||
test_Q_to_matrix4();
|
||||
test_Q_Matrix4();
|
||||
|
||||
|
||||
module test_Q_Axis() {
|
||||
|
@ -425,23 +321,23 @@ module test_Qrot() {
|
|||
test_Qrot();
|
||||
|
||||
|
||||
module test_Q_from_matrix() {
|
||||
verify_f(standardize(Q_from_matrix(Q_to_matrix3(Quat([12,34,56],33)))),standardize(Quat([12,34,56],33)));
|
||||
verify_f(Q_to_matrix3(Q_from_matrix(Q_to_matrix3(QuatXYZ([12,34,56])))),
|
||||
Q_to_matrix3(QuatXYZ([12,34,56])));
|
||||
module test_Q_Rotation() {
|
||||
verify_f(Qstandard(Q_Rotation(Q_Matrix3(Quat([12,34,56],33)))),Qstandard(Quat([12,34,56],33)));
|
||||
verify_f(Q_Matrix3(Q_Rotation(Q_Matrix3(QuatXYZ([12,34,56])))),
|
||||
Q_Matrix3(QuatXYZ([12,34,56])));
|
||||
}
|
||||
test_Q_from_matrix();
|
||||
test_Q_Rotation();
|
||||
|
||||
|
||||
module test_Q_Rotation_path() {
|
||||
verify_f(Q_Rotation_path(QuatX(135), 5, QuatY(13.5))[0] , Q_to_matrix4(QuatX(135)));
|
||||
verify_f(Q_Rotation_path(QuatX(135), 11, QuatY(13.5))[11], yrot(13.5));
|
||||
|
||||
verify_f(Q_Rotation_path(QuatX(135), 5, QuatY(13.5))[0] , Q_Matrix4(QuatX(135)));
|
||||
verify_f(Q_Rotation_path(QuatX(135), 11, QuatY(13.5))[11] , yrot(13.5));
|
||||
verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[8] , Q_Rotation_path(QuatX(135), 8, QuatY(13.5))[4]);
|
||||
verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[7] ,
|
||||
Q_Rotation_path(QuatY(13.5),16, QuatX(135))[9]);
|
||||
|
||||
verify_f(Q_Rotation_path(QuatX(11), 5)[0] , xrot(11));
|
||||
verify_f(Q_Rotation_path(QuatX(11), 5)[3] , xrot(11+(55-11)*3/4));
|
||||
verify_f(Q_Rotation_path(QuatX(11), 5)[4] , xrot(55));
|
||||
|
||||
}
|
||||
|
@ -451,54 +347,48 @@ test_Q_Rotation_path();
|
|||
module test_Q_Nlerp() {
|
||||
verify_f(Q_Nlerp(QuatX(45),QuatY(30),0.0),QuatX(45));
|
||||
verify_f(Q_Nlerp(QuatX(45),QuatY(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]);
|
||||
verify_f( Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[8] ,
|
||||
Q_to_matrix4(Q_Nlerp(QuatX(135), QuatY(13.5),0.5)));
|
||||
verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[8] , Q_Matrix4(Q_Nlerp(QuatX(135), QuatY(13.5),0.5)));
|
||||
verify_f(Q_Nlerp(QuatX(45),QuatY(30),1.0),QuatY(30));
|
||||
}
|
||||
test_Q_Nlerp();
|
||||
|
||||
|
||||
module test_Q_Squad() {
|
||||
u = rands(0,1,5);
|
||||
su = [1,1,1,1,1]-u;
|
||||
