Simplified usages.

This commit is contained in:
Revar Desmera 2019-05-26 13:45:22 -07:00
parent d281978cfb
commit 15b8f9ba67
10 changed files with 81 additions and 81 deletions

View file

@ -401,7 +401,7 @@ module bezier_polygon(bezier, splinesteps=16, N=3) {
// Module: linear_extrude_bezier() // Module: linear_extrude_bezier()
// Usage: // Usage:
// linear_extrude_bezier(bezier, height, [splinesteps], [N], [center], [convexity], [twist], [slices], [scale], [orient], [anchor]); // linear_extrude_bezier(bezier, height, [splinesteps], [N], [center], [convexity], [twist], [slices], [scale]);
// Description: // Description:
// Takes a closed 2D bezier path, centered on the XY plane, and // Takes a closed 2D bezier path, centered on the XY plane, and
// extrudes it linearly upwards, forming a solid. // extrudes it linearly upwards, forming a solid.
@ -440,7 +440,7 @@ module linear_extrude_bezier(bezier, height=100, splinesteps=16, N=3, center=und
// Module: revolve_bezier() // Module: revolve_bezier()
// Usage: // Usage:
// revolve_bezier(bezier, [splinesteps], [N], [convexity], [angle], [orient], [anchor]) // revolve_bezier(bezier, [splinesteps], [N], [convexity], [angle])
// Description: // Description:
// Takes a closed 2D bezier and rotates it around the X axis, forming a solid. // Takes a closed 2D bezier and rotates it around the X axis, forming a solid.
// Arguments: // Arguments:
@ -476,7 +476,7 @@ module revolve_bezier(bezier, splinesteps=16, N=3, convexity=10, angle=360, anch
// Module: rotate_extrude_bezier() // Module: rotate_extrude_bezier()
// Usage: // Usage:
// rotate_extrude_bezier(bezier, splinesteps=16, N=3, convexity=10, angle=360) // rotate_extrude_bezier(bezier, [splinesteps], [N], [convexity], [angle])
// Description: // Description:
// Takes a closed 2D bezier and rotates it around the Z axis, forming a solid. // Takes a closed 2D bezier and rotates it around the Z axis, forming a solid.
// Behaves like rotate_extrude(), except for beziers instead of shapes. // Behaves like rotate_extrude(), except for beziers instead of shapes.
@ -513,7 +513,7 @@ module rotate_extrude_bezier(bezier, splinesteps=16, N=3, convexity=10, angle=36
// Module: revolve_bezier_solid_to_axis() // Module: revolve_bezier_solid_to_axis()
// Usage: // Usage:
// revolve_bezier_solid_to_axis(bezier, [splinesteps], [N], [convexity], [angle], [orient], [anchor]); // revolve_bezier_solid_to_axis(bezier, [splinesteps], [N], [convexity], [angle]);
// Description: // Description:
// Takes a 2D bezier and rotates it around the X axis, forming a solid. // Takes a 2D bezier and rotates it around the X axis, forming a solid.
// Arguments: // Arguments:
@ -535,7 +535,7 @@ module revolve_bezier_solid_to_axis(bezier, splinesteps=16, N=3, convexity=10, a
// Module: revolve_bezier_offset_shell() // Module: revolve_bezier_offset_shell()
// Usage: // Usage:
// revolve_bezier_offset_shell(bezier, offset, [splinesteps], [N], [convexity], [angle], [orient], [anchor]); // revolve_bezier_offset_shell(bezier, offset, [splinesteps], [N], [convexity], [angle]);
// Description: // Description:
// Takes a 2D bezier and rotates it around the X axis, into a hollow shell. // Takes a 2D bezier and rotates it around the X axis, into a hollow shell.
// Arguments: // Arguments:
@ -799,7 +799,7 @@ function bezier_triangle(tri, splinesteps=16, vertices=[], faces=[]) =
// Function: bezier_patch_flat() // Function: bezier_patch_flat()
// Usage: // Usage:
// bezier_patch_flat(size, [N], [orient], [trans]); // bezier_patch_flat(size, [N], [spin], [orient], [trans]);
// Description: // Description:
// Returns a flat rectangular bezier patch of degree `N`, centered on the XY plane. // Returns a flat rectangular bezier patch of degree `N`, centered on the XY plane.
// Arguments: // Arguments:

