fix permutation docs

consolidate "line/segment/ray" functions to just "line" with bounded option
add RAY, LINE and SEGMENT constants
This commit is contained in:
Adrian Mariano 2021-09-09 18:32:58 -04:00
parent a651e191b4
commit 14ae1795bb
8 changed files with 177 additions and 314 deletions

View file

@ -1369,11 +1369,10 @@ function triplet(list, wrap=false) =
// Function: combinations() // Function: combinations()
// Usage: // Usage:
// list = combinations(l, [n]); // list = combinations(l, [n]);
// for (p = combinations(l, [n])) ...
// Topics: List Handling, Iteration // Topics: List Handling, Iteration
// See Also: idx(), enumerate(), pair(), triplet(), permutations() // See Also: idx(), enumerate(), pair(), triplet(), permutations()
// Description: // Description:
// Returns an ordered list of every unique permutation of `n` items out of the given list `l`. // Returns a list of all of the (unordered) combinations of `n` items out of the given list `l`.
// For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`. // For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`.
// For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`. // For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`.
// Arguments: // Arguments:
@ -1395,21 +1394,17 @@ function combinations(l,n=2,_s=0) =
// Function: permutations() // Function: permutations()
// Usage: // Usage:
// list = permutations(l, [n]); // list = permutations(l, [n]);
// for (p = permutations(l, [n])) ...
// Topics: List Handling, Iteration // Topics: List Handling, Iteration
// See Also: idx(), enumerate(), pair(), triplet(), combinations() // See Also: idx(), enumerate(), pair(), triplet(), combinations()
// Description: // Description:
// Returns an ordered list of every unique permutation of `n` items out of the given list `l`. // Returns a list of all of the (ordered) permutation `n` items out of the given list `l`.
// For the list `[1,2,3,4]`, with `n=2`, this will return `[[1,2], [1,3], [1,4], [2,3], [2,4], [3,4]]`. // For the list `[1,2,3]`, with `n=2`, this will return `[[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]`
// For the list `[1,2,3,4]`, with `n=3`, this will return `[[1,2,3], [1,2,4], [1,3,4], [2,3,4]]`. // For the list `[1,2,3]`, with `n=3`, this will return `[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]`
// Arguments: // Arguments:
// l = The list to provide permutations for. // l = The list to provide permutations for.
// n = The number of items in each permutation. Default: 2 // n = The number of items in each permutation. Default: 2
// Example: // Example:
// pairs = permutations([3,4,5,6]); // Returns: [[3,4],[3,5],[3,6],[4,5],[4,6],[5,6]] // pairs = permutations([3,4,5,6]); // // Returns: [[3,4],[3,5],[3,6],[4,3],[4,5],[4,6],[5,3],[5,4],[5,6],[6,3],[6,4],[6,5]]
// triplets = permutations([3,4,5,6],n=3); // Returns: [[3,4,5],[3,4,6],[3,5,6],[4,5,6]]
// Example(2D):
// for (p=permutations(regular_ngon(n=7,d=100))) stroke(p);
function permutations(l,n=2) = function permutations(l,n=2) =
assert(is_list(l), "Invalid list." ) assert(is_list(l), "Invalid list." )
assert( is_finite(n) && n>=1 && n<=len(l), "Invalid number `n`." ) assert( is_finite(n) && n>=1 && n<=len(l), "Invalid number `n`." )

View file

@ -1673,7 +1673,7 @@ function _find_anchor(anchor, geom) =
for (t=triplet(path,true)) let( for (t=triplet(path,true)) let(
seg1 = [t[0],t[1]], seg1 = [t[0],t[1]],
seg2 = [t[1],t[2]], seg2 = [t[1],t[2]],
isect = ray_segment_intersection([[0,0],anchor], seg1), isect = line_intersection([[0,0],anchor], seg1,RAY,SEGMENT),
n = is_undef(isect)? [0,1] : n = is_undef(isect)? [0,1] :
!approx(isect, t[1])? line_normal(seg1) : !approx(isect, t[1])? line_normal(seg1) :
unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]), unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]),
@ -1708,7 +1708,7 @@ function _find_anchor(anchor, geom) =
for (t=triplet(path,true)) let( for (t=triplet(path,true)) let(
seg1 = [t[0],t[1]], seg1 = [t[0],t[1]],
seg2 = [t[1],t[2]], seg2 = [t[1],t[2]],
isect = ray_segment_intersection([[0,0],xyanch], seg1), isect = line_intersection([[0,0],xyanch], seg1, RAY, SEGMENT),
n = is_undef(isect)? [0,1] : n = is_undef(isect)? [0,1] :
!approx(isect, t[1])? line_normal(seg1) : !approx(isect, t[1])? line_normal(seg1) :
unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]), unit((line_normal(seg1)+line_normal(seg2))/2,[0,1]),

