mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
In observance of owner's last review
Eliminate double definitions. Eliminate unneeded comments. In common.scad redefine num_defined(), all_defined() and get_radius(). In geometry.scad: - change name _dist to _dist2line - simplify _point_above_below_segment() and triangle_area() - change some arg names for uniformity (path>>poly) - change point_in_polygon() to accept the Even-odd rule as alternative - and other minor edits Update tests_geometry to the new funcionalities.
This commit is contained in:
parent
a290741b17
commit
12963296bb
3 changed files with 145 additions and 318 deletions
57
common.scad
57
common.scad
|
@ -129,11 +129,6 @@ function is_list_of(list,pattern) =
|
|||
is_list(list) &&
|
||||
[]==[for(entry=0*list) if (entry != pattern) entry];
|
||||
|
||||
function _list_pattern(list) =
|
||||
is_list(list) ? [for(entry=list) is_list(entry) ? _list_pattern(entry) : 0]
|
||||
: 0;
|
||||
|
||||
|
||||
|
||||
// Function: is_consistent()
|
||||
// Usage:
|
||||
|
@ -202,7 +197,7 @@ function first_defined(v,recursive=false,_i=0) =
|
|||
|
||||
// Function: one_defined()
|
||||
// Usage:
|
||||
// one_defined(vars, names, [required])
|
||||
// one_defined(vars, names, <required>)
|
||||
// Description:
|
||||
// Examines the input list `vars` and returns the entry which is not `undef`. If more
|
||||
// than one entry is `undef` then issues an assertion specifying "Must define exactly one of" followed
|
||||
|
@ -221,8 +216,7 @@ function one_defined(vars, names, required=true) =
|
|||
|
||||
// Function: num_defined()
|
||||
// Description: Counts how many items in list `v` are not `undef`.
|
||||
function num_defined(v,_i=0,_cnt=0) = _i>=len(v)? _cnt : num_defined(v,_i+1,_cnt+(is_undef(v[_i])? 0 : 1));
|
||||
|
||||
function num_defined(v) = len([for(vi=v) if(!is_undef(vi)) 1]);
|
||||
|
||||
// Function: any_defined()
|
||||
// Description:
|
||||
|
@ -239,8 +233,8 @@ function any_defined(v,recursive=false) = first_defined(v,recursive=recursive) !
|
|||
// Arguments:
|
||||
// v = The list whose items are being checked.
|
||||
// recursive = If true, any sublists are evaluated recursively.
|
||||
function all_defined(v,recursive=false) = max([for (x=v) is_undef(x)||(recursive&&is_list(x)&&!all_defined(x))? 1 : 0])==0;
|
||||
|
||||
function all_defined(v,recursive=false) =
|
||||
[]==[for (x=v) if(is_undef(x)||(recursive && is_list(x) && !all_defined(x,recursive))) 0 ];
|
||||
|
||||
|
||||
|
||||
|
@ -249,7 +243,7 @@ function all_defined(v,recursive=false) = max([for (x=v) is_undef(x)||(recursive
|
|||
|
||||
// Function: get_anchor()
|
||||
// Usage:
|
||||
// get_anchor(anchor,center,[uncentered],[dflt]);
|
||||
// get_anchor(anchor,center,<uncentered>,<dflt>);
|
||||
// Description:
|
||||
// Calculated the correct anchor from `anchor` and `center`. In order:
|
||||
// - If `center` is not `undef` and `center` evaluates as true, then `CENTER` (`[0,0,0]`) is returned.
|
||||
|
@ -270,7 +264,7 @@ function get_anchor(anchor,center,uncentered=BOT,dflt=CENTER) =
|
|||
|
||||
// Function: get_radius()
|
||||
// Usage:
|
||||
// get_radius([r1], [r2], [r], [d1], [d2], [d], [dflt]);
|
||||
// get_radius(<r1>, <r2>, <r>, <d1>, <d2>, <d>, <dflt>);
|
||||
// Description:
|
||||
// Given various radii and diameters, returns the most specific radius.
|
||||
// If a diameter is most specific, returns half its value, giving the radius.
|
||||
|
@ -288,34 +282,23 @@ function get_anchor(anchor,center,uncentered=BOT,dflt=CENTER) =
|
|||
// r = Most general radius.
|
||||
// d = Most general diameter.
|
||||
// dflt = Value to return if all other values given are `undef`.
|
||||
function get_radius(r1=undef, r2=undef, r=undef, d1=undef, d2=undef, d=undef, dflt=undef) = (
|
||||
!is_undef(r1)
|
||||
? assert(is_undef(r2)&&is_undef(d1)&&is_undef(d2), "Conflicting or redundant radius/diameter arguments given.")
|
||||
assert(is_finite(r1), "Invalid radius r1." )
|
||||
r1
|
||||
: !is_undef(r2)
|
||||
? assert(is_undef(d1)&&is_undef(d2), "Conflicting or redundant radius/diameter arguments given.")
|
||||
assert(is_finite(r2), "Invalid radius r2." )
|
||||
r2
|
||||
: !is_undef(d1)
|
||||
? assert(is_finite(d1), "Invalid diameter d1." )
|
||||
d1/2
|
||||
: !is_undef(d2)
|
||||
? assert(is_finite(d2), "Invalid diameter d2." )
|
||||
d2/2
|
||||
function get_radius(r1=undef, r2=undef, r=undef, d1=undef, d2=undef, d=undef, dflt=undef) =
|
||||
assert(num_defined([r1,d1,r2,d2])<2, "Conflicting or redundant radius/diameter arguments given.")
|
||||
!is_undef(r1) ? assert(is_finite(r1), "Invalid radius r1." ) r1
|
||||
: !is_undef(r2) ? assert(is_finite(r2), "Invalid radius r2." ) r2
|
||||
: !is_undef(d1) ? assert(is_finite(d1), "Invalid diameter d1." ) d1/2
|
||||
: !is_undef(d2) ? assert(is_finite(d2), "Invalid diameter d2." ) d2/2
|
||||
: !is_undef(r)
|
||||
? assert(is_undef(d), "Conflicting or redundant radius/diameter arguments given.")
