mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
fix permutation docs
consolidate "line/segment/ray" functions to just "line" with bounded option add RAY, LINE and SEGMENT constants
This commit is contained in:
parent
a651e191b4
commit
14ae1795bb
8 changed files with 177 additions and 314 deletions
15
arrays.scad
15
arrays.scad
|
@ -1369,11 +1369,10 @@ function triplet(list, wrap=false) =
|
||||||
// Function: combinations()
|
// Function: combinations()
|
||||||
// Usage:
|
// Usage:
|
||||||
// list = combinations(l, [n]);
|
// list = combinations(l, [n]);
|
||||||
// for (p = combinations(l, [n])) ...
|
|
||||||
// Topics: List Handling, Iteration
|
// Topics: List Handling, Iteration
|
||||||
// See Also: idx(), enumerate(), pair(), triplet(), permutations()
|
// See Also: idx(), enumerate(), pair(), triplet(), permutations()
|
||||||
// Description:
|
// Description:
|
||||||
// Returns an ordered list of every unique permutation of `n` items out of the given list `l`.
|
// Returns a list of all of the (unordered) combinations of `n` items out of the given list `l`.
|
||||||
// For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`.
|
// For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`.
|
||||||
// For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`.
|
// For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
|
@ -1395,21 +1394,17 @@ function combinations(l,n=2,_s=0) =
|
||||||
// Function: permutations()
|
// Function: permutations()
|
||||||
// Usage:
|
// Usage:
|
||||||
// list = permutations(l, [n]);
|
// list = permutations(l, [n]);
|
||||||
// for (p = permutations(l, [n])) ...
|
|
||||||
// Topics: List Handling, Iteration
|
// Topics: List Handling, Iteration
|
||||||
// See Also: idx(), enumerate(), pair(), triplet(), combinations()
|
// See Also: idx(), enumerate(), pair(), triplet(), combinations()
|
||||||
// Description:
|
// Description:
|
||||||
// Returns an ordered list of every unique permutation of `n` items out of the given list `l`.
|
// Returns a list of all of the (ordered) permutation `n` items out of the given list `l`.
|
||||||
// For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`.
|
// For the list `[1,2,3]`, with `n=2`, this will return `[[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]`
|
||||||
// For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`.
|
// For the list `[1,2,3]`, with `n=3`, this will return `[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]`
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// l = The list to provide permutations for.
|
// l = The list to provide permutations for.
|
||||||
// n = The number of items in each permutation. Default: 2
|
// n = The number of items in each permutation. Default: 2
|
||||||
// Example:
|
// Example:
|
||||||
// pairs = permutations([3,4,5,6]); // Returns: [[3,4],[3,5],[3,6],[4,5],[4,6],[5,6]]
|
// pairs = permutations([3,4,5,6]); // // Returns: [[3,4],[3,5],[3,6],[4,3],[4,5],[4,6],[5,3],[5,4],[5,6],[6,3],[6,4],[6,5]]
|
||||||
// triplets = permutations([3,4,5,6],n=3); // Returns: [[3,4,5],[3,4,6],[3,5,6],[4,5,6]]
|
|
||||||
// Example(2D):
|
|
||||||
// for (p=permutations(regular_ngon(n=7,d=100))) stroke(p);
|
|
||||||
function permutations(l,n=2) =
|
function permutations(l,n=2) =
|
||||||
assert(is_list(l), "Invalid list." )
|
assert(is_list(l), "Invalid list." )
|
||||||
assert( is_finite(n) && n>=1 && n<=len(l), "Invalid number `n`." )
|
assert( is_finite(n) && n>=1 && n<=len(l), "Invalid number `n`." )
|
||||||
|
|
|
@ -1673,7 +1673,7 @@ function _find_anchor(anchor, geom) =
|
||||||
for (t=triplet(path,true)) let(
|
for (t=triplet(path,true)) let(
|
||||||
seg1 = [t[0],t[1]],
|
seg1 = [t[0],t[1]],
|
||||||
seg2 = [t[1],t[2]],
|
seg2 = [t[1],t[2]],
|
||||||
isect = ray_segment_intersection([[0,0],anchor], seg1),
|
isect = line_intersection([[0,0],anchor], seg1,RAY,SEGMENT),
|
||||||
n = is_undef(isect)? [0,1] :
|
n = is_undef(isect)? [0,1] :
|
||||||
!approx(isect, t[1])? line_normal(seg1) :
|
!approx(isect, t[1])? line_normal(seg1) :
|
||||||
unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]),
|
unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]),
|
||||||
|
@ -1708,7 +1708,7 @@ function _find_anchor(anchor, geom) =
|
||||||
for (t=triplet(path,true)) let(
|
for (t=triplet(path,true)) let(
|
||||||
seg1 = [t[0],t[1]],
|
seg1 = [t[0],t[1]],
|
||||||
seg2 = [t[1],t[2]],
|
seg2 = [t[1],t[2]],
|
||||||
isect = ray_segment_intersection([[0,0],xyanch], seg1),
|
isect = line_intersection([[0,0],xyanch], seg1, RAY, SEGMENT),
|
||||||
n = is_undef(isect)? [0,1] :
|
n = is_undef(isect)? [0,1] :
|
||||||
!approx(isect, t[1])? line_normal(seg1) :
|
!approx(isect, t[1])? line_normal(seg1) :
|
||||||
unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]),
|
unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]),
|
||||||
|
|
|
@ -1119,7 +1119,7 @@ module sp_neck(diam,type,wall,id,style="L",bead=false, anchor, spin, orient)
|
||||||
[0,W/2]
|
[0,W/2]
|
||||||
];
|
];
|
||||||
|
|
||||||
isect400 = [for(seg=pair(beadpts)) let(segisect = line_segment_intersection([[T/2,0],[T/2,1]] , seg)) if (is_def(segisect)) segisect.y];
|
isect400 = [for(seg=pair(beadpts)) let(segisect = line_intersection([[T/2,0],[T/2,1]] , seg, LINE, SEGMENT)) if (is_def(segisect)) segisect.y];
|
||||||
|
|
||||||
extra_bot = type==400 && bead ? -min(subindex(beadpts,1))+max(isect400) : 0;
|
extra_bot = type==400 && bead ? -min(subindex(beadpts,1))+max(isect400) : 0;
|
||||||
bead_shift = type==400 ? H+max(isect400) : entry[5]+W/2; // entry[5] is L
|
bead_shift = type==400 ? H+max(isect400) : entry[5]+W/2; // entry[5] is L
|
||||||
|
|
|
@ -190,4 +190,37 @@ CTR = CENTER;
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Constant: SEGMENT
|
||||||
|
// Topics: Constants, Lines
|
||||||
|
// See Also: RAY, LINE
|
||||||
|
// Description: Treat a line as a segment. [true, true]
|
||||||
|
// Example: Usage with line_intersection:
|
||||||
|
// line1 = 10*[[9, 4], [5, 7]];
|
||||||
|
// line2 = 10*[[2, 3], [6, 5]];
|
||||||
|
// isect = line_intersection(line1, line2, SEGMENT, SEGMENT);
|
||||||
|
SEGMENT = [true,true];
|
||||||
|
|
||||||
|
|
||||||
|
// Constant: RAY
|
||||||
|
// Topics: Constants, Lines
|
||||||
|
// See Also: SEGMENT, LINE
|
||||||
|
// Description: Treat a line as a ray, based at the first point. [true, false]
|
||||||
|
// Example: Usage with line_intersection:
|
||||||
|
// line = [[-30,0],[30,30]];
|
||||||
|
// pt = [40,25];
|
||||||
|
// closest = line_closest_point(line,pt,RAY);
|
||||||
|
RAY = [true, false];
|
||||||
|
|
||||||
|
|
||||||
|
// Constant: LINE
|
||||||
|
// Topics: Constants, Lines
|
||||||
|
// See Also: RAY, SEGMENT
|
||||||
|
// Description: Treat a line as an unbounded line. [false, false]
|
||||||
|
// Example: Usage with line_intersection:
|
||||||
|
// line1 = 10*[[9, 4], [5, 7]];
|
||||||
|
// line2 = 10*[[2, 3], [6, 5]];
|
||||||
|
// isect = line_intersection(line1, line2, LINE, SEGMENT);
|
||||||
|
LINE = [false, false];
|
||||||
|
|
||||||
|
|
||||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||||
|
|
415
geometry.scad
415
geometry.scad
|
@ -8,9 +8,9 @@
|
||||||
|
|
||||||
// Section: Lines, Rays, and Segments
|
// Section: Lines, Rays, and Segments
|
||||||
|
|
||||||
// Function: point_on_segment2d()
|
// Function: point_on_segment()
|
||||||
// Usage:
|
// Usage:
|
||||||
// pt = point_on_segment2d(point, edge);
|
// pt = point_on_segment(point, edge);
|
||||||
// Topics: Geometry, Points, Segments
|
// Topics: Geometry, Points, Segments
|
||||||
// Description:
|
// Description:
|
||||||
// Determine if the point is on the line segment between two points.
|
// Determine if the point is on the line segment between two points.
|
||||||
|
@ -19,9 +19,9 @@
|
||||||
// point = The point to test.
|
// point = The point to test.
|
||||||
// edge = Array of two points forming the line segment to test against.
|
// edge = Array of two points forming the line segment to test against.
|
||||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||||
function point_on_segment2d(point, edge, eps=EPSILON) =
|
function point_on_segment(point, edge, eps=EPSILON) =
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
point_segment_distance(point, edge)<eps;
|
point_line_distance(point, edge, SEGMENT)<eps;
|
||||||
|
|
||||||
|
|
||||||
//Internal - distance from point `d` to the line passing through the origin with unit direction n
|
//Internal - distance from point `d` to the line passing through the origin with unit direction n
|
||||||
|
@ -83,38 +83,26 @@ function collinear(a, b, c, eps=EPSILON) =
|
||||||
|
|
||||||
// Function: point_line_distance()
|
// Function: point_line_distance()
|
||||||
// Usage:
|
// Usage:
|
||||||
// pt = point_line_distance(line, pt);
|
// pt = point_line_distance(line, pt, bounded);
|
||||||
// Topics: Geometry, Points, Lines, Distance
|
// Topics: Geometry, Points, Lines, Distance
|
||||||
// Description:
|
// Description:
|
||||||
// Finds the perpendicular distance of a point `pt` from the line `line`.
|
// Finds the shortest distance from the point `pt` to the specified line, segment or ray.
|
||||||
|
// The bounded parameter specifies the whether the endpoints give a ray or segment.
|
||||||
|
// By default assumes an unbounded line.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// line = A list of two points, defining a line that both are on.
|
// line = A list of two points defining a line.
|
||||||
// pt = A point to find the distance of from the line.
|
// pt = A point to find the distance of from the line.