View file

@ -1119,7 +1119,7 @@ module sp_neck(diam,type,wall,id,style="L",bead=false, anchor, spin, orient)
[0,W/2] [0,W/2]
]; ];
isect400 = [for(seg=pair(beadpts)) let(segisect = line_segment_intersection([[T/2,0],[T/2,1]] , seg)) if (is_def(segisect)) segisect.y]; isect400 = [for(seg=pair(beadpts)) let(segisect = line_intersection([[T/2,0],[T/2,1]] , seg, LINE, SEGMENT)) if (is_def(segisect)) segisect.y];
extra_bot = type==400 && bead ? -min(subindex(beadpts,1))+max(isect400) : 0; extra_bot = type==400 && bead ? -min(subindex(beadpts,1))+max(isect400) : 0;
bead_shift = type==400 ? H+max(isect400) : entry[5]+W/2; // entry[5] is L bead_shift = type==400 ? H+max(isect400) : entry[5]+W/2; // entry[5] is L

View file

@ -190,4 +190,37 @@ CTR = CENTER;
// Constant: SEGMENT
// Topics: Constants, Lines
// See Also: RAY, LINE
// Description: Treat a line as a segment. [true, true]
// Example: Usage with line_intersection:
// line1 = 10*[[9, 4], [5, 7]];
// line2 = 10*[[2, 3], [6, 5]];
// isect = line_intersection(line1, line2, SEGMENT, SEGMENT);
SEGMENT = [true,true];
// Constant: RAY
// Topics: Constants, Lines
// See Also: SEGMENT, LINE
// Description: Treat a line as a ray, based at the first point. [true, false]
// Example: Usage with line_intersection:
// line = [[-30,0],[30,30]];
// pt = [40,25];
// closest = line_closest_point(line,pt,RAY);
RAY = [true, false];
// Constant: LINE
// Topics: Constants, Lines
// See Also: RAY, SEGMENT
// Description: Treat a line as an unbounded line. [false, false]
// Example: Usage with line_intersection:
// line1 = 10*[[9, 4], [5, 7]];
// line2 = 10*[[2, 3], [6, 5]];
// isect = line_intersection(line1, line2, LINE, SEGMENT);
LINE = [false, false];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap

View file

@ -8,9 +8,9 @@
// Section: Lines, Rays, and Segments // Section: Lines, Rays, and Segments
// Function: point_on_segment2d() // Function: point_on_segment()
// Usage: // Usage:
// pt = point_on_segment2d(point, edge); // pt = point_on_segment(point, edge);
// Topics: Geometry, Points, Segments // Topics: Geometry, Points, Segments
// Description: // Description:
// Determine if the point is on the line segment between two points. // Determine if the point is on the line segment between two points.
@ -19,9 +19,9 @@
// point = The point to test. // point = The point to test.
// edge = Array of two points forming the line segment to test against. // edge = Array of two points forming the line segment to test against.
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
function point_on_segment2d(point, edge, eps=EPSILON) = function point_on_segment(point, edge, eps=EPSILON) =
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
point_segment_distance(point, edge)<eps; point_line_distance(point, edge, SEGMENT)<eps;
//Internal - distance from point `d` to the line passing through the origin with unit direction n //Internal - distance from point `d` to the line passing through the origin with unit direction n
@ -83,38 +83,26 @@ function collinear(a, b, c, eps=EPSILON) =
// Function: point_line_distance() // Function: point_line_distance()
// Usage: // Usage:
// pt = point_line_distance(line, pt); // pt = point_line_distance(line, pt, bounded);
// Topics: Geometry, Points, Lines, Distance // Topics: Geometry, Points, Lines, Distance
// Description: // Description:
// Finds the perpendicular distance of a point `pt` from the line `line`. // Finds the shortest distance from the point `pt` to the specified line, segment or ray.
// The bounded parameter specifies the whether the endpoints give a ray or segment.
// By default assumes an unbounded line.
// Arguments: // Arguments:
// line = A list of two points, defining a line that both are on. // line = A list of two points defining a line.
// pt = A point to find the distance of from the line. // pt = A point to find the distance of from the line.
// bounded = a boolean or list of two booleans specifiying whether each end is bounded. Default: false
// Example: // Example:
// dist = point_line_distance([3,8], [[-10,0], [10,0]]); // Returns: 8 // dist1 = point_line_distance([3,8], [[-10,0], [10,0]]); // Returns: 8
function point_line_distance(pt, line) = // dist2 = point_line_distance([3,8], [[-10,0], [10,0]],SEGMENT); // Returns: 8
// dist3 = point_line_distance([14,3], [[-10,0], [10,0]],SEGMENT); // Returns: 5
function point_line_distance(pt, line, bounded=false) =
assert(is_bool(bounded) || is_bool_list(bounded,2), "\"bounded\" is invalid")
assert( _valid_line(line) && is_vector(pt,len(line[0])), assert( _valid_line(line) && is_vector(pt,len(line[0])),
"Invalid line, invalid point or incompatible dimensions." ) "Invalid line, invalid point or incompatible dimensions." )
_dist2line(pt-line[0],unit(line[1]-line[0])); bounded == LINE ? _dist2line(pt-line[0],unit(line[1]-line[0]))
: norm(pt-line_closest_point(line,pt,bounded));
// Function: point_segment_distance()
// Usage:
// dist = point_segment_distance(pt, seg);
// Topics: Geometry, Points, Segments, Distance
// Description:
// Returns the closest distance of the given point to the given line segment.
// Arguments:
// pt = The point to check the distance of.
// seg = The two points representing the line segment to check the distance of.
// Example:
// dist = point_segment_distance([3,8], [[-10,0], [10,0]]); // Returns: 8
// dist2 = point_segment_distance([14,3], [[-10,0], [10,0]]); // Returns: 5
function point_segment_distance(pt, seg) =
assert( is_matrix(concat([pt],seg),3),
"Input should be a point and a valid segment with the dimension equal to the point." )
norm(seg[0]-seg[1]) < EPSILON ? norm(pt-seg[0]) :
norm(pt-segment_closest_point(seg,pt));
// Function: segment_distance() // Function: segment_distance()
@ -178,135 +166,79 @@ function _general_line_intersection(s1,s2,eps=EPSILON) =
) [s1[0]+t*(s1[1]-s1[0]), t, u]; ) [s1[0]+t*(s1[1]-s1[0]), t, u];
// Function: line_intersection() // Function: line_intersection()
// Usage: // Usage:
// pt = line_intersection(l1, l2); // pt = line_intersection(line1, line2, [bounded1], [bounded2], [bounded=], [eps=]);
// Topics: Geometry, Lines, Intersections
// Description: // Description:
// Returns the 2D intersection point of two unbounded 2D lines. // Returns the intersection point of any two 2D lines, segments or rays. Returns undef