|
||||
assert(is_finite(r) || is_vector(r,1) || is_vector(r,2), "Invalid radius r." )
|
||||
r
|
||||
: !is_undef(d)
|
||||
? assert(is_finite(d) || is_vector(d,1) || is_vector(d,2), "Invalid diameter d." )
|
||||
d/2
|
||||
: dflt
|
||||
);
|
||||
: !is_undef(d) ? assert(is_finite(d) || is_vector(d,1) || is_vector(d,2), "Invalid diameter d." ) d/2
|
||||
: dflt;
|
||||
|
||||
|
||||
// Function: get_height()
|
||||
// Usage:
|
||||
// get_height([h],[l],[height],[dflt])
|
||||
// get_height(<h>,<l>,<height>,<dflt>)
|
||||
// Description:
|
||||
// Given several different parameters for height check that height is not multiply defined
|
||||
// and return a single value. If the three values `l`, `h`, and `height` are all undefined
|
||||
|
@ -332,7 +315,7 @@ function get_height(h=undef,l=undef,height=undef,dflt=undef) =
|
|||
|
||||
// Function: scalar_vec3()
|
||||
// Usage:
|
||||
// scalar_vec3(v, [dflt]);
|
||||
// scalar_vec3(v, <dflt>);
|
||||
// Description:
|
||||
// If `v` is a scalar, and `dflt==undef`, returns `[v, v, v]`.
|
||||
// If `v` is a scalar, and `dflt!=undef`, returns `[v, dflt, dflt]`.
|
||||
|
@ -384,7 +367,7 @@ function _valstr(x) =
|
|||
|
||||
// Module: assert_approx()
|
||||
// Usage:
|
||||
// assert_approx(got, expected, [info]);
|
||||
// assert_approx(got, expected, <info>);
|
||||
// Description:
|
||||
// Tests if the value gotten is what was expected. If not, then
|
||||
// the expected and received values are printed to the console and
|
||||
|
@ -411,7 +394,7 @@ module assert_approx(got, expected, info) {
|
|||
|
||||
// Module: assert_equal()
|
||||
// Usage:
|
||||
// assert_equal(got, expected, [info]);
|
||||
// assert_equal(got, expected, <info>);
|
||||
// Description:
|
||||
// Tests if the value gotten is what was expected. If not, then
|
||||
// the expected and received values are printed to the console and
|
||||
|
@ -438,7 +421,7 @@ module assert_equal(got, expected, info) {
|
|||
|
||||
// Module: shape_compare()
|
||||
// Usage:
|
||||
// shape_compare([eps]) {test_shape(); expected_shape();}
|
||||
// shape_compare(<eps>) {test_shape(); expected_shape();}
|
||||
// Description:
|
||||
// Compares two child shapes, returning empty geometry if they are very nearly the same shape and size.
|
||||
// Returns the differential geometry if they are not nearly the same shape and size.
|
||||
|
|
329
geometry.scad
329
geometry.scad
|
@ -23,36 +23,25 @@
|
|||
function point_on_segment2d(point, edge, eps=EPSILON) =
|
||||
assert( is_vector(point,2), "Invalid point." )
|
||||
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
|
||||
assert( _valid_line(edge,eps=eps), "Invalid segment." )
|
||||
approx(point,edge[0],eps=eps)
|
||||
|| approx(point,edge[1],eps=eps) // The point is an endpoint
|
||||
|| sign(edge[0].x-point.x)==sign(point.x-edge[1].x) // point is in between the
|
||||
|| ( sign(edge[0].y-point.y)==sign(point.y-edge[1].y) // edge endpoints
|
||||
&& approx(point_left_of_line2d(point, edge),0,eps=eps) ); // and on the line defined by edge
|
||||
|
||||
function point_on_segment2d(point, edge, eps=EPSILON) =
|
||||
assert( is_vector(point,2), "Invalid point." )
|
||||
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
|
||||
assert( _valid_line(edge,eps=eps), "Invalid segment." )
|
||||
assert( _valid_line(edge,2,eps=eps), "Invalid segment." )
|
||||
let( dp = point-edge[0],
|
||||
de = edge[1]-edge[0],
|
||||
ne = norm(de) )
|
||||
( dp*de >= -eps*ne )
|
||||
&& ( (dp-de)*de <= eps*ne ) // point projects on the segment
|
||||
&& _dist(point-edge[0],unit(de))<eps; // point is on the line
|
||||
&& _dist2line(point-edge[0],unit(de))<eps; // point is on the line
|
||||
|
||||
|
||||
//Internal - distance from point `d` to the line passing through the origin with unit direction n
|
||||
//_dist works for any dimension
|
||||
function _dist(d,n) = norm(d-(d * n) * n);
|
||||
//_dist2line works for any dimension
|
||||
function _dist2line(d,n) = norm(d-(d * n) * n);
|
||||
|
||||
// Internal non-exposed function.
|
||||
function _point_above_below_segment(point, edge) =
|
||||
edge[0].y <= point.y? (
|
||||
(edge[1].y > point.y && point_left_of_line2d(point, edge) > 0)? 1 : 0
|
||||
) : (
|
||||
(edge[1].y <= point.y && point_left_of_line2d(point, edge) < 0)? -1 : 0
|
||||
);
|
||||
let( edge = edge - [point, point] )
|
||||
edge[0].y <= 0
|
||||
? (edge[1].y > 0 && cross(edge[0], edge[1]-edge[0]) > 0) ? 1 : 0
|
||||
: (edge[1].y <= 0 && cross(edge[0], edge[1]-edge[0]) < 0) ? -1 : 0 ;
|
||||
|
||||
//Internal
|
||||
function _valid_line(line,dim,eps=EPSILON) =
|
||||
|
@ -98,10 +87,6 @@ function collinear(a, b, c, eps=EPSILON) =
|
|||
: noncollinear_triple(points,error=false,eps=eps)==[];
|
||||
|
||||
|
||||
//*** valid for any dimension
|
||||
|
||||
|
||||
|
||||
// Function: distance_from_line()
|
||||
// Usage:
|
||||
// distance_from_line(line, pt);
|
||||
|
@ -115,7 +100,7 @@ function collinear(a, b, c, eps=EPSILON) =
|
|||
function distance_from_line(line, pt) =
|
||||
assert( _valid_line(line) && is_vector(pt,len(line[0])),
|
||||
"Invalid line, invalid point or incompatible dimensions." )
|
||||
_dist(pt-line[0],unit(line[1]-line[0]));
|
||||
_dist2line(pt-line[0],unit(line[1]-line[0]));
|
||||
|
||||
|
||||
// Function: line_normal()
|
||||
|
@ -330,17 +315,6 @@ function segment_intersection(s1,s2,eps=EPSILON) =
|
|||
// stroke(line, endcaps="arrow2");
|