View file

@ -16,7 +16,7 @@
// Description: // Description:
// Creates a mask to clear an area so that a half_joiner can be placed there. // Creates a mask to clear an area so that a half_joiner can be placed there.
// Usage: // Usage:
// half_joiner_clear(h, w, [a], [clearance], [overlap], [orient], [anchor]) // half_joiner_clear(h, w, [a], [clearance], [overlap])
// Arguments: // Arguments:
// h = Height of the joiner to clear space for. // h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for. // w = Width of the joiner to clear space for.
@ -58,7 +58,7 @@ module half_joiner_clear(h=20, w=10, a=30, clearance=0, overlap=0.01, anchor=CEN
// Module: half_joiner() // Module: half_joiner()
// Usage: // Usage:
// half_joiner(h, w, l, [a], [screwsize], [guides], [slop], [orient], [anchor]) // half_joiner(h, w, l, [a], [screwsize], [guides], [slop])
// Description: // Description:
// Creates a half_joiner object that can be attached to half_joiner2 object. // Creates a half_joiner object that can be attached to half_joiner2 object.
// Arguments: // Arguments:
@ -142,7 +142,7 @@ module half_joiner(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, slop=PR
// Module: half_joiner2() // Module: half_joiner2()
// Usage: // Usage:
// half_joiner2(h, w, l, [a], [screwsize], [guides], [orient], [anchor]) // half_joiner2(h, w, l, [a], [screwsize], [guides])
// Description: // Description:
// Creates a half_joiner2 object that can be attached to half_joiner object. // Creates a half_joiner2 object that can be attached to half_joiner object.
// Arguments: // Arguments:
@ -199,7 +199,7 @@ module half_joiner2(h=20, w=10, l=10, a=30, screwsize=undef, guides=true, anchor
// Description: // Description:
// Creates a mask to clear an area so that a joiner can be placed there. // Creates a mask to clear an area so that a joiner can be placed there.
// Usage: // Usage:
// joiner_clear(h, w, [a], [clearance], [overlap], [orient], [anchor]) // joiner_clear(h, w, [a], [clearance], [overlap])
// Arguments: // Arguments:
// h = Height of the joiner to clear space for. // h = Height of the joiner to clear space for.
// w = Width of the joiner to clear space for. // w = Width of the joiner to clear space for.
@ -230,7 +230,7 @@ module joiner_clear(h=40, w=10, a=30, clearance=0, overlap=0.01, anchor=CENTER,
// Module: joiner() // Module: joiner()
// Usage: // Usage:
// joiner(h, w, l, [a], [screwsize], [guides], [slop], [orient], [anchor]) // joiner(h, w, l, [a], [screwsize], [guides], [slop])
// Description: // Description:
// Creates a joiner object that can be attached to another joiner object. // Creates a joiner object that can be attached to another joiner object.
// Arguments: // Arguments:
@ -272,7 +272,7 @@ module joiner(h=40, w=10, l=10, a=30, screwsize=undef, guides=true, slop=PRINTER
// Description: // Description:
// Creates a mask to clear an area so that a pair of joiners can be placed there. // Creates a mask to clear an area so that a pair of joiners can be placed there.
// Usage: // Usage:
// joiner_pair_clear(spacing, [n], [h], [w], [a], [clearance], [overlap], [orient], [anchor]) // joiner_pair_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
// Arguments: // Arguments:
// spacing = Spacing between joiner centers. // spacing = Spacing between joiner centers.
// h = Height of the joiner to clear space for. // h = Height of the joiner to clear space for.
@ -305,7 +305,7 @@ module joiner_pair_clear(spacing=100, h=40, w=10, a=30, n=2, clearance=0, overla
// Module: joiner_pair() // Module: joiner_pair()
// Usage: // Usage:
// joiner_pair(h, w, l, [a], [screwsize], [guides], [slop], [orient], [anchor]) // joiner_pair(h, w, l, [a], [screwsize], [guides], [slop])
// Description: // Description:
// Creates a joiner_pair object that can be attached to other joiner_pairs . // Creates a joiner_pair object that can be attached to other joiner_pairs .
// Arguments: // Arguments:
@ -358,7 +358,7 @@ module joiner_pair(spacing=100, h=40, w=10, l=10, a=30, n=2, alternate=true, scr
// Description: // Description:
// Creates a mask to clear an area so that a pair of joiners can be placed there. // Creates a mask to clear an area so that a pair of joiners can be placed there.
// Usage: // Usage:
// joiner_quad_clear(spacing, [n], [h], [w], [a], [clearance], [overlap], [orient], [anchor]) // joiner_quad_clear(spacing, [n], [h], [w], [a], [clearance], [overlap])
// Arguments: // Arguments:
// spacing1 = Spacing between joiner centers. // spacing1 = Spacing between joiner centers.
// spacing2 = Spacing between back-to-back pairs/sets of joiners. // spacing2 = Spacing between back-to-back pairs/sets of joiners.
@ -391,7 +391,7 @@ module joiner_quad_clear(xspacing=undef, yspacing=undef, spacing1=undef, spacing
// Module: joiner_quad() // Module: joiner_quad()
// Usage: // Usage:
// joiner_quad(h, w, l, [a], [screwsize], [guides], [slop], [orient], [anchor]) // joiner_quad(h, w, l, [a], [screwsize], [guides], [slop])
// Description: // Description:
// Creates a joiner_quad object that can be attached to other joiner_pairs . // Creates a joiner_quad object that can be attached to other joiner_pairs .
// Arguments: // Arguments:

View file

@ -12,8 +12,8 @@
// Module: angle_pie_mask() // Module: angle_pie_mask()
// Usage: // Usage:
// angle_pie_mask(r|d, l, ang, [orient], [anchor]); // angle_pie_mask(r|d, l, ang);
// angle_pie_mask(r1|d1, r2|d2, l, ang, [orient], [anchor]); // angle_pie_mask(r1|d1, r2|d2, l, ang);
// Description: // Description:
// Creates a pie wedge shape that can be used to mask other shapes. // Creates a pie wedge shape that can be used to mask other shapes.
// Arguments: // Arguments:
@ -49,13 +49,13 @@ module angle_pie_mask(
// Module: cylinder_mask() // Module: cylinder_mask()
// Usage: Mask objects // Usage: Mask objects
// cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [overage], [ends_only], [orient], [anchor]); // cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [overage], [ends_only]);
// cylinder_mask(l, r|d, rounding, [circum], [overage], [ends_only], [orient], [anchor]); // cylinder_mask(l, r|d, rounding, [circum], [overage], [ends_only]);
// cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [overage], [ends_only], [orient], [anchor]); // cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [overage], [ends_only]);
// Usage: Masking operators // Usage: Masking operators
// cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [overage], [ends_only], [orient], [anchor]) ... // cylinder_mask(l, r|d, chamfer, [chamfang], [from_end], [circum], [overage], [ends_only]) ...
// cylinder_mask(l, r|d, rounding, [circum], [overage], [ends_only], [orient], [anchor]) ... // cylinder_mask(l, r|d, rounding, [circum], [overage], [ends_only]) ...
// cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [overage], [ends_only], [orient], [anchor]) ... // cylinder_mask(l, r|d, [chamfer1|rounding1], [chamfer2|rounding2], [chamfang1], [chamfang2], [from_end], [circum], [overage], [ends_only]) ...
// Description: // Description:
// If passed children, bevels/chamfers and/or rounds one or both // If passed children, bevels/chamfers and/or rounds one or both
// ends of the origin-centered cylindrical region specified. If // ends of the origin-centered cylindrical region specified. If
@ -154,7 +154,7 @@ module cylinder_mask(
// Module: chamfer_mask() // Module: chamfer_mask()
// Usage: // Usage:
// chamfer_mask(l, chamfer, [orient], [anchor]); // chamfer_mask(l, chamfer);
// Description: // Description:
// Creates a shape that can be used to chamfer a 90 degree edge. // Creates a shape that can be used to chamfer a 90 degree edge.
// Difference it from the object to be chamfered. The center of // Difference it from the object to be chamfered. The center of
@ -283,7 +283,7 @@ module chamfer(chamfer=1, size=[1,1,1], edges=EDGES_ALL)
// Module: chamfer_cylinder_mask() // Module: chamfer_cylinder_mask()
// Usage: // Usage:
// chamfer_cylinder_mask(r|d, chamfer, [ang], [from_end], [orient]) // chamfer_cylinder_mask(r|d, chamfer, [ang], [from_end])
// Description: // Description:
// Create a mask that can be used to bevel/chamfer the end of a cylindrical region. // Create a mask that can be used to bevel/chamfer the end of a cylindrical region.
// Difference it from the end of the region to be chamferred. The center of the mask // Difference it from the end of the region to be chamferred. The center of the mask
@ -370,7 +370,7 @@ module chamfer_hole_mask(r=undef, d=undef, chamfer=0.25, ang=45, from_end=false,
// Module: rounding_mask() // Module: rounding_mask()
// Usage: // Usage:
// rounding_mask(l|h, r, [orient], [anchor]) // rounding_mask(l|h, r)
// Description: // Description:
// Creates a shape that can be used to round a vertical 90 degree edge. // Creates a shape that can be used to round a vertical 90 degree edge.
// Difference it from the object to be rounded. The center of the mask // Difference it from the object to be rounded. The center of the mask
@ -538,7 +538,7 @@ module rounding(r=1, size=[1,1,1], edges=EDGES_ALL)
// Module: rounding_angled_edge_mask() // Module: rounding_angled_edge_mask()
// Usage: // Usage:
// rounding_angled_edge_mask(h, r, [ang], [orient], [anchor]); // rounding_angled_edge_mask(h, r, [ang]);
// Description: // Description:
// Creates a vertical mask that can be used to round the edge where two // Creates a vertical mask that can be used to round the edge where two
// face meet, at any arbitrary angle. Difference it from the object to // face meet, at any arbitrary angle. Difference it from the object to
@ -581,7 +581,7 @@ module rounding_angled_edge_mask(h=1.0, r=1.0, ang=90, anchor=CENTER, spin=0, or
// Module: rounding_angled_corner_mask() // Module: rounding_angled_corner_mask()
// Usage: // Usage:
// rounding_angled_corner_mask(r, ang, [orient], [anchor]); // rounding_angled_corner_mask(r, ang);
// Description: // Description:
// Creates a shape that can be used to round the corner of an angle. // Creates a shape that can be used to round the corner of an angle.
// Difference it from the object to be rounded. The center of the mask // Difference it from the object to be rounded. The center of the mask