// Returns `undef` if the lines are parallel. // if they do not intersect. You specify a line by giving two distinct points on the
// line. You specify rays or segments by giving a pair of points and indicating
// bounded[0]=true to bound the line at the first point, creating rays based at l1[0] and l2[0],
// or bounded[1]=true to bound the line at the second point, creating the reverse rays bounded
// at l1[1] and l2[1]. If bounded=[true, true] then you have segments defined by their two
// endpoints. By using bounded1 and bounded2 you can mix segments, rays, and lines as needed.
// You can set the bounds parameters to true as a shorthand for [true,true] to sepcify segments.
// Arguments: // Arguments:
// l1 = First 2D line, given as a list of two 2D points on the line. // line1 = List of two points in 2D defining the first line, segment or ray
// l2 = Second 2D line, given as a list of two 2D points on the line. // line2 = List of two points in 2D defining the second line, segment or ray
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) // bounded1 = boolean or list of two booleans defining which ends are bounded for line1. Default: [false,false]
function line_intersection(l1,l2,eps=EPSILON) = // bounded2 = boolean or list of two booleans defining which ends are bounded for line2. Default: [false,false]
assert( is_finite(eps) && eps>=0, "The tolerance should be a positive number." ) // ---
assert( _valid_line(l1,dim=2,eps=eps) &&_valid_line(l2,dim=2,eps=eps), "Invalid line(s)." ) // bounded = boolean or list of two booleans defining which ends are bounded for both lines. The bounded1 and bounded2 parameters override this if both are given.
// eps = tolerance for geometric comparisons. Default: `EPSILON` (1e-9)
// Example(2D): The segments do not intersect but the lines do in this example.
// line1 = 10*[[9, 4], [5, 7]];
// line2 = 10*[[2, 3], [6, 5]];
// stroke(line1, endcaps="arrow2");
// stroke(line2, endcaps="arrow2");
// isect = line_intersection(line1, line2);
// color("red") translate(isect) circle(r=1,$fn=12);
// Example(2D): Specifying a ray and segment using the shorthand variables.
// line1 = 10*[[0, 2], [4, 7]];
// line2 = 10*[[10, 4], [3, 4]];
// stroke(line1);
// stroke(line2, endcap2="arrow2");
// isect = line_intersection(line1, line2, SEGMENT, RAY);
// color("red") translate(isect) circle(r=1,$fn=12);
// Example(2D): Here we use the same example as above, but specify two segments using the bounded argument.
// line1 = 10*[[0, 2], [4, 7]];
// line2 = 10*[[10, 4], [3, 4]];
// stroke(line1);
// stroke(line2);
// isect = line_intersection(line1, line2, bounded=true); // Returns undef
function line_intersection(line1, line2, bounded1, bounded2, bounded, eps=EPSILON) =
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." ) assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
let(isect = _general_line_intersection(l1,l2,eps=eps)) assert( _valid_line(line1,dim=2,eps=eps), "First line invalid")
isect[0]; assert( _valid_line(line2,dim=2,eps=eps), "Second line invalid")
assert( is_undef(bounded) || is_bool(bounded) || is_bool_list(bounded,2), "Invalid value for \"bounded\"")
assert( is_undef(bounded1) || is_bool(bounded1) || is_bool_list(bounded1,2), "Invalid value for \"bounded1\"")
// Function: line_ray_intersection() assert( is_undef(bounded2) || is_bool(bounded2) || is_bool_list(bounded2,2), "Invalid value for \"bounded2\"")
// Usage: let(isect = _general_line_intersection(line1,line2,eps=eps))
// pt = line_ray_intersection(line, ray);
// Topics: Geometry, Lines, Rays, Intersections
// Description:
// Returns the 2D intersection point of an unbounded 2D line, and a half-bounded 2D ray.
// Returns `undef` if they do not intersect.
// Arguments:
// line = The unbounded 2D line, defined by two 2D points on the line.
// ray = The 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray.
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
function line_ray_intersection(line,ray,eps=EPSILON) =
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
assert( _valid_line(line,dim=2,eps=eps) && _valid_line(ray,dim=2,eps=eps), "Invalid line or ray." )
let( isect = _general_line_intersection(line,ray,eps=eps) )
is_undef(isect[0]) ? undef : is_undef(isect[0]) ? undef :
(isect[2]<0-eps) ? undef : let(
isect[0]; bounded1 = force_list(first_defined([bounded1,bounded,false]),2),
bounded2 = force_list(first_defined([bounded2,bounded,false]),2),
good = (!bounded1[0] || isect[1]>=0-eps)
// Function: line_segment_intersection() && (!bounded1[1] || isect[1]<=1+eps)