||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
||||
function line_closest_point(line,pt) =
|
||||
assert(is_path(line)&&len(line)==2)
|
||||
assert(same_shape(pt,line[0]))
|
||||
assert(!approx(line[0],line[1]))
|
||||
let(
|
||||
seglen = norm(line[1]-line[0]),
|
||||
segvec = (line[1]-line[0])/seglen,
|
||||
projection = (pt-line[0]) * segvec
|
||||
)
|
||||
line[0] + projection*segvec;
|
||||
|
||||
function line_closest_point(line,pt) =
|
||||
assert(_valid_line(line), "Invalid line." )
|
||||
assert( is_vector(pt,len(line[0])), "Invalid point or incompatible dimensions." )
|
||||
|
@ -774,14 +748,10 @@ function adj_opp_to_ang(adj,opp) =
|
|||
// triangle_area([0,0], [5,10], [10,0]); // Returns -50
|
||||
// triangle_area([10,0], [5,10], [0,0]); // Returns 50
|
||||
function triangle_area(a,b,c) =
|
||||
assert( is_path([a,b,c]),
|
||||
"Invalid points or incompatible dimensions." )
|
||||
len(a)==3 ? 0.5*norm(cross(c-a,c-b))
|
||||
: (
|
||||
a.x * (b.y - c.y) +
|
||||
b.x * (c.y - a.y) +
|
||||
c.x * (a.y - b.y)
|
||||
) / 2;
|
||||
assert( is_path([a,b,c]), "Invalid points or incompatible dimensions." )
|
||||
len(a)==3
|
||||
? 0.5*norm(cross(c-a,c-b))
|
||||
: 0.5*cross(c-a,c-b);
|
||||
|
||||
|
||||
|
||||
|
@ -851,7 +821,7 @@ function plane_from_normal(normal, pt=[0,0,0]) =
|
|||
|
||||
// Function: plane_from_points()
|
||||
// Usage:
|
||||
// plane_from_points(points, [fast], [eps]);
|
||||
// plane_from_points(points, <fast>, <eps>);
|
||||
// Description:
|
||||
// Given a list of 3 or more coplanar 3D points, returns the coefficients of the cartesian equation of a plane,
|
||||
// that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane.
|
||||
|
@ -876,7 +846,6 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
|
|||
)
|
||||
indices==[] ? undef :
|
||||
let(
|
||||
indices = sort(indices), // why sorting?
|
||||
p1 = points[indices[0]],
|
||||
p2 = points[indices[1]],
|
||||
p3 = points[indices[2]],
|
||||
|
@ -913,11 +882,6 @@ function plane_from_polygon(poly, fast=false, eps=EPSILON) =
|
|||
)
|
||||
fast? plane: coplanar(poly,eps=eps)? plane: [];
|
||||
|
||||
//***
|
||||
// I don't see why this function uses a criterium different from plane_from_points.
|
||||
// In practical terms, what is the difference of finding a plane from points and from polygon?
|
||||
// The docs don't clarify.
|
||||
// These functions should be consistent if they are both necessary. The docs might reflect their distinction.
|
||||
|
||||
// Function: plane_normal()
|
||||
// Usage:
|
||||
|
@ -969,8 +933,8 @@ function plane_transform(plane) =
|
|||
// Usage:
|
||||
// projection_on_plane(points);
|
||||
// Description:
|
||||
// Given a plane definition `[A,B,C,D]`, where `Ax+By+Cz=D`, and a list of 2d or 3d points, return the projection
|
||||
// of the points on the plane.
|
||||
// Given a plane definition `[A,B,C,D]`, where `Ax+By+Cz=D`, and a list of 2d or 3d points, return the 3D orthogonal
|
||||
// projection of the points on the plane.
|
||||
// Arguments:
|
||||
// plane = The `[A,B,C,D]` plane definition where `Ax+By+Cz=D` is the formula of the plane.
|
||||
// points = List of points to project
|
||||
|
@ -1042,23 +1006,6 @@ function closest_point_on_plane(plane, point) =
|
|||
// Returns [POINT, U] if line intersects plane at one point.
|
||||
// Returns [LINE, undef] if the line is on the plane.
|
||||
// Returns undef if line is parallel to, but not on the given plane.
|
||||
function _general_plane_line_intersection(plane, line, eps=EPSILON) =
|
||||
let(
|
||||
p0 = line[0],
|
||||
p1 = line[1],
|
||||
n = plane_normal(plane),
|
||||
u = p1 - p0,
|
||||
d = n * u
|
||||
) abs(d)<eps? (
|
||||
points_on_plane(p0,plane,eps)? [line,undef] : // Line on plane
|
||||
undef // Line parallel to plane
|
||||
) : let(
|
||||
v0 = closest_point_on_plane(plane, [0,0,0]),
|
||||
w = p0 - v0,
|
||||
s1 = (-n * w) / d,
|
||||
pt = s1 * u + p0
|
||||
) [pt, s1];
|
||||
|
||||
function _general_plane_line_intersection(plane, line, eps=EPSILON) =
|
||||
let( a = plane*[each line[0],-1],
|
||||
b = plane*[each(line[1]-line[0]),-1] )
|
||||
|
@ -1066,6 +1013,7 @@ function _general_plane_line_intersection(plane, line, eps=EPSILON) =
|
|||
? points_on_plane(line[0],plane,eps)? [line,undef]: undef
|
||||
: [ line[0]+a/b*(line[1]-line[0]), a/b ];
|
||||
|
||||
|
||||
// Function: plane_line_angle()
|
||||
// Usage: plane_line_angle(plane,line)
|
||||
// Description:
|
||||
|
@ -1137,7 +1085,7 @@ function polygon_line_intersection(poly, line, bounded=false, eps=EPSILON) =
|
|||
)
|
||||
indices==[] ? undef :
|
||||
let(
|
||||
indices = sort(indices), // why sorting?
|
||||
indices = sort(indices),
|
||||
p1 = poly[indices[0]],
|
||||
p2 = poly[indices[1]],
|
||||
p3 = poly[indices[2]],
|
||||
|
@ -1201,7 +1149,7 @@ function plane_intersection(plane1,plane2,plane3) =
|
|||
|
||||
// Function: coplanar()
|
||||
// Usage:
|
||||
// coplanar(points,eps);
|
||||
// coplanar(points,<eps>);
|
||||
// Description:
|
||||
// Returns true if the given 3D points are non-collinear and are on a plane.
|
||||
// Arguments:
|
||||
|
@ -1220,7 +1168,7 @@ function coplanar(points, eps=EPSILON) =
|
|||
|
||||
// Function: points_on_plane()
|
||||
// Usage:
|
||||
// points_on_plane(points, plane, eps);
|
||||
// points_on_plane(points, plane, <eps>);
|
||||
// Description:
|
||||
// Returns true if the given 3D points are on the given plane.
