Merge pull request #653 from adrianVmariano/master

make functions in edges.scad internal
This commit is contained in:
Revar Desmera 2021-09-17 20:40:26 -07:00 committed by GitHub
commit 0bde519fae
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 319 additions and 319 deletions

View file

@ -41,7 +41,7 @@ function _edges_text(edges) =
is_string(edges) ? [str("\"",edges,"\"")] : is_string(edges) ? [str("\"",edges,"\"")] :
edges==EDGES_NONE ? ["EDGES_NONE"] : edges==EDGES_NONE ? ["EDGES_NONE"] :
edges==EDGES_ALL ? ["EDGES_ALL"] : edges==EDGES_ALL ? ["EDGES_ALL"] :
is_edge_array(edges) ? [""] : _is_edge_array(edges) ? [""] :
is_vector(edges,3) ? _edges_vec_txt(edges) : is_vector(edges,3) ? _edges_vec_txt(edges) :
is_list(edges) ? let( is_list(edges) ? let(
lst = [for (x=edges) each _edges_text(x)], lst = [for (x=edges) each _edges_text(x)],
@ -109,20 +109,20 @@ EDGE_OFFSETS = [
// Section: Edge Helpers // Section: Edge Helpers
// Function: is_edge_array() /// Internal Function: _is_edge_array()
// Topics: Edges, Type Checking /// Topics: Edges, Type Checking
// Usage: /// Usage:
// bool = is_edge_array(x); /// bool = _is_edge_array(x);
// Description: /// Description:
// Returns true if the given value has the form of an edge array. /// Returns true if the given value has the form of an edge array.
// Arguments: /// Arguments:
// x = The item to check the type of. /// x = The item to check the type of.
// See Also: edges(), EDGES_NONE, EDGES_ALL /// See Also: edges(), EDGES_NONE, EDGES_ALL
function is_edge_array(x) = is_list(x) && is_vector(x[0]) && len(x)==3 && len(x[0])==4; function _is_edge_array(x) = is_list(x) && is_vector(x[0]) && len(x)==3 && len(x[0])==4;
function _edge_set(v) = function _edge_set(v) =
is_edge_array(v)? v : [ _is_edge_array(v)? v : [
for (ax=[0:2]) [ for (ax=[0:2]) [
for (b=[-1,1], a=[-1,1]) let( for (b=[-1,1], a=[-1,1]) let(
v2=[[0,a,b],[a,0,b],[a,b,0]][ax] v2=[[0,a,b],[a,0,b],[a,b,0]][ax]
@ -153,15 +153,15 @@ function _edge_set(v) =
]; ];
// Function: normalize_edges() /// Internal Function: _normalize_edges()
// Topics: Edges /// Topics: Edges
// Usage: /// Usage:
// edges = normalize_edges(v); /// edges = _normalize_edges(v);
// Description: /// Description:
// Normalizes all values in an edge array to be `1`, if it was originally greater than `0`, /// Normalizes all values in an edge array to be `1`, if it was originally greater than `0`,
// or `0`, if it was originally less than or equal to `0`. /// or `0`, if it was originally less than or equal to `0`.
// See Also: is_edge_array(), edges(), EDGES_NONE, EDGES_ALL /// See Also: edges(), EDGES_NONE, EDGES_ALL
function normalize_edges(v) = [for (ax=v) [for (edge=ax) edge>0? 1 : 0]]; function _normalize_edges(v) = [for (ax=v) [for (edge=ax) edge>0? 1 : 0]];
// Function: edges() // Function: edges()
@ -259,7 +259,7 @@ function normalize_edges(v) = [for (ax=v) [for (edge=ax) edge>0? 1 : 0]];
// v = The edge set to include. // v = The edge set to include.
// except = The edge set to specifically exclude, even if they are in `v`. // except = The edge set to specifically exclude, even if they are in `v`.
// //
// See Also: is_edge_array(), normalize_edges(), EDGES_NONE, EDGES_ALL // See Also: EDGES_NONE, EDGES_ALL
// //
// Example(3D): Just the front-top edge // Example(3D): Just the front-top edge
// edg = edges(FRONT+TOP); // edg = edges(FRONT+TOP);
@ -283,11 +283,11 @@ function normalize_edges(v) = [for (ax=v) [for (edge=ax) edge>0? 1 : 0]];
// edg = edges("ALL", except=edges("Z", except=BACK)); // edg = edges("ALL", except=edges("Z", except=BACK));
// show_edges(edges=edg); // show_edges(edges=edg);
function edges(v, except=[]) = function edges(v, except=[]) =
(is_string(v) || is_vector(v) || is_edge_array(v))? edges([v], except=except) : (is_string(v) || is_vector(v) || _is_edge_array(v))? edges([v], except=except) :
(is_string(except) || is_vector(except) || is_edge_array(except))? edges(v, except=[except]) : (is_string(except) || is_vector(except) || _is_edge_array(except))? edges(v, except=[except]) :
except==[]? normalize_edges(sum([for (x=v) _edge_set(x)])) : except==[]? _normalize_edges(sum([for (x=v) _edge_set(x)])) :
normalize_edges( _normalize_edges(
normalize_edges(sum([for (x=v) _edge_set(x)])) - _normalize_edges(sum([for (x=v) _edge_set(x)])) -
sum([for (x=except) _edge_set(x)]) sum([for (x=except) _edge_set(x)])
); );
@ -303,7 +303,7 @@ function edges(v, except=[]) =
// size = The scalar size of the cube. // size = The scalar size of the cube.