|
||||||
|
// bounded = a boolean or list of two booleans specifiying whether each end is bounded. Default: false
|
||||||
// Example:
|
// Example:
|
||||||
// dist = point_line_distance([3,8], [[-10,0], [10,0]]); // Returns: 8
|
// dist1 = point_line_distance([3,8], [[-10,0], [10,0]]); // Returns: 8
|
||||||
function point_line_distance(pt, line) =
|
// dist2 = point_line_distance([3,8], [[-10,0], [10,0]],SEGMENT); // Returns: 8
|
||||||
|
// dist3 = point_line_distance([14,3], [[-10,0], [10,0]],SEGMENT); // Returns: 5
|
||||||
|
function point_line_distance(pt, line, bounded=false) =
|
||||||
|
assert(is_bool(bounded) || is_bool_list(bounded,2), "\"bounded\" is invalid")
|
||||||
assert( _valid_line(line) && is_vector(pt,len(line[0])),
|
assert( _valid_line(line) && is_vector(pt,len(line[0])),
|
||||||
"Invalid line, invalid point or incompatible dimensions." )
|
"Invalid line, invalid point or incompatible dimensions." )
|
||||||
_dist2line(pt-line[0],unit(line[1]-line[0]));
|
bounded == LINE ? _dist2line(pt-line[0],unit(line[1]-line[0]))
|
||||||
|
: norm(pt-line_closest_point(line,pt,bounded));
|
||||||
|
|
||||||
// Function: point_segment_distance()
|
|
||||||
// Usage:
|
|
||||||
// dist = point_segment_distance(pt, seg);
|
|
||||||
// Topics: Geometry, Points, Segments, Distance
|
|
||||||
// Description:
|
|
||||||
// Returns the closest distance of the given point to the given line segment.
|
|
||||||
// Arguments:
|
|
||||||
// pt = The point to check the distance of.
|
|
||||||
// seg = The two points representing the line segment to check the distance of.
|
|
||||||
// Example:
|
|
||||||
// dist = point_segment_distance([3,8], [[-10,0], [10,0]]); // Returns: 8
|
|
||||||
// dist2 = point_segment_distance([14,3], [[-10,0], [10,0]]); // Returns: 5
|
|
||||||
function point_segment_distance(pt, seg) =
|
|
||||||
assert( is_matrix(concat([pt],seg),3),
|
|
||||||
"Input should be a point and a valid segment with the dimension equal to the point." )
|
|
||||||
norm(seg[0]-seg[1]) < EPSILON ? norm(pt-seg[0]) :
|
|
||||||
norm(pt-segment_closest_point(seg,pt));
|
|
||||||
|
|
||||||
|
|
||||||
// Function: segment_distance()
|
// Function: segment_distance()
|
||||||
|
@ -178,135 +166,79 @@ function _general_line_intersection(s1,s2,eps=EPSILON) =
|
||||||
) [s1[0]+t*(s1[1]-s1[0]), t, u];
|
) [s1[0]+t*(s1[1]-s1[0]), t, u];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: line_intersection()
|
// Function: line_intersection()
|
||||||
// Usage:
|
// Usage:
|
||||||
// pt = line_intersection(l1, l2);
|
// pt = line_intersection(line1, line2, [bounded1], [bounded2], [bounded=], [eps=]);
|
||||||
// Topics: Geometry, Lines, Intersections
|
|
||||||
// Description:
|
// Description:
|
||||||
// Returns the 2D intersection point of two unbounded 2D lines.
|
// Returns the intersection point of any two 2D lines, segments or rays. Returns undef
|
||||||
// Returns `undef` if the lines are parallel.
|
// if they do not intersect. You specify a line by giving two distinct points on the
|
||||||
|
// line. You specify rays or segments by giving a pair of points and indicating
|
||||||
|
// bounded[0]=true to bound the line at the first point, creating rays based at l1[0] and l2[0],
|
||||||
|
// or bounded[1]=true to bound the line at the second point, creating the reverse rays bounded
|
||||||
|
// at l1[1] and l2[1]. If bounded=[true, true] then you have segments defined by their two
|
||||||
|
// endpoints. By using bounded1 and bounded2 you can mix segments, rays, and lines as needed.
|
||||||
|
// You can set the bounds parameters to true as a shorthand for [true,true] to sepcify segments.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// l1 = First 2D line, given as a list of two 2D points on the line.
|
// line1 = List of two points in 2D defining the first line, segment or ray
|
||||||
// l2 = Second 2D line, given as a list of two 2D points on the line.
|
// line2 = List of two points in 2D defining the second line, segment or ray
|
||||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
// bounded1 = boolean or list of two booleans defining which ends are bounded for line1. Default: [false,false]
|
||||||
function line_intersection(l1,l2,eps=EPSILON) =
|
// bounded2 = boolean or list of two booleans defining which ends are bounded for line2. Default: [false,false]
|
||||||
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." )
|
// ---
|
||||||
assert( _valid_line(l1,dim=2,eps=eps) &&_valid_line(l2,dim=2,eps=eps), "Invalid line(s)." )
|
// bounded = boolean or list of two booleans defining which ends are bounded for both lines. The bounded1 and bounded2 parameters override this if both are given.
|
||||||
|
// eps = tolerance for geometric comparisons. Default: `EPSILON` (1e-9)
|
||||||
|
// Example(2D): The segments do not intersect but the lines do in this example.
|
||||||
|
// line1 = 10*[[9, 4], [5, 7]];
|
||||||
|
// line2 = 10*[[2, 3], [6, 5]];
|
||||||
|
// stroke(line1, endcaps="arrow2");
|
||||||
|
// stroke(line2, endcaps="arrow2");
|
||||||
|
// isect = line_intersection(line1, line2);
|
||||||
|
// color("red") translate(isect) circle(r=1,$fn=12);
|
||||||
|
// Example(2D): Specifying a ray and segment using the shorthand variables.