|
||||
// Arguments:
|
||||
|
@ -1256,7 +1204,7 @@ function in_front_of_plane(plane, point) =
|
|||
|
||||
// Function: find_circle_2tangents()
|
||||
// Usage:
|
||||
// find_circle_2tangents(pt1, pt2, pt3, r|d, [tangents]);
|
||||
// find_circle_2tangents(pt1, pt2, pt3, r|d, <tangents>);
|
||||
// Description:
|
||||
// Given a pair of rays with a common origin, and a known circle radius/diameter, finds
|
||||
// the centerpoint for the circle of that size that touches both rays tangentally.
|
||||
|
@ -1325,7 +1273,8 @@ function find_circle_2tangents(pt1, pt2, pt3, r, d, tangents=false) =
|
|||
|
||||
// Function: find_circle_3points()
|
||||
// Usage:
|
||||
// find_circle_3points(pt1, [pt2, pt3]);
|
||||
// find_circle_3points(pt1, pt2, pt3);
|
||||
// find_circle_3points([pt1, pt2, pt3]);
|
||||
// Description:
|
||||
// Returns the [CENTERPOINT, RADIUS, NORMAL] of the circle that passes through three non-collinear
|
||||
// points where NORMAL is the normal vector of the plane that the circle is on (UP or DOWN if the points are 2D).
|
||||
|
@ -1345,40 +1294,6 @@ function find_circle_2tangents(pt1, pt2, pt3, r, d, tangents=false) =
|
|||
// translate(circ[0]) color("green") stroke(circle(r=circ[1]),closed=true,$fn=72);
|
||||
// translate(circ[0]) color("red") circle(d=3, $fn=12);
|
||||
// move_copies(pts) color("blue") circle(d=3, $fn=12);
|
||||
function find_circle_3points(pt1, pt2, pt3) =
|
||||
(is_undef(pt2) && is_undef(pt3) && is_list(pt1))
|
||||
? find_circle_3points(pt1[0], pt1[1], pt1[2])
|
||||
: assert( is_vector(pt1) && is_vector(pt2) && is_vector(pt3)
|
||||
&& max(len(pt1),len(pt2),len(pt3))<=3 && min(len(pt1),len(pt2),len(pt3))>=2,
|
||||
"Invalid point(s)." )
|
||||
collinear(pt1,pt2,pt3)? [undef,undef,undef] :
|
||||
let(
|
||||
v1 = pt1-pt2,
|
||||
v2 = pt3-pt2,
|
||||
n = vector_axis(v1,v2),
|
||||
n2 = n.z<0? -n : n
|
||||
) len(pt1)+len(pt2)+len(pt3)>6? (
|
||||
let(
|
||||
a = project_plane(pt1, pt1, pt2, pt3),
|
||||
b = project_plane(pt2, pt1, pt2, pt3),
|
||||
c = project_plane(pt3, pt1, pt2, pt3),
|
||||
res = find_circle_3points(a, b, c)
|
||||
) res[0]==undef? [undef,undef,undef] : let(
|
||||
cp = lift_plane(res[0], pt1, pt2, pt3),
|
||||
r = norm(pt2-cp)
|
||||
) [cp, r, n2]
|
||||
) : let(
|
||||
mp1 = pt2 + v1/2,
|
||||
mp2 = pt2 + v2/2,
|
||||
mpv1 = rot(90, v=n, p=v1),
|
||||
mpv2 = rot(90, v=n, p=v2),
|
||||
l1 = [mp1, mp1+mpv1],
|
||||
l2 = [mp2, mp2+mpv2],
|
||||
isect = line_intersection(l1,l2)
|
||||
) is_undef(isect)? [undef,undef,undef] : let(
|
||||
r = norm(pt2-isect)
|
||||
) [isect, r, n2];
|
||||
|
||||
function find_circle_3points(pt1, pt2, pt3) =
|
||||
(is_undef(pt2) && is_undef(pt3) && is_list(pt1))
|
||||
? find_circle_3points(pt1[0], pt1[1], pt1[2])
|
||||
|
@ -1405,9 +1320,6 @@ function find_circle_3points(pt1, pt2, pt3) =
|
|||
[ cp, r, n ];
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Function: circle_point_tangents()
|
||||
// Usage:
|
||||
// tangents = circle_point_tangents(r|d, cp, pt);
|
||||
|
@ -1442,7 +1354,6 @@ function circle_point_tangents(r, d, cp, pt) =
|
|||
) [for (ang=angs) [ang, cp + r*[cos(ang),sin(ang)]]];
|
||||
|
||||
|
||||
|
||||
// Function: circle_circle_tangents()
|
||||
// Usage: circle_circle_tangents(c1, r1|d1, c2, r2|d2)
|
||||
// Description:
|
||||
|
@ -1541,13 +1452,14 @@ function noncollinear_triple(points,error=true,eps=EPSILON) =
|
|||
[]
|
||||
: let(
|
||||
n = (pb-pa)/nrm,
|
||||
distlist = [for(i=[0:len(points)-1]) _dist(points[i]-pa, n)]
|
||||
distlist = [for(i=[0:len(points)-1]) _dist2line(points[i]-pa, n)]
|
||||
)
|
||||
max(distlist)<eps
|
||||
? assert(!error, "Cannot find three noncollinear points in pointlist.")
|
||||
[]
|
||||
: [0,b,max_index(distlist)];
|
||||
|
||||
|
||||
// Function: pointlist_bounds()
|
||||
// Usage:
|
||||
// pointlist_bounds(pts);
|
||||
|
@ -1607,19 +1519,6 @@ function furthest_point(pt, points) =
|
|||
// Arguments:
|
||||
// poly = polygon to compute the area of.