View file

@ -363,7 +363,7 @@ function get_metric_nut_thickness(size) = lookup(size, [
// Description: // Description:
// Makes a very simple screw model, useful for making screwholes. // Makes a very simple screw model, useful for making screwholes.
// Usage: // Usage:
// screw(screwsize, screwlen, headsize, headlen, [orient], [anchor]) // screw(screwsize, screwlen, headsize, headlen)
// Arguments: // Arguments:
// screwsize = diameter of threaded part of screw. // screwsize = diameter of threaded part of screw.
// screwlen = length of threaded part of screw. // screwlen = length of threaded part of screw.

View file

@ -103,8 +103,8 @@ module cube(size, center=undef, anchor=ALLNEG, spin=0, orient=UP)
// Module: cylinder() // Module: cylinder()
// Usage: // Usage:
// cylinder(h, r|d, [center], [orient], [anchor]); // cylinder(h, r|d, [center]);
// cylinder(h, r1/d1, r2/d2, [center], [orient], [anchor]); // cylinder(h, r1/d1, r2/d2, [center]);
// Description: // Description:
// Creates a cylinder object, with support for anchoring and attachments. // Creates a cylinder object, with support for anchoring and attachments.
// This is a drop-in replacement for the built-in `cylinder()` module. // This is a drop-in replacement for the built-in `cylinder()` module.
@ -154,7 +154,7 @@ module cylinder(r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h=unde
// Module: sphere() // Module: sphere()
// Usage: // Usage:
// sphere(r|d, [orient], [anchor]) // sphere(r|d)
// Description: // Description:
// Creates a sphere object, with support for anchoring and attachments. // Creates a sphere object, with support for anchoring and attachments.
// This is a drop-in replacement for the built-in `sphere()` module. // This is a drop-in replacement for the built-in `sphere()` module.