|
||||||
|
// line1 = 10*[[0, 2], [4, 7]];
|
||||||
|
// line2 = 10*[[10, 4], [3, 4]];
|
||||||
|
// stroke(line1);
|
||||||
|
// stroke(line2, endcap2="arrow2");
|
||||||
|
// isect = line_intersection(line1, line2, SEGMENT, RAY);
|
||||||
|
// color("red") translate(isect) circle(r=1,$fn=12);
|
||||||
|
// Example(2D): Here we use the same example as above, but specify two segments using the bounded argument.
|
||||||
|
// line1 = 10*[[0, 2], [4, 7]];
|
||||||
|
// line2 = 10*[[10, 4], [3, 4]];
|
||||||
|
// stroke(line1);
|
||||||
|
// stroke(line2);
|
||||||
|
// isect = line_intersection(line1, line2, bounded=true); // Returns undef
|
||||||
|
function line_intersection(line1, line2, bounded1, bounded2, bounded, eps=EPSILON) =
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
||||||
let(isect = _general_line_intersection(l1,l2,eps=eps))
|
assert( _valid_line(line1,dim=2,eps=eps), "First line invalid")
|
||||||
isect[0];
|
assert( _valid_line(line2,dim=2,eps=eps), "Second line invalid")
|
||||||
|
assert( is_undef(bounded) || is_bool(bounded) || is_bool_list(bounded,2), "Invalid value for \"bounded\"")
|
||||||
|
assert( is_undef(bounded1) || is_bool(bounded1) || is_bool_list(bounded1,2), "Invalid value for \"bounded1\"")
|
||||||
// Function: line_ray_intersection()
|
assert( is_undef(bounded2) || is_bool(bounded2) || is_bool_list(bounded2,2), "Invalid value for \"bounded2\"")
|
||||||
// Usage:
|
let(isect = _general_line_intersection(line1,line2,eps=eps))
|
||||||
// pt = line_ray_intersection(line, ray);
|
|
||||||
// Topics: Geometry, Lines, Rays, Intersections
|
|
||||||
// Description:
|
|
||||||
// Returns the 2D intersection point of an unbounded 2D line, and a half-bounded 2D ray.
|
|
||||||
// Returns `undef` if they do not intersect.
|
|
||||||
// Arguments:
|
|
||||||
// line = The unbounded 2D line, defined by two 2D points on the line.
|
|
||||||
// ray = The 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray.
|
|
||||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
|
||||||
function line_ray_intersection(line,ray,eps=EPSILON) =
|
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
|
||||||
assert( _valid_line(line,dim=2,eps=eps) && _valid_line(ray,dim=2,eps=eps), "Invalid line or ray." )
|
|
||||||
let( isect = _general_line_intersection(line,ray,eps=eps) )
|
|
||||||
is_undef(isect[0]) ? undef :
|
is_undef(isect[0]) ? undef :
|
||||||
(isect[2]<0-eps) ? undef :
|
let(
|
||||||
isect[0];
|
bounded1 = force_list(first_defined([bounded1,bounded,false]),2),
|
||||||
|
bounded2 = force_list(first_defined([bounded2,bounded,false]),2),
|
||||||
|
good = (!bounded1[0] || isect[1]>=0-eps)
|
||||||
// Function: line_segment_intersection()
|
&& (!bounded1[1] || isect[1]<=1+eps)
|
||||||
// Usage:
|
&& (!bounded2[0] || isect[2]>=0-eps)
|
||||||
// pt = line_segment_intersection(line, segment);
|
&& (!bounded2[1] || isect[2]<=1+eps)
|
||||||
// Topics: Geometry, Lines, Segments, Intersections
|
)
|
||||||
// Description:
|
good ? isect[0] : undef;
|
||||||
// Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment.
|
|
||||||
// Returns `undef` if they do not intersect.
|
|
||||||
// Arguments:
|
|
||||||
// line = The unbounded 2D line, defined by two 2D points on the line.
|
|
||||||
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
|
|
||||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
|
||||||
function line_segment_intersection(line,segment,eps=EPSILON) =
|
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
|
||||||
assert( _valid_line(line, dim=2,eps=eps) &&_valid_line(segment,dim=2,eps=eps), "Invalid line or segment." )
|
|
||||||
let( isect = _general_line_intersection(line,segment,eps=eps) )
|
|
||||||
is_undef(isect[0]) ? undef :
|
|
||||||
isect[2]<0-eps || isect[2]>1+eps ? undef :
|
|
||||||
isect[0];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: ray_intersection()
|
|
||||||
// Usage:
|
|
||||||
// pt = ray_intersection(s1, s2);
|
|
||||||
// Topics: Geometry, Lines, Rays, Intersections
|
|
||||||
// Description:
|
|
||||||
// Returns the 2D intersection point of two 2D line rays.
|
|
||||||
// Returns `undef` if they do not intersect.
|
|
||||||
// Arguments:
|
|
||||||
// r1 = First 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray.
|
|
||||||
// r2 = Second 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray.