|
||||
// signed = if true, a signed area is returned (default: false)
|
||||
function polygon_area(poly) =
|
||||
assert(is_path(poly), "Invalid polygon." )
|
||||
len(poly)<3? 0 :
|
||||
len(poly[0])==2? 0.5*sum([for(i=[0:1:len(poly)-1]) det2(select(poly,i,i+1))]) :
|
||||
let(
|
||||
plane = plane_from_points(poly)
|
||||
) plane==undef? undef :
|
||||
let(
|
||||
n = unit(plane_normal(plane)),
|
||||
total = sum([for (i=[0:1:len(poly)-1]) cross(poly[i], select(poly,i+1))]),
|
||||
res = abs(total * n) / 2
|
||||
) res;
|
||||
|
||||
function polygon_area(poly, signed=false) =
|
||||
assert(is_path(poly), "Invalid polygon." )
|
||||
len(poly)<3 ? 0 :
|
||||
|
@ -1644,15 +1543,6 @@ function polygon_area(poly, signed=false) =
|
|||
// Example:
|
||||
// spiral = [for (i=[0:36]) let(a=-i*10) (10+i)*[cos(a),sin(a)]];
|
||||
// is_convex_polygon(spiral); // Returns: false
|
||||
function is_convex_polygon(poly) =
|
||||
assert(is_path(poly,dim=2), "The input should be a 2D polygon." )
|
||||
let(
|
||||
l = len(poly),
|
||||
c = [for (i=idx(poly)) cross(poly[(i+1)%l]-poly[i],poly[(i+2)%l]-poly[(i+1)%l])]
|
||||
)
|
||||
len([for (x=c) if(x>0) 1])==0 ||
|
||||
len([for (x=c) if(x<0) 1])==0;
|
||||
|
||||
function is_convex_polygon(poly) =
|
||||
assert(is_path(poly,dim=2), "The input should be a 2D polygon." )
|
||||
let( l = len(poly) )
|
||||
|
@ -1686,15 +1576,15 @@ function polygon_shift(poly, i) =
|
|||
// Usage:
|
||||
// polygon_shift_to_closest_point(path, pt);
|
||||
// Description:
|
||||
// Given a polygon `path`, rotates the point ordering so that the first point in the path is the one closest to the given point `pt`.
|
||||
function polygon_shift_to_closest_point(path, pt) =
|
||||
// Given a polygon `poly`, rotates the point ordering so that the first point in the path is the one closest to the given point `pt`.
|
||||
function polygon_shift_to_closest_point(poly, pt) =
|
||||
assert(is_vector(pt), "Invalid point." )
|
||||
assert(is_path(path,dim=len(pt)), "Invalid polygon or incompatible dimension with the point." )
|
||||
assert(is_path(poly,dim=len(pt)), "Invalid polygon or incompatible dimension with the point." )
|
||||
let(
|
||||
path = cleanup_path(path),
|
||||
dists = [for (p=path) norm(p-pt)],
|
||||
poly = cleanup_path(poly),
|
||||
dists = [for (p=poly) norm(p-pt)],
|
||||
closest = min_index(dists)
|
||||
) select(path,closest,closest+len(path)-1);
|
||||
) select(poly,closest,closest+len(poly)-1);
|
||||
|
||||
|
||||
// Function: reindex_polygon()
|
||||
|
@ -1726,33 +1616,6 @@ function polygon_shift_to_closest_point(path, pt) =
|
|||
// move_copies(concat(circ,pent)) circle(r=.1,$fn=32);
|
||||
// color("red") move_copies([pent[0],circ[0]]) circle(r=.1,$fn=32);
|
||||
// color("blue") translate(reindexed[0])circle(r=.1,$fn=32);
|
||||
function reindex_polygon(reference, poly, return_error=false) =
|
||||
assert(is_path(reference) && is_path(poly,dim=len(reference[0])),
|
||||
"Invalid polygon(s) or incompatible dimensions. " )
|
||||
assert(len(reference)==len(poly), "The polygons must have the same length.")
|
||||
let(
|
||||
dim = len(reference[0]),
|
||||
N = len(reference),
|
||||
fixpoly = dim != 2? poly :
|
||||
polygon_is_clockwise(reference)? clockwise_polygon(poly) :
|
||||
ccw_polygon(poly),
|
||||
dist = [
|
||||
// Matrix of all pairwise distances
|
||||
for (p1=reference) [
|
||||
for (p2=fixpoly) norm(p1-p2)
|
||||
]
|
||||
],
|
||||
// Compute the sum of all distance pairs for a each shift
|
||||
sums = [
|
||||
for(shift=[0:1:N-1]) sum([
|
||||
for(i=[0:1:N-1]) dist[i][(i+shift)%N]
|
||||
])
|
||||
],
|
||||
optimal_poly = polygon_shift(fixpoly,min_index(sums))
|
||||
)
|
||||
return_error? [optimal_poly, min(sums)] :
|
||||
optimal_poly;
|
||||
|
||||
function reindex_polygon(reference, poly, return_error=false) =
|
||||
assert(is_path(reference) && is_path(poly,dim=len(reference[0])),
|
||||
"Invalid polygon(s) or incompatible dimensions. " )
|
||||
|
@ -1774,10 +1637,9 @@ function reindex_polygon(reference, poly, return_error=false) =
|
|||
optimal_poly;
|
||||
|
||||
|
||||
|
||||
// Function: align_polygon()
|
||||
// Usage:
|
||||
// newpoly = align_polygon(reference, poly, angles, [cp]);
|
||||
// newpoly = align_polygon(reference, poly, angles, <cp>);
|
||||
// Description:
|
||||
// Tries the list or range of angles to find a rotation of the specified 2D polygon that best aligns
|
||||
// with the reference 2D polygon. For each angle, the polygon is reindexed, which is a costly operation
|
||||
|
@ -1819,26 +1681,6 @@ function align_polygon(reference, poly, angles, cp) =
|
|||
// Given a simple 2D polygon, returns the 2D coordinates of the polygon's centroid.
|
||||
// Given a simple 3D planar polygon, returns the 3D coordinates of the polygon's centroid.
|
||||
// If the polygon is self-intersecting, the results are undefined.
|
||||
function centroid(poly) =
|
||||
assert( is_path(poly), "The input must be a 2D or 3D polygon." )
|
||||
len(poly[0])==2
|
||||
? sum([
|
||||
for(i=[0:len(poly)-1])
|
||||
let(segment=select(poly,i,i+1))
|
||||
det2(segment)*sum(segment)
|
||||
]) / 6 / polygon_area(poly)
|
||||
: let( plane = plane_from_points(poly, fast=true) )
|
||||
assert( !is_undef(plane), "The polygon must be planar." )
|
||||
let(
|
||||
n = plane_normal(plane),
|
||||
p1 = vector_angle(n,UP)>15? vector_axis(n,UP) : vector_axis(n,RIGHT),
|
||||
p2 = vector_axis(n,p1),
|
||||
cp = mean(poly),
|
||||
proj = project_plane(poly,cp,cp+p1,cp+p2),
|
||||
cxy = centroid(proj)
|
||||
)
|
||||
lift_plane(cxy,cp,cp+p1,cp+p2);
|
||||
|
||||
function centroid(poly) =
|
||||
assert( is_path(poly,dim=[2,3]), "The input must be a 2D or 3D polygon." )
|
||||
len(poly[0])==2
|
||||
|
@ -1866,10 +1708,11 @@ function centroid(poly) =
|
|||
|
||||
// Function: point_in_polygon()
|
||||
// Usage:
|
||||
// point_in_polygon(point, path, [eps])
|
||||
// point_in_polygon(point, poly, <eps>)
|
||||
// Description:
|
||||
// This function tests whether the given 2D point is inside, outside or on the boundary of
|
||||
// the specified 2D polygon using the Winding Number method.