View file

@ -185,7 +185,7 @@ module cuboid(
// Creates a rectangular prismoid shape. // Creates a rectangular prismoid shape.
// //
// Usage: // Usage:
// prismoid(size1, size2, h, [shift], [anchor], [spin], [orient]); // prismoid(size1, size2, h, [shift]);
// //
// Arguments: // Arguments:
// size1 = [width, length] of the axis-negative end of the prism. // size1 = [width, length] of the axis-negative end of the prism.
@ -322,7 +322,7 @@ module rounded_prismoid(
// Creates a 3D right triangular prism. // Creates a 3D right triangular prism.
// //
// Usage: // Usage:
// right_triangle(size, [orient], [anchor|center]); // right_triangle(size, [center]);
// //
// Arguments: // Arguments:
// size = [width, thickness, height] // size = [width, thickness, height]
@ -364,20 +364,20 @@ module right_triangle(size=[1, 1, 1], anchor=ALLNEG, spin=0, orient=UP, center=u
// midpoint of the cylinder's length. // midpoint of the cylinder's length.
// //
// Usage: Normal Cylinders // Usage: Normal Cylinders
// cyl(l|h, r|d, [circum], [realign], [orient], [anchor], [center]); // cyl(l|h, r|d, [circum], [realign], [center]);
// cyl(l|h, r1|d1, r2/d2, [circum], [realign], [orient], [anchor], [center]); // cyl(l|h, r1|d1, r2/d2, [circum], [realign], [center]);
// //
// Usage: Chamferred Cylinders // Usage: Chamferred Cylinders
// cyl(l|h, r|d, chamfer, [chamfang], [from_end], [circum], [realign], [orient], [anchor], [center]); // cyl(l|h, r|d, chamfer, [chamfang], [from_end], [circum], [realign], [center]);
// cyl(l|h, r|d, chamfer1, [chamfang1], [from_end], [circum], [realign], [orient], [anchor], [center]); // cyl(l|h, r|d, chamfer1, [chamfang1], [from_end], [circum], [realign], [center]);
// cyl(l|h, r|d, chamfer2, [chamfang2], [from_end], [circum], [realign], [orient], [anchor], [center]); // cyl(l|h, r|d, chamfer2, [chamfang2], [from_end], [circum], [realign], [center]);
// cyl(l|h, r|d, chamfer1, chamfer2, [chamfang1], [chamfang2], [from_end], [circum], [realign], [orient], [anchor], [center]); // cyl(l|h, r|d, chamfer1, chamfer2, [chamfang1], [chamfang2], [from_end], [circum], [realign], [center]);
// //
// Usage: Rounded End Cylinders // Usage: Rounded End Cylinders
// cyl(l|h, r|d, rounding, [circum], [realign], [orient], [anchor], [center]); // cyl(l|h, r|d, rounding, [circum], [realign], [center]);
// cyl(l|h, r|d, rounding1, [circum], [realign], [orient], [anchor], [center]); // cyl(l|h, r|d, rounding1, [circum], [realign], [center]);
// cyl(l|h, r|d, rounding2, [circum], [realign], [orient], [anchor], [center]); // cyl(l|h, r|d, rounding2, [circum], [realign], [center]);
// cyl(l|h, r|d, rounding1, rounding2, [circum], [realign], [orient], [anchor], [center]); // cyl(l|h, r|d, rounding1, rounding2, [circum], [realign], [center]);
// //
// Arguments: // Arguments:
// l / h = Length of cylinder along oriented axis. (Default: 1.0) // l / h = Length of cylinder along oriented axis. (Default: 1.0)
@ -706,12 +706,12 @@ module zcyl(l=undef, r=undef, d=undef, r1=undef, r2=undef, d1=undef, d2=undef, h
// Makes a hollow tube with the given outer size and wall thickness. // Makes a hollow tube with the given outer size and wall thickness.
// //
// Usage: // Usage:
// tube(h, ir|id, wall, [realign], [orient], [anchor]); // tube(h, ir|id, wall, [realign]);
// tube(h, or|od, wall, [realign], [orient], [anchor]); // tube(h, or|od, wall, [realign]);
// tube(h, ir|id, or|od, [realign], [orient], [anchor]); // tube(h, ir|id, or|od, [realign]);
// tube(h, ir1|id1, ir2|id2, wall, [realign], [orient], [anchor]); // tube(h, ir1|id1, ir2|id2, wall, [realign]);
// tube(h, or1|od1, or2|od2, wall, [realign], [orient], [anchor]); // tube(h, or1|od1, or2|od2, wall, [realign]);