// text = The text to show on the front of the cube. // text = The text to show on the front of the cube.
// txtsize = The size of the text. // txtsize = The size of the text.
// See Also: is_edge_array(), edges(), EDGES_NONE, EDGES_ALL // See Also: edges(), EDGES_NONE, EDGES_ALL
// Example: // Example:
// show_edges(size=30, edges=["X","Y"]); // show_edges(size=30, edges=["X","Y"]);
module show_edges(edges="ALL", size=20, text, txtsize=3) { module show_edges(edges="ALL", size=20, text, txtsize=3) {
@ -365,29 +365,29 @@ CORNER_OFFSETS = [
// Section: Corner Helpers // Section: Corner Helpers
// Function: is_corner_array() /// Internal Function: _is_corner_array()
// Topics: Corners, Type Checking /// Topics: Corners, Type Checking
// Usage: /// Usage:
// bool = is_corner_array(x) /// bool = _is_corner_array(x)
// Description: /// Description:
// Returns true if the given value has the form of a corner array. /// Returns true if the given value has the form of a corner array.
// See Also: CORNERS_NONE, CORNERS_ALL, corners() /// See Also: CORNERS_NONE, CORNERS_ALL, corners()
function is_corner_array(x) = is_vector(x) && len(x)==8 && all([for (xx=x) xx==1||xx==0]); function _is_corner_array(x) = is_vector(x) && len(x)==8 && all([for (xx=x) xx==1||xx==0]);
// Function: normalize_corners() /// Internal Function: _normalize_corners()
// Topics: Corners /// Topics: Corners
// Usage: /// Usage:
// corns = normalize_corners(v); /// corns = _normalize_corners(v);
// Description: /// Description:
// Normalizes all values in a corner array to be `1`, if it was originally greater than `0`, /// Normalizes all values in a corner array to be `1`, if it was originally greater than `0`,
// or `0`, if it was originally less than or equal to `0`. /// or `0`, if it was originally less than or equal to `0`.
// See Also: CORNERS_NONE, CORNERS_ALL, is_corner_array(), corners() /// See Also: CORNERS_NONE, CORNERS_ALL, corners()
function normalize_corners(v) = [for (x=v) x>0? 1 : 0]; function _normalize_corners(v) = [for (x=v) x>0? 1 : 0];
function _corner_set(v) = function _corner_set(v) =
is_corner_array(v)? v : [ _is_corner_array(v)? v : [
for (i=[0:7]) let( for (i=[0:7]) let(
v2 = CORNER_OFFSETS[i] v2 = CORNER_OFFSETS[i]
) ( ) (
@ -480,7 +480,7 @@ function _corner_set(v) =
// show_corners(corners="ALL"); // show_corners(corners="ALL");
// show_corners(corners="NONE"); // show_corners(corners="NONE");
// } // }
// See Also: CORNERS_NONE, CORNERS_ALL, is_corner_array(), normalize_corners() // See Also: CORNERS_NONE, CORNERS_ALL
// Example(3D): Just the front-top-right corner // Example(3D): Just the front-top-right corner
// crn = corners(FRONT+TOP+RIGHT); // crn = corners(FRONT+TOP+RIGHT);
// show_corners(corners=crn); // show_corners(corners=crn);
@ -497,37 +497,37 @@ function _corner_set(v) =
// crn = corners([BOTTOM,FRONT], except=BOTTOM+FRONT); // crn = corners([BOTTOM,FRONT], except=BOTTOM+FRONT);
// show_corners(corners=crn); // show_corners(corners=crn);
function corners(v, except=[]) = function corners(v, except=[]) =
(is_string(v) || is_vector(v) || is_corner_array(v))? corners([v], except=except) : (is_string(v) || is_vector(v) || _is_corner_array(v))? corners([v], except=except) :
(is_string(except) || is_vector(except) || is_corner_array(except))? corners(v, except=[except]) : (is_string(except) || is_vector(except) || _is_corner_array(except))? corners(v, except=[except]) :
except==[]? normalize_corners(sum([for (x=v) _corner_set(x)])) : except==[]? _normalize_corners(sum([for (x=v) _corner_set(x)])) :
let( let(
a = normalize_corners(sum([for (x=v) _corner_set(x)])), a = _normalize_corners(sum([for (x=v) _corner_set(x)])),
b = normalize_corners(sum([for (x=except) _corner_set(x)])) b = _normalize_corners(sum([for (x=except) _corner_set(x)]))
) normalize_corners(a - b); ) _normalize_corners(a - b);
// Function: corner_edges() /// Internal Function: _corner_edges()
// Topics: Corners /// Topics: Corners
// Description: /// Description:
// Returns [XCOUNT,YCOUNT,ZCOUNT] where each is the count of edges aligned with that /// Returns [XCOUNT,YCOUNT,ZCOUNT] where each is the count of edges aligned with that
// axis that are in the edge set and touch the given corner. /// axis that are in the edge set and touch the given corner.