|
||||
// the specified 2D polygon using either the Nonzero Winding rule or the Even-Odd rule.
|
||||
// See https://en.wikipedia.org/wiki/Nonzero-rule and https://en.wikipedia.org/wiki/Even–odd_rule.
|
||||
// The polygon is given as a list of 2D points, not including the repeated end point.
|
||||
// Returns -1 if the point is outside the polyon.
|
||||
// Returns 0 if the point is on the boundary.
|
||||
|
@ -1879,75 +1722,81 @@ function centroid(poly) =
|
|||
// Rounding error may give mixed results for points on or near the boundary.
|
||||
// Arguments:
|
||||
// point = The 2D point to check position of.
|
||||
// path = The list of 2D path points forming the perimeter of the polygon.
|
||||
// poly = The list of 2D path points forming the perimeter of the polygon.
|
||||
// nonzero = The rule to use: true for "Nonzero" rule and false for "Even-Odd" (Default: true )
|
||||
// eps = Acceptable variance. Default: `EPSILON` (1e-9)
|
||||
function point_in_polygon(point, path, eps=EPSILON) =
|
||||
// Original algorithm from http://geomalgorithms.com/a03-_inclusion.html
|
||||
assert( is_vector(point,2) && is_path(path,dim=2) && len(path)>2,
|
||||
function point_in_polygon(point, poly, eps=EPSILON, nonzero=true) =
|
||||
// Original algorithms from http://geomalgorithms.com/a03-_inclusion.html
|
||||
assert( is_vector(point,2) && is_path(poly,dim=2) && len(poly)>2,
|
||||
"The point and polygon should be in 2D. The polygon should have more that 2 points." )
|
||||
assert( is_finite(eps) && eps>=0, "Invalid tolerance." )
|
||||
// Does the point lie on any edges? If so return 0.
|
||||
let(
|
||||
on_brd = [for(i=[0:1:len(path)-1])
|
||||
let( seg = select(path,i,i+1) )
|
||||
if( !approx(seg[0],seg[1],eps=eps) )
|
||||
on_brd = [for(i=[0:1:len(poly)-1])
|
||||
let( seg = select(poly,i,i+1) )
|
||||
if( !approx(seg[0],seg[1],eps=EPSILON) )
|
||||
point_on_segment2d(point, seg, eps=eps)? 1:0 ]
|
||||
)
|
||||
sum(on_brd) > 0? 0 :
|
||||
// Otherwise compute winding number and return 1 for interior, -1 for exterior
|
||||
sum(on_brd) > 0
|
||||
? 0
|
||||
: nonzero
|
||||
? // Compute winding number and return 1 for interior, -1 for exterior
|
||||
let(
|
||||
windchk = [for(i=[0:1:len(path)-1])
|
||||
let(seg=select(path,i,i+1))
|
||||
windchk = [for(i=[0:1:len(poly)-1])
|
||||
let(seg=select(poly,i,i+1))
|
||||
if(!approx(seg[0],seg[1],eps=eps))
|
||||
_point_above_below_segment(point, seg)
|
||||
]
|
||||
)
|
||||
sum(windchk) != 0 ? 1 : -1;
|
||||
sum(windchk) != 0 ? 1 : -1
|
||||
: // or compute the crossings with the ray [point, point+[1,0]]
|
||||
let(
|
||||
n = len(poly),
|
||||
cross =
|
||||
[for(i=[0:n-1])
|
||||
let(
|
||||
p0 = poly[i]-point,
|
||||
p1 = poly[(i+1)%n]-point
|
||||
)
|
||||
if( ( (p1.y>eps && p0.y<=0) || (p1.y<=0 && p0.y>eps) )
|
||||
&& 0 < p0.x - p0.y *(p1.x - p0.x)/(p1.y - p0.y) )
|
||||
1
|
||||
]
|
||||
)
|
||||
2*(len(cross)%2)-1;;
|
||||
|
||||
//**
|
||||
// this function should be optimized avoiding the call of other functions
|
||||
|
||||
// Function: polygon_is_clockwise()
|
||||
// Usage:
|
||||
// polygon_is_clockwise(path);
|
||||
// polygon_is_clockwise(poly);
|
||||
// Description:
|
||||
// Return true if the given 2D simple polygon is in clockwise order, false otherwise.
|
||||
// Results for complex (self-intersecting) polygon are indeterminate.
|
||||
// Arguments:
|
||||
// path = The list of 2D path points for the perimeter of the polygon.
|
||||
function polygon_is_clockwise(path) =
|
||||
assert(is_path(path,dim=2), "Input should be a 2d polygon")
|
||||
let(
|
||||
minx = min(subindex(path,0)),
|
||||
lowind = search(minx, path, 0, 0),
|
||||
lowpts = select(path, lowind),
|
||||
miny = min(subindex(lowpts, 1)),
|
||||
extreme_sub = search(miny, lowpts, 1, 1)[0],
|
||||
extreme = select(lowind,extreme_sub)
|
||||
) det2([select(path,extreme+1)-path[extreme], select(path, extreme-1)-path[extreme]])<0;
|
||||
// poly = The list of 2D path points for the perimeter of the polygon.
|
||||
function polygon_is_clockwise(poly) =
|
||||
assert(is_path(poly,dim=2), "Input should be a 2d path")
|
||||
polygon_area(poly, signed=true)<0;
|
||||
|
||||
function polygon_is_clockwise(path) =
|
||||
assert(is_path(path,dim=2), "Input should be a 2d path")
|
||||
polygon_area(path, signed=true)<0;
|
||||
|
||||
// Function: clockwise_polygon()
|
||||
// Usage:
|
||||
// clockwise_polygon(path);
|
||||
// clockwise_polygon(poly);
|
||||
// Description:
|
||||
// Given a 2D polygon path, returns the clockwise winding version of that path.