// Usage: && (!bounded2[0] || isect[2]>=0-eps)
// pt = line_segment_intersection(line, segment); && (!bounded2[1] || isect[2]<=1+eps)
// Topics: Geometry, Lines, Segments, Intersections )
// Description: good ? isect[0] : undef;
// Returns the 2D intersection point of an unbounded 2D line, and a bounded 2D line segment.
// Returns `undef` if they do not intersect.
// Arguments:
// line = The unbounded 2D line, defined by two 2D points on the line.
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
function line_segment_intersection(line,segment,eps=EPSILON) =
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
assert( _valid_line(line, dim=2,eps=eps) &&_valid_line(segment,dim=2,eps=eps), "Invalid line or segment." )
let( isect = _general_line_intersection(line,segment,eps=eps) )
is_undef(isect[0]) ? undef :
isect[2]<0-eps || isect[2]>1+eps ? undef :
isect[0];
// Function: ray_intersection()
// Usage:
// pt = ray_intersection(s1, s2);
// Topics: Geometry, Lines, Rays, Intersections
// Description:
// Returns the 2D intersection point of two 2D line rays.
// Returns `undef` if they do not intersect.
// Arguments:
// r1 = First 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray.
// r2 = Second 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray.
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
function ray_intersection(r1,r2,eps=EPSILON) =
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
assert( _valid_line(r1,dim=2,eps=eps) && _valid_line(r2,dim=2,eps=eps), "Invalid ray(s)." )
let( isect = _general_line_intersection(r1,r2,eps=eps) )
is_undef(isect[0]) ? undef :
isect[1]<0-eps || isect[2]<0-eps ? undef :
isect[0];
// Function: ray_segment_intersection()
// Usage:
// pt = ray_segment_intersection(ray, segment);
// Topics: Geometry, Rays, Segments, Intersections
// Description:
// Returns the 2D intersection point of a half-bounded 2D ray, and a bounded 2D line segment.
// Returns `undef` if they do not intersect.
// Arguments:
// ray = The 2D ray, given as a list `[START,POINT]` of the 2D start-point START, and a 2D point POINT on the ray.
// segment = The bounded 2D line segment, given as a list of the two 2D endpoints of the segment.
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
function ray_segment_intersection(ray,segment,eps=EPSILON) =
assert( _valid_line(ray,dim=2,eps=eps) && _valid_line(segment,dim=2,eps=eps), "Invalid ray or segment." )
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
let( isect = _general_line_intersection(ray,segment,eps=eps) )
is_undef(isect[0]) ? undef :
isect[1]<0-eps || isect[2]<0-eps || isect[2]>1+eps ? undef :
isect[0];
// Function: segment_intersection()
// Usage:
// pt = segment_intersection(s1, s2);
// Topics: Geometry, Segments, Intersections
// Description:
// Returns the 2D intersection point of two 2D line segments.
// Returns `undef` if they do not intersect.
// Arguments:
// s1 = First 2D segment, given as a list of the two 2D endpoints of the line segment.
// s2 = Second 2D segment, given as a list of the two 2D endpoints of the line segment.
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
function segment_intersection(s1,s2,eps=EPSILON) =
assert( _valid_line(s1,dim=2,eps=eps) && _valid_line(s2,dim=2,eps=eps), "Invalid segment(s)." )
assert( is_finite(eps) && (eps>=0), "The tolerance should be a non-negative value." )
let( isect = _general_line_intersection(s1,s2,eps=eps) )
is_undef(isect[0]) ? undef :
isect[1]<0-eps || isect[1]>1+eps || isect[2]<0-eps || isect[2]>1+eps ? undef :
isect[0];
// Function: line_closest_point() // Function: line_closest_point()
// Usage: // Usage:
// pt = line_closest_point(line,pt); // pt = line_closest_point(line, pt, [bounded]);
// Topics: Geometry, Lines, Distance // Topics: Geometry, Lines, Distance
// Description: // Description:
// Returns the point on the given 2D or 3D `line` that is closest to the given point `pt`. // Returns the point on the given 2D or 3D line, segment or ray that is closest to the given point `pt`.
// The `line` and `pt` args should either both be 2D or both 3D. // The inputs `line` and `pt` args should either both be 2D or both 3D. The parameter bounded indicates
// whether the points of `line` should be treated as endpoints.
// Arguments: // Arguments:
// line = A list of two points that are on the unbounded line. // line = A list of two points that are on the unbounded line.
// pt = The point to find the closest point on the line to. // pt = The point to find the closest point on the line to.
// bounded = boolean or list of two booleans indicating that the line is bounded at that end. Default: [false,false]