|
|
||||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
|
||||||
function ray_intersection(r1,r2,eps=EPSILON) =
|
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
|
||||||
assert( _valid_line(r1,dim=2,eps=eps) && _valid_line(r2,dim=2,eps=eps), "Invalid ray(s)." )
|
|
||||||
let( isect = _general_line_intersection(r1,r2,eps=eps) )
|
|
||||||
is_undef(isect[0]) ? undef :
|
|
||||||
isect[1]<0-eps || isect[2]<0-eps ? undef :
|
|
||||||
isect[0];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: ray_segment_intersection()
|
|
||||||
// Usage:
|
|
||||||
// pt = ray_segment_intersection(ray, segment);
|
|
||||||
// Topics: Geometry, Rays, Segments, Intersections
|
|
||||||
// Description:
|
|
||||||
// Returns the 2D intersection point of a half-bounded 2D ray, and a bounded 2D line segment.
|
|
||||||
// Returns `undef` if they do not intersect.
|
|
||||||
// Arguments:
|
|
||||||
// ray = The 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray.
|
|
||||||
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
|
|
||||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
|
||||||
function ray_segment_intersection(ray,segment,eps=EPSILON) =
|
|
||||||
assert( _valid_line(ray,dim=2,eps=eps) && _valid_line(segment,dim=2,eps=eps), "Invalid ray or segment." )
|
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
|
||||||
let( isect = _general_line_intersection(ray,segment,eps=eps) )
|
|
||||||
is_undef(isect[0]) ? undef :
|
|
||||||
isect[1]<0-eps || isect[2]<0-eps || isect[2]>1+eps ? undef :
|
|
||||||
isect[0];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: segment_intersection()
|
|
||||||
// Usage:
|
|
||||||
// pt = segment_intersection(s1, s2);
|
|
||||||
// Topics: Geometry, Segments, Intersections
|
|
||||||
// Description:
|
|
||||||
// Returns the 2D intersection point of two 2D line segments.
|
|
||||||
// Returns `undef` if they do not intersect.
|
|
||||||
// Arguments:
|
|
||||||
// s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment.
|
|
||||||
// s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment.
|
|
||||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
|
||||||
function segment_intersection(s1,s2,eps=EPSILON) =
|
|
||||||
assert( _valid_line(s1,dim=2,eps=eps) && _valid_line(s2,dim=2,eps=eps), "Invalid segment(s)." )
|
|
||||||
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
|
|
||||||
let( isect = _general_line_intersection(s1,s2,eps=eps) )
|
|
||||||
is_undef(isect[0]) ? undef :
|
|
||||||
isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef :
|
|
||||||
isect[0];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: line_closest_point()
|
// Function: line_closest_point()
|
||||||
// Usage:
|
// Usage:
|
||||||
// pt = line_closest_point(line,pt);
|
// pt = line_closest_point(line, pt, [bounded]);
|
||||||
// Topics: Geometry, Lines, Distance
|
// Topics: Geometry, Lines, Distance
|
||||||
// Description:
|
// Description:
|
||||||
// Returns the point on the given 2D or 3D `line` that is closest to the given point `pt`.
|
// Returns the point on the given 2D or 3D line, segment or ray that is closest to the given point `pt`.
|
||||||
// The `line` and `pt` args should either both be 2D or both 3D.
|
// The inputs `line` and `pt` args should either both be 2D or both 3D. The parameter bounded indicates
|
||||||
|
// whether the points of `line` should be treated as endpoints.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// line = A list of two points that are on the unbounded line.
|
// line = A list of two points that are on the unbounded line.
|
||||||
// pt = The point to find the closest point on the line to.
|
// pt = The point to find the closest point on the line to.
|
||||||
|
// bounded = boolean or list of two booleans indicating that the line is bounded at that end. Default: [false,false]
|
||||||
// Example(2D):
|
// Example(2D):
|
||||||
// line = [[-30,0],[30,30]];
|
// line = [[-30,0],[30,30]];
|
||||||
// pt = [-32,-10];
|
// pt = [-32,-10];
|
||||||
|
@ -314,168 +246,69 @@ function segment_intersection(s1,s2,eps=EPSILON) =
|
||||||
// stroke(line, endcaps="arrow2");
|
// stroke(line, endcaps="arrow2");
|
||||||
// color("blue") translate(pt) circle(r=1,$fn=12);
|
// color("blue") translate(pt) circle(r=1,$fn=12);
|
||||||
// color("red") translate(p2) circle(r=1,$fn=12);
|
// color("red") translate(p2) circle(r=1,$fn=12);
|
||||||
// Example(2D):
|
// Example(2D): If the line is bounded on the left you get the endpoint instead
|
||||||
// line = [[-30,0],[30,30]];
|
// line = [[-30,0],[30,30]];
|
||||||
// pt = [-5,0];
|
|
||||||
// p2 = line_closest_point(line,pt);
|
|
||||||
// stroke(line, endcaps="arrow2");
|
|
||||||
// color("blue") translate(pt) circle(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) circle(r=1,$fn=12);
|
|
||||||
// Example(2D):
|
|
||||||
// line = [[-30,0],[30,30]];
|
|
||||||
// pt = [40,25];
|
|
||||||
// p2 = line_closest_point(line,pt);
|
|
||||||
// stroke(line, endcaps="arrow2");
|
|
||||||
// color("blue") translate(pt) circle(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) circle(r=1,$fn=12);
|
|
||||||
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
|
||||||
// line = [[-30,-15,0],[30,15,30]];
|
|
||||||
// pt = [5,5,5];
|
|
||||||
// p2 = line_closest_point(line,pt);
|
|
||||||
// stroke(line, endcaps="arrow2");
|
|
||||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
|
||||||
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
|
||||||
// line = [[-30,-15,0],[30,15,30]];
|
|
||||||
// pt = [-35,-15,0];
|
|
||||||
// p2 = line_closest_point(line,pt);
|
|
||||||
// stroke(line, endcaps="arrow2");
|
|
||||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
|
||||||
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
|
||||||
// line = [[-30,-15,0],[30,15,30]];
|
|
||||||
// pt = [40,15,25];
|
|
||||||
// p2 = line_closest_point(line,pt);
|
|
||||||
// stroke(line, endcaps="arrow2");
|
|
||||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
|
||||||
function line_closest_point(line,pt) =
|
|
||||||
assert(_valid_line(line), "Invalid line." )
|
|
||||||
assert( is_vector(pt,len(line[0])), "Invalid point or incompatible dimensions." )
|
|
||||||
let( n = unit( line[0]- line[1]) )
|
|
||||||
line[1] + ((pt- line[1]) * n) * n;
|
|
||||||
|
|
||||||
|
|
||||||
// Function: ray_closest_point()
|
|
||||||
// Usage:
|
|
||||||
// pt = ray_closest_point(seg,pt);
|
|
||||||
// Topics: Geometry, Rays, Distance
|
|
||||||
// Description:
|
|
||||||
// Returns the point on the given 2D or 3D ray `ray` that is closest to the given point `pt`.