// Arguments: /// Arguments:
// edges = Standard edges array. /// edges = Standard edges array.
// v = Vector pointing to the corner to count edge intersections at. /// v = Vector pointing to the corner to count edge intersections at.
// See Also: CORNERS_NONE, CORNERS_ALL, is_corner_array(), corners(), corner_edge_count() /// See Also: CORNERS_NONE, CORNERS_ALL, corners()
function corner_edges(edges, v) = function _corner_edges(edges, v) =
let(u = (v+[1,1,1])/2) [edges[0][u.y+u.z*2], edges[1][u.x+u.z*2], edges[2][u.x+u.y*2]]; let(u = (v+[1,1,1])/2) [edges[0][u.y+u.z*2], edges[1][u.x+u.z*2], edges[2][u.x+u.y*2]];
// Function: corner_edge_count() /// InternalFunction: _corner_edge_count()
// Topics: Corners /// Topics: Corners
// Description: /// Description:
// Counts how many given edges intersect at a specific corner. /// Counts how many given edges intersect at a specific corner.
// Arguments: /// Arguments:
// edges = Standard edges array. /// edges = Standard edges array.
// v = Vector pointing to the corner to count edge intersections at. /// v = Vector pointing to the corner to count edge intersections at.
// See Also: CORNERS_NONE, CORNERS_ALL, is_corner_array(), corners(), corner_edges() /// See Also: CORNERS_NONE, CORNERS_ALL, corners()
function corner_edge_count(edges, v) = function _corner_edge_count(edges, v) =
let(u = (v+[1,1,1])/2) edges[0][u.y+u.z*2] + edges[1][u.x+u.z*2] + edges[2][u.x+u.y*2]; let(u = (v+[1,1,1])/2) edges[0][u.y+u.z*2] + edges[1][u.x+u.z*2] + edges[2][u.x+u.y*2];
@ -535,7 +535,7 @@ function _corners_text(corners) =
is_string(corners) ? [str("\"",corners,"\"")] : is_string(corners) ? [str("\"",corners,"\"")] :
corners==CORNERS_NONE ? ["CORNERS_NONE"] : corners==CORNERS_NONE ? ["CORNERS_NONE"] :
corners==CORNERS_ALL ? ["CORNERS_ALL"] : corners==CORNERS_ALL ? ["CORNERS_ALL"] :
is_corner_array(corners) ? [""] : _is_corner_array(corners) ? [""] :
is_vector(corners,3) ? _edges_vec_txt(corners) : is_vector(corners,3) ? _edges_vec_txt(corners) :
is_list(corners) ? let( is_list(corners) ? let(
lst = [for (x=corners) each _corners_text(x)], lst = [for (x=corners) each _corners_text(x)],
@ -563,7 +563,7 @@ function _corners_text(corners) =
// size = The scalar size of the cube. // size = The scalar size of the cube.
// text = If given, overrides the text to be shown on the front of the cube. // text = If given, overrides the text to be shown on the front of the cube.
// txtsize = The size of the text. // txtsize = The size of the text.
// See Also: CORNERS_NONE, CORNERS_ALL, is_corner_array(), corners() // See Also: CORNERS_NONE, CORNERS_ALL, corners()
// Example: // Example:
// show_corners(corners=FWD+RIGHT, size=30); // show_corners(corners=FWD+RIGHT, size=30);
module show_corners(corners="ALL", size=20, text, txtsize=3) { module show_corners(corners="ALL", size=20, text, txtsize=3) {

View file

@ -598,6 +598,188 @@ module cylindrical_extrude(or, ir, od, id, size=1000, convexity=10, spin=0, orie
} }
// Module: extrude_from_to()
// Description:
// Extrudes a 2D shape between the 3d points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
// Arguments:
// pt1 = starting point of extrusion.
// pt2 = ending point of extrusion.
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
// scale = scale multiplier for end of extrusion compared the start.
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
// xcopies(3) circle(3, $fn=32);
// }
module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) {
assert(is_vector(pt1));
assert(is_vector(pt2));
pt1 = point3d(pt1);
pt2 = point3d(pt2);
rtp = xyz_to_spherical(pt2-pt1);
translate(pt1) {
rotate([0, rtp[2], rtp[1]]) {
if (rtp[0] > 0) {
linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) {
children();
}
}
}
}
}
// Module: spiral_sweep()
// Description:
// Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path
// of a given radius, height and twist. The origin in the profile traces out the helix of the specified radius.
// If twist is positive the path will be right-handed; if twist is negative the path will be left-handed.
// .
// Higbee specifies tapering applied to the ends of the extrusion and is given as the linear distance
// over which to taper.