verify_f(Q_Squad(QuatX(45),QuatZ(30),QuatX(32),QuatY(30),0.0),QuatX(45));
|
||||
verify_f(Q_Squad(QuatX(45),QuatZ(30),QuatX(90),QuatY(30),0.0),QuatX(45));
|
||||
verify_f(Q_Squad(QuatX(45),QuatZ(30),QuatX(90),QuatY(30),1.0),QuatY(30));
|
||||
verify_f( Q_Squad(QuatX(0),QuatX(30),QuatX(90),QuatX(120),0.5),
|
||||
verify_f(Q_Squad(QuatX(0),QuatX(30),QuatX(90),QuatX(120),0.5),
|
||||
Q_Slerp(QuatX(0),QuatX(120),0.5));
|
||||
verify_f( Q_Squad(QuatY(10),QuatZ(20),QuatX(32),QuatXYZ([210,120,30]),u[0] ),
|
||||
Q_Squad(QuatXYZ([210,120,30]),QuatX(32),QuatZ(20),QuatY(10),1-u[0] ) );
|
||||
verify_f( Q_Squad(QuatY(10),QuatZ(20),QuatX(32),QuatXYZ([210,120,30]),u ),
|
||||
Q_Squad(QuatXYZ([210,120,30]),QuatX(32),QuatZ(20),QuatY(10),su ) );
|
||||
verify_f(Q_Squad(QuatY(0),QuatY(0),QuatX(120),QuatX(120),0.3),
|
||||
Q_Slerp(QuatY(0),QuatX(120),0.3));
|
||||
}
|
||||
test_Q_Squad();
|
||||
|
||||
|
||||
module test_Q_exp() {
|
||||
q=QuatXYZ(rands(0,360,3));
|
||||
verify_f(Q_exp(Q_Ident()), exp(1)*Q_Ident());
|
||||
verify_f(Q_exp([0,0,0,33.7]), exp(33.7)*Q_Ident());
|
||||
verify_f(Q_exp(Q_ln(Q_Ident())), Q_Ident());
|
||||
verify_f(Q_exp(Q_ln([1,2,3,4])), [1,2,3,4]);
|
||||
verify_f(Q_exp(Q_ln(q)), q);
|
||||
verify_f(Q_exp(q+Q_Inverse(q)),Q_Mul(Q_exp(q),Q_exp(Q_Inverse(q))));
|
||||
verify_f(Q_exp(Q_ln([1,2,3,0])), [1,2,3,0]);
|
||||
verify_f(Q_exp(Q_ln(QuatXYZ([31,27,34]))), QuatXYZ([31,27,34]));
|
||||
let(q=QuatXYZ([12,23,34]))
|
||||
verify_f(Q_exp(q+Q_Inverse(q)),Q_Mul(Q_exp(q),Q_exp(Q_Inverse(q))));
|
||||
|
||||
}
|
||||
test_Q_exp();
|
||||
|
||||
|
||||
module test_Q_ln() {
|
||||
q = QuatXYZ(rands(0,360,3));
|
||||
verify_f(Q_ln([1,2,3,0]), [24.0535117721, 48.1070235442, 72.1605353164, 1.31952866481]);
|
||||
verify_f(Q_ln(Q_Ident()), [0,0,0,0]);
|
||||
verify_f(Q_ln(5.5*Q_Ident()), [0,0,0,ln(5.5)]);
|
||||
verify_f(Q_ln(Q_exp(q)), q);
|
||||
verify_f(Q_ln(q)+Q_ln(Q_Conj(q)), [0,0,0,0]);
|
||||
verify_f(Q_ln(Q_exp(QuatXYZ([13,37,43]))), QuatXYZ([13,37,43]));
|
||||
verify_f(Q_ln(QuatXYZ([12,23,34]))+Q_ln(Q_Inverse(QuatXYZ([12,23,34]))), [0,0,0,0]);
|
||||
}
|
||||
test_Q_ln();
|
||||
|
||||
|
||||
module test_Q_pow() {
|
||||
q = QuatXYZ(rands(0,360,3));
|
||||
q = Quat([1,2,3],77);
|
||||
verify_f(Q_pow(q,1), q);
|
||||
verify_f(Q_pow(q,0), Q_Ident());
|
||||
verify_f(Q_pow(q,-1), Q_Inverse(q));
|
||||
|
|
Loading…
Reference in a new issue