|
|
||||||
// The `ray` and `pt` args should either both be 2D or both 3D.
|
|
||||||
// Arguments:
|
|
||||||
// ray = The ray, given as a list `[START,POINT]` of the start-point START, and a point POINT on the ray.
|
|
||||||
// pt = The point to find the closest point on the ray to.
|
|
||||||
// Example(2D):
|
|
||||||
// ray = [[-30,0],[30,30]];
|
|
||||||
// pt = [-32,-10];
|
// pt = [-32,-10];
|
||||||
// p2 = ray_closest_point(ray,pt);
|
// p2 = line_closest_point(line,pt,bounded=[true,false]);
|
||||||
// stroke(ray, endcap2="arrow2");
|
// stroke(line, endcap2="arrow2");
|
||||||
// color("blue") translate(pt) circle(r=1,$fn=12);
|
// color("blue") translate(pt) circle(r=1,$fn=12);
|
||||||
// color("red") translate(p2) circle(r=1,$fn=12);
|
// color("red") translate(p2) circle(r=1,$fn=12);
|
||||||
// Example(2D):
|
// Example(2D): In this case it doesn't matter how bounded is set. Using SEGMENT is the most restrictive option.
|
||||||
// ray = [[-30,0],[30,30]];
|
// line = [[-30,0],[30,30]];
|
||||||
// pt = [-5,0];
|
// pt = [-5,0];
|
||||||
// p2 = ray_closest_point(ray,pt);
|
// p2 = line_closest_point(line,pt,SEGMENT);
|
||||||
// stroke(ray, endcap2="arrow2");
|
// stroke(line);
|
||||||
// color("blue") translate(pt) circle(r=1,$fn=12);
|
// color("blue") translate(pt) circle(r=1,$fn=12);
|
||||||
// color("red") translate(p2) circle(r=1,$fn=12);
|
// color("red") translate(p2) circle(r=1,$fn=12);
|
||||||
// Example(2D):
|
// Example(2D): The result here is the same for a line or a ray.
|
||||||
// ray = [[-30,0],[30,30]];
|
// line = [[-30,0],[30,30]];
|
||||||
// pt = [40,25];
|
// pt = [40,25];
|
||||||
// p2 = ray_closest_point(ray,pt);
|
// p2 = line_closest_point(line,pt,RAY);
|
||||||
// stroke(ray, endcap2="arrow2");
|
// stroke(line, endcap2="arrow2");
|
||||||
// color("blue") translate(pt) circle(r=1,$fn=12);
|
// color("blue") translate(pt) circle(r=1,$fn=12);
|
||||||
// color("red") translate(p2) circle(r=1,$fn=12);
|
// color("red") translate(p2) circle(r=1,$fn=12);
|
||||||
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
// Example(2D): But with a segment we get a different result
|
||||||
// ray = [[-30,-15,0],[30,15,30]];
|
// line = [[-30,0],[30,30]];
|
||||||
|
// pt = [40,25];
|
||||||
|
// p2 = line_closest_point(line,pt,SEGMENT);
|
||||||
|
// stroke(line);
|
||||||
|
// color("blue") translate(pt) circle(r=1,$fn=12);
|
||||||
|
// color("red") translate(p2) circle(r=1,$fn=12);
|
||||||
|
// Example(2D): The shorthand RAY uses the first point as the base of the ray. But you can specify a reversed ray directly, and in this case the result is the same as the result above for the segment.
|
||||||
|
// line = [[-30,0],[30,30]];
|
||||||
|
// pt = [40,25];
|
||||||
|
// p2 = line_closest_point(line,pt,[false,true]);
|
||||||
|
// stroke(line,endcap1="arrow2");
|
||||||
|
// color("blue") translate(pt) circle(r=1,$fn=12);
|
||||||
|
// color("red") translate(p2) circle(r=1,$fn=12);
|
||||||
|
// Example(FlatSpin,VPD=200,VPT=[0,0,15]): A 3D example
|
||||||
|
// line = [[-30,-15,0],[30,15,30]];
|
||||||
// pt = [5,5,5];
|
// pt = [5,5,5];
|
||||||
// p2 = ray_closest_point(ray,pt);
|
// p2 = line_closest_point(line,pt);
|
||||||
// stroke(ray, endcap2="arrow2");
|
// stroke(line, endcaps="arrow2");
|
||||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
||||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
// color("red") translate(p2) sphere(r=1,$fn=12);
|
||||||
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
function line_closest_point(line, pt, bounded=false) =
|
||||||
// ray = [[-30,-15,0],[30,15,30]];
|
assert(_valid_line(line), "Invalid line")
|
||||||
// pt = [-35,-15,0];
|
assert(is_vector(pt, len(line[0])), "Invalid point or incompatible dimensions.")