// Arguments:
// poly = Array of points of a polygon path, to be extruded.
// h = height of the spiral to extrude along.
// r = Radius of the spiral to extrude along. Default: 50
// twist = number of degrees of rotation to spiral up along height.
// ---
// d = Diameter of the spiral to extrude along.
// higbee = Length to taper thread ends over.
// higbee1 = Taper length at start
// higbee2 = Taper length at end
// internal = direction to taper the threads with higbee. If true threads taper outward; if false they taper inward. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
// Example:
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
module spiral_sweep(poly, h, r, twist=360, higbee, center, r1, r2, d, d1, d2, higbee1, higbee2, internal=false, anchor, spin=0, orient=UP) {
higsample = 10; // Oversample factor for higbee tapering
dummy1=assert(is_num(twist) && twist != 0);
bounds = pointlist_bounds(poly);
yctr = (bounds[0].y+bounds[1].y)/2;
xmin = bounds[0].x;
xmax = bounds[1].x;
poly = path3d(clockwise_polygon(poly));
anchor = get_anchor(anchor,center,BOT,BOT);
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=50);
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=50);
sides = segs(max(r1,r2));
dir = sign(twist);
ang_step = 360/sides*dir;
anglist = [for(ang = [0:ang_step:twist-EPSILON]) ang,
twist];
higbee1 = first_defined([higbee1, higbee, 0]);
higbee2 = first_defined([higbee2, higbee, 0]);
higang1 = 360 * higbee1 / (2 * r1 * PI);
higang2 = 360 * higbee2 / (2 * r2 * PI);
dummy2=assert(higbee1>=0 && higbee2>=0)
assert(higang1 < dir*twist/2,"Higbee1 is more than half the threads")
assert(higang2 < dir*twist/2,"Higbee2 is more than half the threads");
function polygon_r(N,theta) =
let( alpha = 360/N )
cos(alpha/2)/(cos(posmod(theta,alpha)-alpha/2));
higofs = pow(0.05,2); // Smallest hig scale is the square root of this value
function taperfunc(x) = sqrt((1-higofs)*x+higofs);
interp_ang = [
for(i=idx(anglist,e=-2))
each lerpn(anglist[i],anglist[i+1],
(higang1>0 && higang1>dir*anglist[i+1]
|| (higang2>0 && higang2>dir*(twist-anglist[i]))) ? ceil((anglist[i+1]-anglist[i])/ang_step*higsample)
: 1,
endpoint=false),
last(anglist)
];
skewmat = affine3d_skew_xz(xa=atan2(r2-r1,h));
points = [
for (a = interp_ang) let (
hsc = dir*a<higang1 ? taperfunc(dir*a/higang1)
: dir*(twist-a)<higang2 ? taperfunc(dir*(twist-a)/higang2)
: 1,
u = a/twist,
r = lerp(r1,r2,u),
mat = affine3d_zrot(a)
* affine3d_translate([polygon_r(sides,a)*r, 0, h * (u-0.5)])
* affine3d_xrot(90)
* skewmat
* scale([hsc,lerp(hsc,1,0.25),1], cp=[internal ? xmax : xmin, yctr, 0]),
pts = apply(mat, poly)
) pts
];
vnf = vnf_vertex_array(
points, col_wrap=true, caps=true, reverse=dir>0?true:false,
style=higbee1>0 || higbee2>0 ? "quincunx" : "alt"
);
attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) {
vnf_polyhedron(vnf, convexity=ceil(2*dir*twist/360));
children();
}
}
// Module: path_extrude()
// Description:
// Extrudes 2D children along a 3D path. This may be slow.
// Arguments:
// path = array of points for the bezier path to extrude along.
// convexity = maximum number of walls a ran can pass through.
// clipsize = increase if artifacts are left. Default: 1000
// Example(FlatSpin,VPD=600,VPT=[75,16,20]):
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
// path_extrude(path) circle(r=10, $fn=6);
module path_extrude(path, convexity=10, clipsize=100) {
function polyquats(path, q=q_ident(), v=[0,0,1], i=0) = let(
v2 = path[i+1] - path[i],
ang = vector_angle(v,v2),
axis = ang>0.001? unit(cross(v,v2)) : [0,0,1],
newq = q_mul(quat(axis, ang), q),
dist = norm(v2)
) i < (len(path)-2)?
concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) :
[[dist, newq, ang]];
epsilon = 0.0001; // Make segments ever so slightly too long so they overlap.