|
||||
function clockwise_polygon(path) =
|
||||
assert(is_path(path,dim=2), "Input should be a 2d polygon")
|
||||
polygon_area(path, signed=true)<0 ? path : reverse_polygon(path);
|
||||
function clockwise_polygon(poly) =
|
||||
assert(is_path(poly,dim=2), "Input should be a 2d polygon")
|
||||
polygon_area(poly, signed=true)<0 ? poly : reverse_polygon(poly);
|
||||
|
||||
|
||||
// Function: ccw_polygon()
|
||||
// Usage:
|
||||
// ccw_polygon(path);
|
||||
// ccw_polygon(poly);
|
||||
// Description:
|
||||
// Given a 2D polygon path, returns the counter-clockwise winding version of that path.
|
||||
function ccw_polygon(path) =
|
||||
assert(is_path(path,dim=2), "Input should be a 2d polygon")
|
||||
polygon_area(path, signed=true)<0 ? reverse_polygon(path) : path;
|
||||
// Given a 2D polygon poly, returns the counter-clockwise winding version of that poly.
|
||||
function ccw_polygon(poly) =
|
||||
assert(is_path(poly,dim=2), "Input should be a 2d polygon")
|
||||
polygon_area(poly, signed=true)<0 ? reverse_polygon(poly) : poly;
|
||||
|
||||
|
||||
// Function: reverse_polygon()
|
||||
|
@ -1969,7 +1818,7 @@ function reverse_polygon(poly) =
|
|||
function polygon_normal(poly) =
|
||||
assert(is_path(poly,dim=3), "Invalid 3D polygon." )
|
||||
let(
|
||||
poly = path3d(cleanup_path(poly)),
|
||||
poly = cleanup_path(poly),
|
||||
p0 = poly[0],
|
||||
n = sum([
|
||||
for (i=[1:1:len(poly)-2])
|
||||
|
@ -2085,17 +1934,6 @@ function split_polygons_at_each_x(polys, xs, _i=0) =
|
|||
], xs, _i=_i+1
|
||||
);
|
||||
|
||||
//***
|
||||
// all the functions split_polygons_at_ may generate non simple polygons even from simple polygon inputs:
|
||||
// split_polygons_at_each_y([[[-1,1,0],[0,0,0],[1,1,0],[1,-1,0],[-1,-1,0]]],[0])
|
||||
// produces:
|
||||
// [ [[0, 0, 0], [1, 0, 0], [1, -1, 0], [-1, -1, 0], [-1, 0, 0]]
|
||||
// [[-1, 1, 0], [0, 0, 0], [1, 1, 0], [1, 0, 0], [-1, 0, 0]] ]
|
||||
// and the second polygon is self-intersecting
|
||||
// besides, it fails in some simple cases as triangles:
|
||||
// split_polygons_at_each_y([ [-1,-1,0],[1,-1,0],[0,1,0]],[0])==[]
|
||||
// this last failure may be fatal for vnf_bend
|
||||
|
||||
|
||||
// Function: split_polygons_at_each_y()
|
||||
// Usage:
|
||||
|
@ -2106,9 +1944,9 @@ function split_polygons_at_each_x(polys, xs, _i=0) =
|
|||
// polys = A list of 3D polygons to split.
|
||||
// ys = A list of scalar Y values to split at.
|
||||
function split_polygons_at_each_y(polys, ys, _i=0) =
|
||||
assert( is_consistent(polys) && is_path(poly[0],dim=3) ,
|
||||
"The input list should contains only 3D polygons." )
|
||||
assert( is_finite(ys), "The split value list should contain only numbers." )
|
||||
// assert( is_consistent(polys) && is_path(polys[0],dim=3) , // not all polygons should have the same length!!!
|
||||
// "The input list should contains only 3D polygons." )
|
||||
assert( is_finite(ys) || is_vector(ys), "The split value list should contain only numbers." ) //***
|
||||
_i>=len(ys)? polys :
|
||||
split_polygons_at_each_y(
|
||||
[
|
||||
|
@ -2139,5 +1977,4 @@ function split_polygons_at_each_z(polys, zs, _i=0) =
|
|||
);
|
||||
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
|
@ -98,6 +98,8 @@ function standardize(v) =
|
|||
v==[]? [] :
|
||||
sign([for(vi=v) if( ! approx(vi,0)) vi,0 ][0])*v;
|
||||
|
||||
module assert_std(vc,ve) { assert(standardize(vc)==standardize(ve)); }
|
||||
|
||||
module test_points_on_plane() {
|
||||
pts = [for(i=[0:40]) rands(-1,1,3) ];
|
||||
dir = rands(-10,10,3);
|
||||
|
@ -487,48 +489,47 @@ module test_triangle_area() {
|
|||
|
||||
|
||||
module test_plane3pt() {
|
||||
assert(plane3pt([0,0,20], [0,10,10], [0,0,0]) == [1,0,0,0]);
|
||||
assert(plane3pt([2,0,20], [2,10,10], [2,0,0]) == [1,0,0,2]);
|
||||
assert(plane3pt([0,0,0], [10,0,10], [0,0,20]) == [0,1,0,0]);
|
||||
assert(plane3pt([0,2,0], [10,2,10], [0,2,20]) == [0,1,0,2]);
|
||||
assert(plane3pt([0,0,0], [10,10,0], [20,0,0]) == [0,0,1,0]);
|
||||
assert(plane3pt([0,0,2], [10,10,2], [20,0,2]) == [0,0,1,2]);
|
||||
assert_std(plane3pt([0,0,20], [0,10,10], [0,0,0]), [1,0,0,0]);
|
||||
assert_std(plane3pt([2,0,20], [2,10,10], [2,0,0]), [1,0,0,2]);
|
||||
assert_std(plane3pt([0,0,0], [10,0,10], [0,0,20]), [0,1,0,0]);
|
||||
assert_std(plane3pt([0,2,0], [10,2,10], [0,2,20]), [0,1,0,2]);
|
||||
assert_std(plane3pt([0,0,0], [10,10,0], [20,0,0]), [0,0,1,0]);
|
||||
assert_std(plane3pt([0,0,2], [10,10,2], [20,0,2]), [0,0,1,2]);
|
||||