|
||||||
// p2 = ray_closest_point(ray,pt);
|
assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid value for \"bounded\"")
|
||||||
// stroke(ray, endcap2="arrow2");
|
|
||||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
|
||||||
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
|
||||||
// ray = [[-30,-15,0],[30,15,30]];
|
|
||||||
// pt = [40,15,25];
|
|
||||||
// p2 = ray_closest_point(ray,pt);
|
|
||||||
// stroke(ray, endcap2="arrow2");
|
|
||||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
|
||||||
function ray_closest_point(ray,pt) =
|
|
||||||
assert( _valid_line(ray), "Invalid ray." )
|
|
||||||
assert(is_vector(pt,len(ray[0])), "Invalid point or incompatible dimensions." )
|
|
||||||
let(
|
let(
|
||||||
seglen = norm(ray[1]-ray[0]),
|
bounded = force_list(bounded,2)
|
||||||
segvec = (ray[1]-ray[0])/seglen,
|
|
||||||
projection = (pt-ray[0]) * segvec
|
|
||||||
)
|
)
|
||||||
projection<=0 ? ray[0] :
|
bounded==[false,false] ?
|
||||||
ray[0] + projection*segvec;
|
let( n = unit( line[0]- line[1]) )
|
||||||
|
line[1] + ((pt- line[1]) * n) * n
|
||||||
|
: bounded == [true,true] ?
|
||||||
// Function: segment_closest_point()
|
pt + _closest_s1([line[0]-pt, line[1]-pt])[0]
|
||||||
// Usage:
|
:
|
||||||
// pt = segment_closest_point(seg,pt);
|
let(
|
||||||
// Topics: Geometry, Segments, Distance
|
ray = bounded==[true,false] ? line : reverse(line),
|
||||||
// Description:
|
seglen = norm(ray[1]-ray[0]),
|
||||||
// Returns the point on the given 2D or 3D line segment `seg` that is closest to the given point `pt`.
|
segvec = (ray[1]-ray[0])/seglen,
|
||||||
// The `seg` and `pt` args should either both be 2D or both 3D.
|
projection = (pt-ray[0]) * segvec
|
||||||
// Arguments:
|
)
|
||||||
// seg = A list of two points that are the endpoints of the bounded line segment.
|
projection<=0 ? ray[0] :
|
||||||
// pt = The point to find the closest point on the segment to.
|
ray[0] + projection*segvec;
|
||||||
// Example(2D):
|
|
||||||
// seg = [[-30,0],[30,30]];
|
|
||||||
// pt = [-32,-10];
|
|
||||||
// p2 = segment_closest_point(seg,pt);
|
|
||||||
// stroke(seg);
|
|
||||||
// color("blue") translate(pt) circle(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) circle(r=1,$fn=12);
|
|
||||||
// Example(2D):
|
|
||||||
// seg = [[-30,0],[30,30]];
|
|
||||||
// pt = [-5,0];
|
|
||||||
// p2 = segment_closest_point(seg,pt);
|
|
||||||
// stroke(seg);
|
|
||||||
// color("blue") translate(pt) circle(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) circle(r=1,$fn=12);
|
|
||||||
// Example(2D):
|
|
||||||
// seg = [[-30,0],[30,30]];
|
|
||||||
// pt = [40,25];
|
|
||||||
// p2 = segment_closest_point(seg,pt);
|
|
||||||
// stroke(seg);
|
|
||||||
// color("blue") translate(pt) circle(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) circle(r=1,$fn=12);
|
|
||||||
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
|
||||||
// seg = [[-30,-15,0],[30,15,30]];
|
|
||||||
// pt = [5,5,5];
|
|
||||||
// p2 = segment_closest_point(seg,pt);
|
|
||||||
// stroke(seg);
|
|
||||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
|
||||||
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
|
||||||
// seg = [[-30,-15,0],[30,15,30]];
|
|
||||||
// pt = [-35,-15,0];
|
|
||||||
// p2 = segment_closest_point(seg,pt);
|
|
||||||
// stroke(seg);
|
|
||||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
|
||||||
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
|
|
||||||
// seg = [[-30,-15,0],[30,15,30]];
|
|
||||||
// pt = [40,15,25];
|
|
||||||
// p2 = segment_closest_point(seg,pt);
|
|
||||||
// stroke(seg);
|
|
||||||
// color("blue") translate(pt) sphere(r=1,$fn=12);
|
|
||||||
// color("red") translate(p2) sphere(r=1,$fn=12);
|
|
||||||
function segment_closest_point(seg,pt) =
|
|
||||||
assert( is_matrix(concat([pt],seg),3) ,
|
|
||||||
"Invalid point or segment or incompatible dimensions." )
|
|
||||||
pt + _closest_s1([seg[0]-pt, seg[1]-pt])[0];
|
|
||||||
|
|
||||||
|
|
||||||
// Function: line_from_points()
|
// Function: line_from_points()
|
||||||
|
@ -2071,7 +1904,7 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
|
||||||
for (i = [0:1:len(poly)-1])
|
for (i = [0:1:len(poly)-1])
|
||||||
let( seg = select(poly,i,i+1) )
|
let( seg = select(poly,i,i+1) )
|
||||||
if (!approx(seg[0],seg[1],eps) )
|
if (!approx(seg[0],seg[1],eps) )