ptcount = len(path);
pquats = polyquats(path);
for (i = [0:1:ptcount-2]) {
pt1 = path[i];
pt2 = path[i+1];
dist = pquats[i][0];
q = pquats[i][1];
difference() {
translate(pt1) {
q_rot(q) {
down(clipsize/2/2) {
if ((dist+clipsize/2) > 0) {
linear_extrude(height=dist+clipsize/2, convexity=convexity) {
children();
}
}
}
}
}
translate(pt1) {
hq = (i > 0)? q_slerp(q, pquats[i-1][1], 0.5) : q;
q_rot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true);
}
translate(pt2) {
hq = (i < ptcount-2)? q_slerp(q, pquats[i+1][1], 0.5) : q;
q_rot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true);
}
}
}
}
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
// Section: Offset Mutators // Section: Offset Mutators

View file

@ -1021,7 +1021,11 @@ function _path_cuts_dir(path, cuts, closed=false, eps=1e-2) =
function path_cut(path,cutdist,closed) = function path_cut(path,cutdist,closed) =
is_num(cutdist) ? path_cut(path,[cutdist],closed) : is_num(cutdist) ? path_cut(path,[cutdist],closed) :
assert(is_vector(cutdist)) assert(is_vector(cutdist))
assert(last(cutdist)<path_length(path,closed=closed),"Cut distances must be smaller than the path length")
assert(last(cutdist)<path_length(path,closed=closed),
approx(last(cutdist),path_length(path,closed=closed)) ?
"Last cut distance is the full path: don't include the final end as a cut" :
"Cut distances must be smaller than the path length")
assert(cutdist[0]>0, "Cut distances must be strictly positive") assert(cutdist[0]>0, "Cut distances must be strictly positive")
let( let(
cutlist = path_cut_points(path,cutdist,closed=closed), cutlist = path_cut_points(path,cutdist,closed=closed),
@ -1215,190 +1219,4 @@ function resample_path(path, N, spacing, closed=false) =
]; ];
// Section: 3D Modules
// Module: extrude_from_to()
// Description:
// Extrudes a 2D shape between the 3d points pt1 and pt2. Takes as children a set of 2D shapes to extrude.
// Arguments:
// pt1 = starting point of extrusion.
// pt2 = ending point of extrusion.
// convexity = max number of times a line could intersect a wall of the 2D shape being extruded.
// twist = number of degrees to twist the 2D shape over the entire extrusion length.
// scale = scale multiplier for end of extrusion compared the start.
// slices = Number of slices along the extrusion to break the extrusion into. Useful for refining `twist` extrusions.
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// extrude_from_to([0,0,0], [10,20,30], convexity=4, twist=360, scale=3.0, slices=40) {
// xcopies(3) circle(3, $fn=32);
// }
module extrude_from_to(pt1, pt2, convexity, twist, scale, slices) {
assert(is_vector(pt1));
assert(is_vector(pt2));
pt1 = point3d(pt1);
pt2 = point3d(pt2);
rtp = xyz_to_spherical(pt2-pt1);
translate(pt1) {
rotate([0, rtp[2], rtp[1]]) {
if (rtp[0] > 0) {
linear_extrude(height=rtp[0], convexity=convexity, center=false, slices=slices, twist=twist, scale=scale) {
children();
}
}
}
}
}
// Module: spiral_sweep()
// Description:
// Takes a closed 2D polygon path, centered on the XY plane, and sweeps/extrudes it along a 3D spiral path
// of a given radius, height and twist. The origin in the profile traces out the helix of the specified radius.
// If twist is positive the path will be right-handed; if twist is negative the path will be left-handed.
// .
// Higbee specifies tapering applied to the ends of the extrusion and is given as the linear distance
// over which to taper.
// Arguments:
// poly = Array of points of a polygon path, to be extruded.
// h = height of the spiral to extrude along.
// r = Radius of the spiral to extrude along. Default: 50
// twist = number of degrees of rotation to spiral up along height.
// ---
// d = Diameter of the spiral to extrude along.
// higbee = Length to taper thread ends over.
// higbee1 = Taper length at start
// higbee2 = Taper length at end
// internal = direction to taper the threads with higbee. If true threads taper outward; if false they taper inward. Default: false
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// center = If given, overrides `anchor`. A true value sets `anchor=CENTER`, false sets `anchor=BOTTOM`.