}
|
||||
*test_plane3pt();
|
||||
|
||||
module test_plane3pt_indexed() {
|
||||
pts = [ [0,0,0], [10,0,0], [0,10,0], [0,0,10] ];
|
||||
s13 = sqrt(1/3);
|
||||
assert(plane3pt_indexed(pts, 0,3,2) == [1,0,0,0]);
|
||||
assert(plane3pt_indexed(pts, 0,2,3) == [-1,0,0,0]);
|
||||
assert(plane3pt_indexed(pts, 0,1,3) == [0,1,0,0]);
|
||||
assert(plane3pt_indexed(pts, 0,3,1) == [0,-1,0,0]);
|
||||
assert(plane3pt_indexed(pts, 0,2,1) == [0,0,1,0]);
|
||||
assert_std(plane3pt_indexed(pts, 0,3,2), [1,0,0,0]);
|
||||
assert_std(plane3pt_indexed(pts, 0,2,3), [-1,0,0,0]);
|
||||
assert_std(plane3pt_indexed(pts, 0,1,3), [0,1,0,0]);
|
||||
assert_std(plane3pt_indexed(pts, 0,3,1), [0,-1,0,0]);
|
||||
assert_std(plane3pt_indexed(pts, 0,2,1), [0,0,1,0]);
|
||||
assert_approx(plane3pt_indexed(pts, 0,1,2), [0,0,-1,0]);
|
||||
assert_approx(plane3pt_indexed(pts, 3,2,1), [s13,s13,s13,10*s13]);
|
||||
assert_approx(plane3pt_indexed(pts, 1,2,3), [-s13,-s13,-s13,-10*s13]);
|
||||
}
|
||||
*test_plane3pt_indexed();
|
||||
|
||||
|
||||
module test_plane_from_points() {
|
||||
assert(plane_from_points([[0,0,20], [0,10,10], [0,0,0], [0,5,3]]) == [1,0,0,0]);
|
||||
assert(plane_from_points([[2,0,20], [2,10,10], [2,0,0], [2,3,4]]) == [1,0,0,2]);
|
||||
assert(plane_from_points([[0,0,0], [10,0,10], [0,0,20], [5,0,7]]) == [0,1,0,0]);
|
||||
assert(plane_from_points([[0,2,0], [10,2,10], [0,2,20], [4,2,3]]) == [0,1,0,2]);
|
||||
assert(plane_from_points([[0,0,0], [10,10,0], [20,0,0], [8,3,0]]) == [0,0,1,0]);
|
||||
assert(plane_from_points([[0,0,2], [10,10,2], [20,0,2], [3,4,2]]) == [0,0,1,2]);
|
||||
assert_std(plane_from_points([[0,0,20], [0,10,10], [0,0,0], [0,5,3]]), [1,0,0,0]);
|
||||
assert_std(plane_from_points([[2,0,20], [2,10,10], [2,0,0], [2,3,4]]), [1,0,0,2]);
|
||||
assert_std(plane_from_points([[0,0,0], [10,0,10], [0,0,20], [5,0,7]]), [0,1,0,0]);
|
||||
assert_std(plane_from_points([[0,2,0], [10,2,10], [0,2,20], [4,2,3]]), [0,1,0,2]);
|
||||
assert_std(plane_from_points([[0,0,0], [10,10,0], [20,0,0], [8,3,0]]), [0,0,1,0]);
|
||||
assert_std(plane_from_points([[0,0,2], [10,10,2], [20,0,2], [3,4,2]]), [0,0,1,2]);
|
||||
}
|
||||
*test_plane_from_points();
|
||||
|
||||
|
||||
module test_plane_normal() {
|
||||
assert(plane_normal(plane3pt([0,0,20], [0,10,10], [0,0,0])) == [1,0,0]);
|
||||
assert(plane_normal(plane3pt([2,0,20], [2,10,10], [2,0,0])) == [1,0,0]);
|
||||
assert(plane_normal(plane3pt([0,0,0], [10,0,10], [0,0,20])) == [0,1,0]);
|
||||
assert(plane_normal(plane3pt([0,2,0], [10,2,10], [0,2,20])) == [0,1,0]);
|
||||
assert(plane_normal(plane3pt([0,0,0], [10,10,0], [20,0,0])) == [0,0,1]);
|
||||
assert(plane_normal(plane3pt([0,0,2], [10,10,2], [20,0,2])) == [0,0,1]);
|
||||
assert_std(plane_normal(plane3pt([0,0,20], [0,10,10], [0,0,0])), [1,0,0]);
|
||||
assert_std(plane_normal(plane3pt([2,0,20], [2,10,10], [2,0,0])), [1,0,0]);
|
||||
assert_std(plane_normal(plane3pt([0,0,0], [10,0,10], [0,0,20])), [0,1,0]);
|
||||
assert_std(plane_normal(plane3pt([0,2,0], [10,2,10], [0,2,20])), [0,1,0]);
|
||||
assert_std(plane_normal(plane3pt([0,0,0], [10,10,0], [20,0,0])), [0,0,1]);
|
||||
assert_std(plane_normal(plane3pt([0,0,2], [10,10,2], [20,0,2])), [0,0,1]);
|
||||
}
|
||||
*test_plane_normal();
|
||||
|
||||
|
@ -699,16 +700,22 @@ module test_simplify_path_indexed() {
|
|||
|
||||
module test_point_in_polygon() {
|
||||
poly = [for (a=[0:30:359]) 10*[cos(a),sin(a)]];
|
||||
poly2 = [ [-3,-3],[2,-3],[2,1],[-1,1],[-1,-1],[1,-1],[1,2],[-3,2] ];
|
||||
assert(point_in_polygon([0,0], poly) == 1);
|
||||
assert(point_in_polygon([20,0], poly) == -1);
|
||||
assert(point_in_polygon([20,0], poly,EPSILON,nonzero=false) == -1);
|
||||
assert(point_in_polygon([5,5], poly) == 1);
|
||||
assert(point_in_polygon([-5,5], poly) == 1);
|
||||
assert(point_in_polygon([-5,-5], poly) == 1);
|
||||
assert(point_in_polygon([5,-5], poly) == 1);
|
||||
assert(point_in_polygon([5,-5], poly,EPSILON,nonzero=false) == 1);
|
||||
assert(point_in_polygon([-10,-10], poly) == -1);
|
||||
assert(point_in_polygon([10,0], poly) == 0);
|
||||
assert(point_in_polygon([0,10], poly) == 0);
|
||||
assert(point_in_polygon([0,-10], poly) == 0);
|
||||
assert(point_in_polygon([0,-10], poly,EPSILON,nonzero=false) == 0);
|
||||
assert(point_in_polygon([0,0], poly2,EPSILON,nonzero=true) == 1);
|
||||
assert(point_in_polygon([0,0], poly2,EPSILON,nonzero=false) == -1);
|
||||
}
|
||||
*test_point_in_polygon();
|
||||
|
||||
|
|
Loading…
Reference in a new issue