// Example(2D): // Example(2D):
// line = [[-30,0],[30,30]]; // line = [[-30,0],[30,30]];
// pt = [-32,-10]; // pt = [-32,-10];
@ -314,168 +246,69 @@ function segment_intersection(s1,s2,eps=EPSILON) =
// stroke(line, endcaps="arrow2"); // stroke(line, endcaps="arrow2");
// color("blue") translate(pt) circle(r=1,$fn=12); // color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12); // color("red") translate(p2) circle(r=1,$fn=12);
// Example(2D): // Example(2D): If the line is bounded on the left you get the endpoint instead
// line = [[-30,0],[30,30]]; // line = [[-30,0],[30,30]];
// pt = [-5,0];
// p2 = line_closest_point(line,pt);
// stroke(line, endcaps="arrow2");
// color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12);
// Example(2D):
// line = [[-30,0],[30,30]];
// pt = [40,25];
// p2 = line_closest_point(line,pt);
// stroke(line, endcaps="arrow2");
// color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12);
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// line = [[-30,-15,0],[30,15,30]];
// pt = [5,5,5];
// p2 = line_closest_point(line,pt);
// stroke(line, endcaps="arrow2");
// color("blue") translate(pt) sphere(r=1,$fn=12);
// color("red") translate(p2) sphere(r=1,$fn=12);
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// line = [[-30,-15,0],[30,15,30]];
// pt = [-35,-15,0];
// p2 = line_closest_point(line,pt);
// stroke(line, endcaps="arrow2");
// color("blue") translate(pt) sphere(r=1,$fn=12);
// color("red") translate(p2) sphere(r=1,$fn=12);
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// line = [[-30,-15,0],[30,15,30]];
// pt = [40,15,25];
// p2 = line_closest_point(line,pt);
// stroke(line, endcaps="arrow2");
// color("blue") translate(pt) sphere(r=1,$fn=12);
// color("red") translate(p2) sphere(r=1,$fn=12);
function line_closest_point(line,pt) =
assert(_valid_line(line), "Invalid line." )
assert( is_vector(pt,len(line[0])), "Invalid point or incompatible dimensions." )
let( n = unit( line[0]- line[1]) )
line[1] + ((pt- line[1]) * n) * n;
// Function: ray_closest_point()
// Usage:
// pt = ray_closest_point(seg,pt);
// Topics: Geometry, Rays, Distance
// Description:
// Returns the point on the given 2D or 3D ray `ray` that is closest to the given point `pt`.
// The `ray` and `pt` args should either both be 2D or both 3D.
// Arguments:
// ray = The ray, given as a list `[START,POINT]` of the start-point START, and a point POINT on the ray.
// pt = The point to find the closest point on the ray to.
// Example(2D):
// ray = [[-30,0],[30,30]];
// pt = [-32,-10]; // pt = [-32,-10];
// p2 = ray_closest_point(ray,pt); // p2 = line_closest_point(line,pt,bounded=[true,false]);
// stroke(ray, endcap2="arrow2"); // stroke(line, endcap2="arrow2");
// color("blue") translate(pt) circle(r=1,$fn=12); // color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12); // color("red") translate(p2) circle(r=1,$fn=12);
// Example(2D): // Example(2D): In this case it doesn't matter how bounded is set. Using SEGMENT is the most restrictive option.
// ray = [[-30,0],[30,30]]; // line = [[-30,0],[30,30]];
// pt = [-5,0]; // pt = [-5,0];
// p2 = ray_closest_point(ray,pt); // p2 = line_closest_point(line,pt,SEGMENT);
// stroke(ray, endcap2="arrow2"); // stroke(line);
// color("blue") translate(pt) circle(r=1,$fn=12); // color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12); // color("red") translate(p2) circle(r=1,$fn=12);
// Example(2D): // Example(2D): The result here is the same for a line or a ray.
// ray = [[-30,0],[30,30]]; // line = [[-30,0],[30,30]];
// pt = [40,25]; // pt = [40,25];
// p2 = ray_closest_point(ray,pt); // p2 = line_closest_point(line,pt,RAY);
// stroke(ray, endcap2="arrow2"); // stroke(line, endcap2="arrow2");
// color("blue") translate(pt) circle(r=1,$fn=12); // color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12); // color("red") translate(p2) circle(r=1,$fn=12);
// Example(FlatSpin,VPD=200,VPT=[0,0,15]): // Example(2D): But with a segment we get a different result
// ray = [[-30,-15,0],[30,15,30]]; // line = [[-30,0],[30,30]];
// pt = [40,25];
// p2 = line_closest_point(line,pt,SEGMENT);
// stroke(line);
// color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12);
// Example(2D): The shorthand RAY uses the first point as the base of the ray. But you can specify a reversed ray directly, and in this case the result is the same as the result above for the segment.
// line = [[-30,0],[30,30]];
// pt = [40,25];
// p2 = line_closest_point(line,pt,[false,true]);