// Example:
// poly = [[-10,0], [-3,-5], [3,-5], [10,0], [0,-30]];
// spiral_sweep(poly, h=200, r=50, twist=1080, $fn=36);
module spiral_sweep(poly, h, r, twist=360, higbee, center, r1, r2, d, d1, d2, higbee1, higbee2, internal=false, anchor, spin=0, orient=UP) {
higsample = 10; // Oversample factor for higbee tapering
dummy1=assert(is_num(twist) && twist != 0);
bounds = pointlist_bounds(poly);
yctr = (bounds[0].y+bounds[1].y)/2;
xmin = bounds[0].x;
xmax = bounds[1].x;
poly = path3d(clockwise_polygon(poly));
anchor = get_anchor(anchor,center,BOT,BOT);
r1 = get_radius(r1=r1, r=r, d1=d1, d=d, dflt=50);
r2 = get_radius(r1=r2, r=r, d1=d2, d=d, dflt=50);
sides = segs(max(r1,r2));
dir = sign(twist);
ang_step = 360/sides*dir;
anglist = [for(ang = [0:ang_step:twist-EPSILON]) ang,
twist];
higbee1 = first_defined([higbee1, higbee, 0]);
higbee2 = first_defined([higbee2, higbee, 0]);
higang1 = 360 * higbee1 / (2 * r1 * PI);
higang2 = 360 * higbee2 / (2 * r2 * PI);
dummy2=assert(higbee1>=0 && higbee2>=0)
assert(higang1 < dir*twist/2,"Higbee1 is more than half the threads")
assert(higang2 < dir*twist/2,"Higbee2 is more than half the threads");
function polygon_r(N,theta) =
let( alpha = 360/N )
cos(alpha/2)/(cos(posmod(theta,alpha)-alpha/2));
higofs = pow(0.05,2); // Smallest hig scale is the square root of this value
function taperfunc(x) = sqrt((1-higofs)*x+higofs);
interp_ang = [
for(i=idx(anglist,e=-2))
each lerpn(anglist[i],anglist[i+1],
(higang1>0 && higang1>dir*anglist[i+1]
|| (higang2>0 && higang2>dir*(twist-anglist[i]))) ? ceil((anglist[i+1]-anglist[i])/ang_step*higsample)
: 1,
endpoint=false),
last(anglist)
];
skewmat = affine3d_skew_xz(xa=atan2(r2-r1,h));
points = [
for (a = interp_ang) let (
hsc = dir*a<higang1 ? taperfunc(dir*a/higang1)
: dir*(twist-a)<higang2 ? taperfunc(dir*(twist-a)/higang2)
: 1,
u = a/twist,
r = lerp(r1,r2,u),
mat = affine3d_zrot(a)
* affine3d_translate([polygon_r(sides,a)*r, 0, h * (u-0.5)])
* affine3d_xrot(90)
* skewmat
* scale([hsc,lerp(hsc,1,0.25),1], cp=[internal ? xmax : xmin, yctr, 0]),
pts = apply(mat, poly)
) pts
];
vnf = vnf_vertex_array(
points, col_wrap=true, caps=true, reverse=dir>0?true:false,
style=higbee1>0 || higbee2>0 ? "quincunx" : "alt"
);
attachable(anchor,spin,orient, r1=r1, r2=r2, l=h) {
vnf_polyhedron(vnf, convexity=ceil(2*dir*twist/360));
children();
}
}
// Module: path_extrude()
// Description:
// Extrudes 2D children along a 3D path. This may be slow.
// Arguments:
// path = array of points for the bezier path to extrude along.
// convexity = maximum number of walls a ran can pass through.
// clipsize = increase if artifacts are left. Default: 1000
// Example(FlatSpin,VPD=600,VPT=[75,16,20]):
// path = [ [0, 0, 0], [33, 33, 33], [66, 33, 40], [100, 0, 0], [150,0,0] ];
// path_extrude(path) circle(r=10, $fn=6);
module path_extrude(path, convexity=10, clipsize=100) {
function polyquats(path, q=q_ident(), v=[0,0,1], i=0) = let(
v2 = path[i+1] - path[i],
ang = vector_angle(v,v2),
axis = ang>0.001? unit(cross(v,v2)) : [0,0,1],
newq = q_mul(quat(axis, ang), q),
dist = norm(v2)
) i < (len(path)-2)?
concat([[dist, newq, ang]], polyquats(path, newq, v2, i+1)) :
[[dist, newq, ang]];
epsilon = 0.0001; // Make segments ever so slightly too long so they overlap.
ptcount = len(path);
pquats = polyquats(path);
for (i = [0:1:ptcount-2]) {
pt1 = path[i];
pt2 = path[i+1];
dist = pquats[i][0];
q = pquats[i][1];
difference() {
translate(pt1) {
q_rot(q) {
down(clipsize/2/2) {
if ((dist+clipsize/2) > 0) {
linear_extrude(height=dist+clipsize/2, convexity=convexity) {
children();
}
}
}
}
}
translate(pt1) {
hq = (i > 0)? q_slerp(q, pquats[i-1][1], 0.5) : q;
q_rot(hq) down(clipsize/2+epsilon) cube(clipsize, center=true);
}
translate(pt2) {
hq = (i < ptcount-2)? q_slerp(q, pquats[i+1][1], 0.5) : q;
q_rot(hq) up(clipsize/2+epsilon) cube(clipsize, center=true);
}
}
}
}
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -179,7 +179,7 @@ module cuboid(
orient=UP orient=UP
) { ) {
module corner_shape(corner) { module corner_shape(corner) {
e = corner_edges(edges, corner); e = _corner_edges(edges, corner);
cnt = sum(e); cnt = sum(e);
r = first_defined([chamfer, rounding, 0]); r = first_defined([chamfer, rounding, 0]);
c = [min(r,size.x/2), min(r,size.y/2), min(r,size.z/2)]; c = [min(r,size.x/2), min(r,size.y/2), min(r,size.z/2)];
@ -292,7 +292,7 @@ module cuboid(
// Add multi-edge corners. // Add multi-edge corners.