|
||||||
point_on_segment2d(point, seg, eps=eps)? 1:0
|
point_on_segment(point, seg, eps=eps)? 1:0
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
sum(on_brd) > 0? 0 :
|
sum(on_brd) > 0? 0 :
|
||||||
|
|
|
@ -311,7 +311,7 @@ function path_trim_end(path,trim,_d=0,_i=undef) =
|
||||||
// color("red") translate(closest[1]) circle(d=3, $fn=12);
|
// color("red") translate(closest[1]) circle(d=3, $fn=12);
|
||||||
function path_closest_point(path, pt) =
|
function path_closest_point(path, pt) =
|
||||||
let(
|
let(
|
||||||
pts = [for (seg=idx(path)) segment_closest_point(select(path,seg,seg+1),pt)],
|
pts = [for (seg=idx(path)) line_closest_point(select(path,seg,seg+1),pt,SEGMENT)],
|
||||||
dists = [for (p=pts) norm(p-pt)],
|
dists = [for (p=pts) norm(p-pt)],
|
||||||
min_seg = min_index(dists)
|
min_seg = min_index(dists)
|
||||||
) [min_seg, pts[min_seg]];
|
) [min_seg, pts[min_seg]];
|
||||||
|
|
|
@ -656,7 +656,7 @@ function _path_join(paths,joint,k=0.5,i=0,result=[],relocate=true,closed=false)
|
||||||
let(
|
let(
|
||||||
first_dir=firstcut[2],
|
first_dir=firstcut[2],
|
||||||
next_dir=nextcut[2],
|
next_dir=nextcut[2],
|
||||||
corner = ray_intersection([firstcut[0], firstcut[0]-first_dir], [nextcut[0], nextcut[0]-next_dir])
|
corner = line_intersection([firstcut[0], firstcut[0]-first_dir], [nextcut[0], nextcut[0]-next_dir],RAY,RAY)
|
||||||
)
|
)
|
||||||
assert(is_def(corner), str("Curve directions at cut points don't intersect in a corner when ",
|
assert(is_def(corner), str("Curve directions at cut points don't intersect in a corner when ",
|
||||||
loop?"closing the path":str("adding path ",i+1)))
|
loop?"closing the path":str("adding path ",i+1)))
|
||||||
|
@ -1641,7 +1641,7 @@ function _stroke_end(width,left, right, spec) =
|
||||||
// returns [intersection_pt, index of first point in path after the intersection]
|
// returns [intersection_pt, index of first point in path after the intersection]
|
||||||
function _path_line_intersection(path, line, ind=0) =
|
function _path_line_intersection(path, line, ind=0) =
|
||||||
ind==len(path)-1 ? undef :
|
ind==len(path)-1 ? undef :
|
||||||
let(intersect=line_segment_intersection(line, select(path,ind,ind+1)))
|
let(intersect=line_intersection(line, select(path,ind,ind+1),LINE,SEGMENT))
|
||||||
// If it intersects the segment excluding it's final point, then we're done
|
// If it intersects the segment excluding it's final point, then we're done
|
||||||
// The final point is treated as part of the next segment
|
// The final point is treated as part of the next segment
|
||||||
is_def(intersect) && intersect != path[ind+1]?
|
is_def(intersect) && intersect != path[ind+1]?
|
||||||
|
@ -1694,8 +1694,10 @@ function _rp_compute_patches(top, bot, rtop, rsides, ktop, ksides, concave) =
|
||||||
let(
|
let(
|
||||||
prev_corner = prev_offset + abs(rtop_in)*in_prev,
|
prev_corner = prev_offset + abs(rtop_in)*in_prev,
|
||||||
next_corner = next_offset + abs(rtop_in)*in_next,
|
next_corner = next_offset + abs(rtop_in)*in_next,
|
||||||
prev_degenerate = is_undef(ray_intersection(path2d([far_corner, far_corner+prev]), path2d([prev_offset, prev_offset+in_prev]))),
|
prev_degenerate = is_undef(line_intersection(path2d([far_corner, far_corner+prev]),
|
||||||
next_degenerate = is_undef(ray_intersection(path2d([far_corner, far_corner+next]), path2d([next_offset, next_offset+in_next])))
|
path2d([prev_offset, prev_offset+in_prev]),RAY,RAY)),
|
||||||
|
next_degenerate = is_undef(line_intersection(path2d([far_corner, far_corner+next]),
|
||||||
|
path2d([next_offset, next_offset+in_next]),RAY,RAY))
|
||||||
)
|
)
|
||||||
[ prev_degenerate ? far_corner : prev_corner,
|
[ prev_degenerate ? far_corner : prev_corner,
|
||||||
far_corner,
|
far_corner,
|
||||||
|
|
2
vnf.scad
2
vnf.scad
|
@ -899,7 +899,7 @@ function vnf_validate(vnf, show_warns=true, check_isects=false) =
|
||||||
c = varr[ic]
|
c = varr[ic]
|
||||||
)
|
)
|
||||||
if (!approx(a,b) && !approx(b,c) && !approx(a,c)) let(
|
if (!approx(a,b) && !approx(b,c) && !approx(a,c)) let(
|
||||||
pt = segment_closest_point([a,c],b)
|
pt = line_closest_point([a,c],b,SEGMENT)
|
||||||
)
|
)
|
||||||
if (approx(pt,b))
|
if (approx(pt,b))
|
||||||
_vnf_validate_err("T_JUNCTION", [b])
|
_vnf_validate_err("T_JUNCTION", [b])
|
||||||
|
|
Loading…
Reference in a new issue