// stroke(line,endcap1="arrow2");
// color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12);
// Example(FlatSpin,VPD=200,VPT=[0,0,15]): A 3D example
// line = [[-30,-15,0],[30,15,30]];
// pt = [5,5,5]; // pt = [5,5,5];
// p2 = ray_closest_point(ray,pt); // p2 = line_closest_point(line,pt);
// stroke(ray, endcap2="arrow2"); // stroke(line, endcaps="arrow2");
// color("blue") translate(pt) sphere(r=1,$fn=12); // color("blue") translate(pt) sphere(r=1,$fn=12);
// color("red") translate(p2) sphere(r=1,$fn=12); // color("red") translate(p2) sphere(r=1,$fn=12);
// Example(FlatSpin,VPD=200,VPT=[0,0,15]): function line_closest_point(line, pt, bounded=false) =
// ray = [[-30,-15,0],[30,15,30]]; assert(_valid_line(line), "Invalid line")
// pt = [-35,-15,0]; assert(is_vector(pt, len(line[0])), "Invalid point or incompatible dimensions.")
// p2 = ray_closest_point(ray,pt); assert(is_bool(bounded) || is_bool_list(bounded,2), "Invalid value for \"bounded\"")
// stroke(ray, endcap2="arrow2");
// color("blue") translate(pt) sphere(r=1,$fn=12);
// color("red") translate(p2) sphere(r=1,$fn=12);
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// ray = [[-30,-15,0],[30,15,30]];
// pt = [40,15,25];
// p2 = ray_closest_point(ray,pt);
// stroke(ray, endcap2="arrow2");
// color("blue") translate(pt) sphere(r=1,$fn=12);
// color("red") translate(p2) sphere(r=1,$fn=12);
function ray_closest_point(ray,pt) =
assert( _valid_line(ray), "Invalid ray." )
assert(is_vector(pt,len(ray[0])), "Invalid point or incompatible dimensions." )
let( let(
seglen = norm(ray[1]-ray[0]), bounded = force_list(bounded,2)
segvec = (ray[1]-ray[0])/seglen,
projection = (pt-ray[0]) * segvec
) )
projection<=0 ? ray[0] : bounded==[false,false] ?
ray[0] + projection*segvec; let( n = unit( line[0]- line[1]) )
line[1] + ((pt- line[1]) * n) * n
: bounded == [true,true] ?
// Function: segment_closest_point() pt + _closest_s1([line[0]-pt, line[1]-pt])[0]
// Usage: :
// pt = segment_closest_point(seg,pt); let(
// Topics: Geometry, Segments, Distance ray = bounded==[true,false] ? line : reverse(line),
// Description: seglen = norm(ray[1]-ray[0]),
// Returns the point on the given 2D or 3D line segment `seg` that is closest to the given point `pt`. segvec = (ray[1]-ray[0])/seglen,
// The `seg` and `pt` args should either both be 2D or both 3D. projection = (pt-ray[0]) * segvec
// Arguments: )
// seg = A list of two points that are the endpoints of the bounded line segment. projection<=0 ? ray[0] :
// pt = The point to find the closest point on the segment to. ray[0] + projection*segvec;
// Example(2D):
// seg = [[-30,0],[30,30]];
// pt = [-32,-10];
// p2 = segment_closest_point(seg,pt);
// stroke(seg);
// color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12);
// Example(2D):
// seg = [[-30,0],[30,30]];
// pt = [-5,0];
// p2 = segment_closest_point(seg,pt);
// stroke(seg);
// color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12);
// Example(2D):
// seg = [[-30,0],[30,30]];
// pt = [40,25];
// p2 = segment_closest_point(seg,pt);
// stroke(seg);
// color("blue") translate(pt) circle(r=1,$fn=12);
// color("red") translate(p2) circle(r=1,$fn=12);
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// seg = [[-30,-15,0],[30,15,30]];
// pt = [5,5,5];
// p2 = segment_closest_point(seg,pt);
// stroke(seg);
// color("blue") translate(pt) sphere(r=1,$fn=12);
// color("red") translate(p2) sphere(r=1,$fn=12);
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// seg = [[-30,-15,0],[30,15,30]];
// pt = [-35,-15,0];
// p2 = segment_closest_point(seg,pt);
// stroke(seg);
// color("blue") translate(pt) sphere(r=1,$fn=12);
// color("red") translate(p2) sphere(r=1,$fn=12);
// Example(FlatSpin,VPD=200,VPT=[0,0,15]):
// seg = [[-30,-15,0],[30,15,30]];
// pt = [40,15,25];
// p2 = segment_closest_point(seg,pt);
// stroke(seg);
// color("blue") translate(pt) sphere(r=1,$fn=12);
// color("red") translate(p2) sphere(r=1,$fn=12);
function segment_closest_point(seg,pt) =
assert( is_matrix(concat([pt],seg),3) ,
"Invalid point or segment or incompatible dimensions." )
pt + _closest_s1([seg[0]-pt, seg[1]-pt])[0];
// Function: line_from_points() // Function: line_from_points()
@ -2071,7 +1904,7 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
for (i = [0:1:len(poly)-1]) for (i = [0:1:len(poly)-1])
let( seg = select(poly,i,i+1) ) let( seg = select(poly,i,i+1) )
if (!approx(seg[0],seg[1],eps) ) if (!approx(seg[0],seg[1],eps) )
point_on_segment2d(point, seg, eps=eps)? 1:0 point_on_segment(point, seg, eps=eps)? 1:0
] ]
) )
sum(on_brd) > 0? 0 : sum(on_brd) > 0? 0 :