if (trimcorners) { if (trimcorners) {
for (za=[-1,1], ya=[-1,1], xa=[-1,1]) { for (za=[-1,1], ya=[-1,1], xa=[-1,1]) {
ce = corner_edges(edges, [xa,ya,za]); ce = _corner_edges(edges, [xa,ya,za]);
if (ce.x + ce.y > 1) { if (ce.x + ce.y > 1) {
translate(v_mul([xa,ya,za]/2, size+[ach-0.01,ach-0.01,-ach])) { translate(v_mul([xa,ya,za]/2, size+[ach-0.01,ach-0.01,-ach])) {
cube([ach+0.01,ach+0.01,ach], center=true); cube([ach+0.01,ach+0.01,ach], center=true);
@ -379,7 +379,7 @@ module cuboid(
// Add multi-edge corners. // Add multi-edge corners.
if (trimcorners) { if (trimcorners) {
for (za=[-1,1], ya=[-1,1], xa=[-1,1]) { for (za=[-1,1], ya=[-1,1], xa=[-1,1]) {
ce = corner_edges(edges, [xa,ya,za]); ce = _corner_edges(edges, [xa,ya,za]);
if (ce.x + ce.y > 1) { if (ce.x + ce.y > 1) {
translate(v_mul([xa,ya,za]/2, size+[ard-0.01,ard-0.01,-ard])) { translate(v_mul([xa,ya,za]/2, size+[ard-0.01,ard-0.01,-ard])) {
cube([ard+0.01,ard+0.01,ard], center=true); cube([ard+0.01,ard+0.01,ard], center=true);

View file

@ -1,19 +1,19 @@
include <../std.scad> include <../std.scad>
module test_is_edge_array() { module test__is_edge_array() {
assert(is_edge_array([[0,0,0,0],[0,0,0,0],[0,0,0,0]])); assert(_is_edge_array([[0,0,0,0],[0,0,0,0],[0,0,0,0]]));
assert(is_edge_array([[1,1,1,1],[1,1,1,1],[1,1,1,1]])); assert(_is_edge_array([[1,1,1,1],[1,1,1,1],[1,1,1,1]]));
assert(!is_edge_array([[1,1,1],[1,1,1],[1,1,1]])); assert(!_is_edge_array([[1,1,1],[1,1,1],[1,1,1]]));
assert(!is_edge_array([[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]])); assert(!_is_edge_array([[1,1,1,1,1],[1,1,1,1,1],[1,1,1,1,1]]));
assert(!is_edge_array([[1,1,1,1],[1,1,1,1]])); assert(!_is_edge_array([[1,1,1,1],[1,1,1,1]]));
assert(!is_edge_array([1,1,1,1])); assert(!_is_edge_array([1,1,1,1]));
assert(!is_edge_array("foo")); assert(!_is_edge_array("foo"));
assert(!is_edge_array(42)); assert(!_is_edge_array(42));
assert(!is_edge_array(true)); assert(!_is_edge_array(true));
assert(is_edge_array(edges(["X","Y"]))); assert(_is_edge_array(edges(["X","Y"])));
} }
test_is_edge_array(); test__is_edge_array();
module test__edge_set() { module test__edge_set() {
@ -62,14 +62,14 @@ module test__edge_set() {
test__edge_set(); test__edge_set();
module test_normalize_edges() { module test__normalize_edges() {
assert(normalize_edges([[-2,-2,-2,-2],[-2,-2,-2,-2],[-2,-2,-2,-2]]) == [[0,0,0,0],[0,0,0,0],[0,0,0,0]]); assert(_normalize_edges([[-2,-2,-2,-2],[-2,-2,-2,-2],[-2,-2,-2,-2]]) == [[0,0,0,0],[0,0,0,0],[0,0,0,0]]);
assert(normalize_edges([[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1]]) == [[0,0,0,0],[0,0,0,0],[0,0,0,0]]); assert(_normalize_edges([[-1,-1,-1,-1],[-1,-1,-1,-1],[-1,-1,-1,-1]]) == [[0,0,0,0],[0,0,0,0],[0,0,0,0]]);
assert(normalize_edges([[0,0,0,0],[0,0,0,0],[0,0,0,0]]) == [[0,0,0,0],[0,0,0,0],[0,0,0,0]]); assert(_normalize_edges([[0,0,0,0],[0,0,0,0],[0,0,0,0]]) == [[0,0,0,0],[0,0,0,0],[0,0,0,0]]);
assert(normalize_edges([[1,1,1,1],[1,1,1,1],[1,1,1,1]]) == [[1,1,1,1],[1,1,1,1],[1,1,1,1]]); assert(_normalize_edges([[1,1,1,1],[1,1,1,1],[1,1,1,1]]) == [[1,1,1,1],[1,1,1,1],[1,1,1,1]]);
assert(normalize_edges([[2,2,2,2],[2,2,2,2],[2,2,2,2]]) == [[1,1,1,1],[1,1,1,1],[1,1,1,1]]); assert(_normalize_edges([[2,2,2,2],[2,2,2,2],[2,2,2,2]]) == [[1,1,1,1],[1,1,1,1],[1,1,1,1]]);
} }
test_normalize_edges(); test__normalize_edges();
module test_edges() { module test_edges() {
@ -90,24 +90,24 @@ module test_edges() {
test_edges(); test_edges();
module test_corner_edge_count() { module test__corner_edge_count() {
