Massive speedups for knurling. Added chamfering and rounding options.

This commit is contained in:
Revar Desmera 2019-07-12 12:59:18 -07:00
parent c127a2c72e
commit 1020d1d659

View file

@ -30,18 +30,33 @@
// count = The number of grooves to have around the surface of the cylinder. Default: 30 // count = The number of grooves to have around the surface of the cylinder. Default: 30
// profile = The angle of the bottom of the groove, in degrees. Default 120 // profile = The angle of the bottom of the groove, in degrees. Default 120
// helix = The helical angle of the grooves, in degrees. Default: 30 // helix = The helical angle of the grooves, in degrees. Default: 30
// chamfer = The size of the chamfers on the ends of the cylinder. Default: none.
// chamfer1 = The size of the chamfer on the bottom end of the cylinder. Default: none.
// chamfer2 = The size of the chamfer on the top end of the cylinder. Default: none.
// chamfang = The angle in degrees of the chamfers on the ends of the cylinder.
// chamfang1 = The angle in degrees of the chamfer on the bottom end of the cylinder.
// chamfang2 = The angle in degrees of the chamfer on the top end of the cylinder.
// from_end = If true, chamfer is measured from the end of the cylinder, instead of inset from the edge. Default: `false`.
// rounding = The radius of the rounding on the ends of the cylinder. Default: none.
// rounding1 = The radius of the rounding on the bottom end of the cylinder.
// rounding2 = The radius of the rounding on the top end of the cylinder.
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER` // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#spin). Default: `0` // spin = Rotate this many degrees around the Z axis. See [spin](attachments.scad#spin). Default: `0`
// orient = Vector to rotate top towards. See [orient](attachments.scad#orient). Default: `UP` // orient = Vector to rotate top towards. See [orient](attachments.scad#orient). Default: `UP`
// Examples: // Examples:
// knurled_cylinder(l=30, r=20, profile=120, helix=45); // knurled_cylinder(l=30, r=20, count=30, profile=120, helix=45);
// knurled_cylinder(l=30, r=20, profile=120, helix=30); // knurled_cylinder(l=30, r=20, count=30, profile=120, helix=30);
// knurled_cylinder(l=30, r=20, profile=90, helix=30); // knurled_cylinder(l=30, r=20, count=30, profile=90, helix=30);
// knurled_cylinder(l=30, r=20, count=20, profile=120, helix=30);
module knurled_cylinder( module knurled_cylinder(
l=20, l=20,
r=undef, r1=undef, r2=undef, r=undef, r1=undef, r2=undef,
d=undef, d1=undef, d2=undef, d=undef, d1=undef, d2=undef,
count=30, profile=120, helix=30, count=30, profile=120, helix=30,
chamfer=undef, chamfer1=undef, chamfer2=undef,
chamfang=undef, chamfang1=undef, chamfang2=undef,
from_end=false,
rounding=undef, rounding1=undef, rounding2=undef,
anchor=CENTER, spin=0, orient=UP anchor=CENTER, spin=0, orient=UP
) { ) {
r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=10); r1 = get_radius(r1=r1,r=r,d1=d1,d=d,dflt=10);
@ -53,14 +68,57 @@ module knurled_cylinder(
path = [for (i=idx(c1)) each [c1[i],c2[i]]]; path = [for (i=idx(c1)) each [c1[i],c2[i]]];
knob_w = 2*PI*r1/count; knob_w = 2*PI*r1/count;
knob_h = knob_w / tan(helix); knob_h = knob_w / tan(helix);
layers = ceil(l/knob_h);
plen = len(path);
vertices = concat(
[
for (layer = [0:1:layers], pt=path)
(layer%2)? [pt.x, pt.y, layer*knob_h-layers*knob_h/2] :
rot(180/count, p=[pt.x, pt.y, layer*knob_h-layers*knob_h/2])
], [
[0,0,-layers*knob_h/2],
[0,0, layers*knob_h/2]
]
);
faces = concat(
[
for (layer = [0:1:layers-1], i=idx(path)) let(
loff = (layer%2)? 2 : 0,
i1 = layer*plen+i,
i2 = layer*plen+((i+1)%plen),
i3 = (layer+1)*plen+posmod(i+0+loff,plen),
i4 = (layer+1)*plen+posmod(i+1+loff,plen),
i5 = (layer+1)*plen+posmod(i-1+loff,plen),
i6 = (layer+1)*plen+posmod(i-2+loff,plen)
) each [
[i1, i2, ((i%2)? i5 : i3)],
[i3, i5, ((i%2)? i2 : i1)]
]
], [
for (i=[0:1:count-1]) let(
i1 = posmod(i*2+1,plen),
i2 = posmod(i*2+2,plen),
i3 = posmod(i*2+3,plen),
loff = layers*plen
) each [
[i1,i3,i2],
[i1+loff,i2+loff,i3+loff],
[i3,i1,len(vertices)-2],
[i1+loff,i3+loff,len(vertices)-1]
]
]
);
orient_and_anchor([2*r1,2*r1,l], size2=[2*r2,2*r2], anchor=anchor, spin=spin, orient=orient, geometry="cylinder", chain=true) { orient_and_anchor([2*r1,2*r1,l], size2=[2*r2,2*r2], anchor=anchor, spin=spin, orient=orient, geometry="cylinder", chain=true) {
intersection() { intersection() {
linear_extrude(height=l, center=true, convexity=10, twist=twist, scale=r2/r1, slices=l/knob_h*2) { polyhedron(points=vertices, faces=faces, convexity=2*layers);
polygon(path); cyl(
} r1=r1, r2=r2, l=l,
linear_extrude(height=l, center=true, convexity=10, twist=-twist, scale=r2/r1, slices=l/knob_h*2) { chamfer=chamfer, chamfer1=chamfer1, chamfer2=chamfer2,
polygon(path); chamfang=chamfang, chamfang1=chamfang1, chamfang2=chamfang2,
} from_end=from_end,
rounding=rounding, rounding1=rounding1, rounding2=rounding2,
$fn=count*2
);
} }
children(); children();
} }