View file

@ -311,7 +311,7 @@ function path_trim_end(path,trim,_d=0,_i=undef) =
// color("red") translate(closest[1]) circle(d=3, $fn=12); // color("red") translate(closest[1]) circle(d=3, $fn=12);
function path_closest_point(path, pt) = function path_closest_point(path, pt) =
let( let(
pts = [for (seg=idx(path)) segment_closest_point(select(path,seg,seg+1),pt)], pts = [for (seg=idx(path)) line_closest_point(select(path,seg,seg+1),pt,SEGMENT)],
dists = [for (p=pts) norm(p-pt)], dists = [for (p=pts) norm(p-pt)],
min_seg = min_index(dists) min_seg = min_index(dists)
) [min_seg, pts[min_seg]]; ) [min_seg, pts[min_seg]];

View file

@ -656,7 +656,7 @@ function _path_join(paths,joint,k=0.5,i=0,result=[],relocate=true,closed=false)
let( let(
first_dir=firstcut[2], first_dir=firstcut[2],
next_dir=nextcut[2], next_dir=nextcut[2],
corner = ray_intersection([firstcut[0], firstcut[0]-first_dir], [nextcut[0], nextcut[0]-next_dir]) corner = line_intersection([firstcut[0], firstcut[0]-first_dir], [nextcut[0], nextcut[0]-next_dir],RAY,RAY)
) )
assert(is_def(corner), str("Curve directions at cut points don't intersect in a corner when ", assert(is_def(corner), str("Curve directions at cut points don't intersect in a corner when ",
loop?"closing the path":str("adding path ",i+1))) loop?"closing the path":str("adding path ",i+1)))
@ -1641,7 +1641,7 @@ function _stroke_end(width,left, right, spec) =
// returns [intersection_pt, index of first point in path after the intersection] // returns [intersection_pt, index of first point in path after the intersection]
function _path_line_intersection(path, line, ind=0) = function _path_line_intersection(path, line, ind=0) =
ind==len(path)-1 ? undef : ind==len(path)-1 ? undef :
let(intersect=line_segment_intersection(line, select(path,ind,ind+1))) let(intersect=line_intersection(line, select(path,ind,ind+1),LINE,SEGMENT))
// If it intersects the segment excluding it's final point, then we're done // If it intersects the segment excluding it's final point, then we're done
// The final point is treated as part of the next segment // The final point is treated as part of the next segment
is_def(intersect) && intersect != path[ind+1]? is_def(intersect) && intersect != path[ind+1]?
@ -1694,8 +1694,10 @@ function _rp_compute_patches(top, bot, rtop, rsides, ktop, ksides, concave) =
let( let(
prev_corner = prev_offset + abs(rtop_in)*in_prev, prev_corner = prev_offset + abs(rtop_in)*in_prev,
next_corner = next_offset + abs(rtop_in)*in_next, next_corner = next_offset + abs(rtop_in)*in_next,
prev_degenerate = is_undef(ray_intersection(path2d([far_corner, far_corner+prev]), path2d([prev_offset, prev_offset+in_prev]))), prev_degenerate = is_undef(line_intersection(path2d([far_corner, far_corner+prev]),
next_degenerate = is_undef(ray_intersection(path2d([far_corner, far_corner+next]), path2d([next_offset, next_offset+in_next]))) path2d([prev_offset, prev_offset+in_prev]),RAY,RAY)),
next_degenerate = is_undef(line_intersection(path2d([far_corner, far_corner+next]),
path2d([next_offset, next_offset+in_next]),RAY,RAY))
) )
[ prev_degenerate ? far_corner : prev_corner, [ prev_degenerate ? far_corner : prev_corner,
far_corner, far_corner,

View file

@ -899,7 +899,7 @@ function vnf_validate(vnf, show_warns=true, check_isects=false) =
c = varr[ic] c = varr[ic]
) )
if (!approx(a,b) && !approx(b,c) && !approx(a,c)) let( if (!approx(a,b) && !approx(b,c) && !approx(a,c)) let(
pt = segment_closest_point([a,c],b) pt = line_closest_point([a,c],b,SEGMENT)
) )
if (approx(pt,b)) if (approx(pt,b))
_vnf_validate_err("T_JUNCTION", [b]) _vnf_validate_err("T_JUNCTION", [b])