edges = edges([TOP,FRONT+RIGHT]); edges = edges([TOP,FRONT+RIGHT]);
assert(corner_edge_count(edges,TOP+FRONT+RIGHT) == 3); assert(_corner_edge_count(edges,TOP+FRONT+RIGHT) == 3);
assert(corner_edge_count(edges,TOP+FRONT+LEFT) == 2); assert(_corner_edge_count(edges,TOP+FRONT+LEFT) == 2);
assert(corner_edge_count(edges,BOTTOM+FRONT+RIGHT) == 1); assert(_corner_edge_count(edges,BOTTOM+FRONT+RIGHT) == 1);
assert(corner_edge_count(edges,BOTTOM+FRONT+LEFT) == 0); assert(_corner_edge_count(edges,BOTTOM+FRONT+LEFT) == 0);
} }
test_corner_edge_count(); test__corner_edge_count();
module test_corner_edges() { module test__corner_edges() {
edges = edges([TOP,FRONT+RIGHT]); edges = edges([TOP,FRONT+RIGHT]);
assert_equal(corner_edges(edges,TOP+FRONT+RIGHT), [1,1,1]); assert_equal(_corner_edges(edges,TOP+FRONT+RIGHT), [1,1,1]);
assert_equal(corner_edges(edges,TOP+FRONT+LEFT), [1,1,0]); assert_equal(_corner_edges(edges,TOP+FRONT+LEFT), [1,1,0]);
assert_equal(corner_edges(edges,BOTTOM+FRONT+RIGHT), [0,0,1]); assert_equal(_corner_edges(edges,BOTTOM+FRONT+RIGHT), [0,0,1]);
assert_equal(corner_edges(edges,BOTTOM+FRONT+LEFT), [0,0,0]); assert_equal(_corner_edges(edges,BOTTOM+FRONT+LEFT), [0,0,0]);
} }
test_corner_edges(); test__corner_edges();
module test_corners() { module test_corners() {
@ -174,36 +174,36 @@ module test_corners() {
test_corners(); test_corners();
module test_is_corner_array() { module test__is_corner_array() {
edges = edges([TOP,FRONT+RIGHT]); edges = edges([TOP,FRONT+RIGHT]);
corners = corners([TOP,FRONT+RIGHT]); corners = corners([TOP,FRONT+RIGHT]);
assert(!is_corner_array(undef)); assert(!_is_corner_array(undef));
assert(!is_corner_array(true)); assert(!_is_corner_array(true));
assert(!is_corner_array(false)); assert(!_is_corner_array(false));
assert(!is_corner_array(INF)); assert(!_is_corner_array(INF));
assert(!is_corner_array(-INF)); assert(!_is_corner_array(-INF));
assert(!is_corner_array(NAN)); assert(!_is_corner_array(NAN));
assert(!is_corner_array(-4)); assert(!_is_corner_array(-4));
assert(!is_corner_array(0)); assert(!_is_corner_array(0));
assert(!is_corner_array(4)); assert(!_is_corner_array(4));
assert(!is_corner_array("foo")); assert(!_is_corner_array("foo"));
assert(!is_corner_array([])); assert(!_is_corner_array([]));
assert(!is_corner_array([4,5,6])); assert(!_is_corner_array([4,5,6]));
assert(!is_corner_array([2:3:9])); assert(!_is_corner_array([2:3:9]));
assert(!is_corner_array(edges)); assert(!_is_corner_array(edges));
assert(is_corner_array(corners)); assert(_is_corner_array(corners));
} }
test_is_corner_array(); test__is_corner_array();
module test_normalize_corners() { module test__normalize_corners() {
assert_equal(normalize_corners([-2,-2,-2,-2,-2,-2,-2,-2]), [0,0,0,0,0,0,0,0]); assert_equal(_normalize_corners([-2,-2,-2,-2,-2,-2,-2,-2]), [0,0,0,0,0,0,0,0]);
assert_equal(normalize_corners([-1,-1,-1,-1,-1,-1,-1,-1]), [0,0,0,0,0,0,0,0]); assert_equal(_normalize_corners([-1,-1,-1,-1,-1,-1,-1,-1]), [0,0,0,0,0,0,0,0]);
assert_equal(normalize_corners([0,0,0,0,0,0,0,0]), [0,0,0,0,0,0,0,0]); assert_equal(_normalize_corners([0,0,0,0,0,0,0,0]), [0,0,0,0,0,0,0,0]);
assert_equal(normalize_corners([1,1,1,1,1,1,1,1]), [1,1,1,1,1,1,1,1]); assert_equal(_normalize_corners([1,1,1,1,1,1,1,1]), [1,1,1,1,1,1,1,1]);
assert_equal(normalize_corners([2,2,2,2,2,2,2,2]), [1,1,1,1,1,1,1,1]); assert_equal(_normalize_corners([2,2,2,2,2,2,2,2]), [1,1,1,1,1,1,1,1]);
} }
test_normalize_corners(); test__normalize_corners();