// tube(h, ir1|id1, ir2|id2, or1|od1, or2|od2, [realign], [orient], [anchor]); // tube(h, ir1|id1, ir2|id2, or1|od1, or2|od2, [realign]);
// //
// Arguments: // Arguments:
// h = height of tube. (Default: 1) // h = height of tube. (Default: 1)
@ -784,8 +784,8 @@ module tube(
// Creates a torus shape. // Creates a torus shape.
// //
// Usage: // Usage:
// torus(r|d, r2|d2, [orient], [anchor]); // torus(r|d, r2|d2);
// torus(or|od, ir|id, [orient], [anchor]); // torus(or|od, ir|id);
// //
// Arguments: // Arguments:
// r = major radius of torus ring. (use with of 'r2', or 'd2') // r = major radius of torus ring. (use with of 'r2', or 'd2')
@ -981,7 +981,7 @@ module teardrop2d(r=1, d=undef, ang=45, cap_h=undef)
// Makes a teardrop shape in the XZ plane. Useful for 3D printable holes. // Makes a teardrop shape in the XZ plane. Useful for 3D printable holes.
// //
// Usage: // Usage:
// teardrop(r|d, l|h, [ang], [cap_h], [orient], [anchor]) // teardrop(r|d, l|h, [ang], [cap_h])
// //
// Arguments: // Arguments:
// r = Radius of circular part of teardrop. (Default: 1) // r = Radius of circular part of teardrop. (Default: 1)
@ -1019,7 +1019,7 @@ module teardrop(r=undef, d=undef, l=undef, h=undef, ang=45, cap_h=undef, anchor=
// Creates a sphere with a conical hat, to make a 3D teardrop. // Creates a sphere with a conical hat, to make a 3D teardrop.
// //
// Usage: // Usage:
// onion(r|d, [maxang], [cap_h], [orient], [anchor]); // onion(r|d, [maxang], [cap_h]);
// //
// Arguments: // Arguments:
// r = radius of spherical portion of the bottom. (Default: 1) // r = radius of spherical portion of the bottom. (Default: 1)
@ -1088,8 +1088,8 @@ module noop(spin=0, orient=UP) orient_and_anchor([0.01,0.01,0.01], orient, CENTE
// Creates a pie slice shape. // Creates a pie slice shape.
// //
// Usage: // Usage:
// pie_slice(ang, l|h, r|d, [orient], [anchor|center]); // pie_slice(ang, l|h, r|d, [center]);
// pie_slice(ang, l|h, r1|d1, r2|d2, [orient], [anchor|center]); // pie_slice(ang, l|h, r1|d1, r2|d2, [center]);
// //
// Arguments: // Arguments:
// ang = pie slice angle in degrees. // ang = pie slice angle in degrees.
@ -1142,7 +1142,7 @@ module pie_slice(
// Center this part along the concave edge to be chamferred and union it in. // Center this part along the concave edge to be chamferred and union it in.
// //
// Usage: // Usage:
// interior_fillet(l, r, [ang], [overlap], [orient], [anchor]); // interior_fillet(l, r, [ang], [overlap]);
// //
// Arguments: // Arguments:
// l = length of edge to fillet. // l = length of edge to fillet.
@ -1187,10 +1187,10 @@ module interior_fillet(l=1.0, r=1.0, ang=90, overlap=0.01, anchor=CENTER, spin=0
// Makes a linear slot with rounded ends, appropriate for bolts to slide along. // Makes a linear slot with rounded ends, appropriate for bolts to slide along.
// //
// Usage: // Usage:
// slot(h, l, r|d, [orient], [anchor|center]); // slot(h, l, r|d, [center]);
// slot(h, p1, p2, r|d, [orient], [anchor|center]); // slot(h, p1, p2, r|d, [center]);
// slot(h, l, r1|d1, r2|d2, [orient], [anchor|center]); // slot(h, l, r1|d1, r2|d2, [center]);
// slot(h, p1, p2, r1|d1, r2|d2, [orient], [anchor|center]); // slot(h, p1, p2, r1|d1, r2|d2, [center]);
// //
// Arguments: // Arguments:
// p1 = center of starting circle of slot. // p1 = center of starting circle of slot.
@ -1227,8 +1227,8 @@ module slot(
// Makes an arced slot, appropriate for bolts to slide along. // Makes an arced slot, appropriate for bolts to slide along.
// //
// Usage: // Usage:
// arced_slot(h, r|d, sr|sd, [sa], [ea], [orient], [anchor|center], [$fn2]); // arced_slot(h, r|d, sr|sd, [sa], [ea], [center], [$fn2]);
// arced_slot(h, r|d, sr1|sd1, sr2|sd2, [sa], [ea], [orient], [anchor|center], [$fn2]); // arced_slot(h, r|d, sr1|sd1, sr2|sd2, [sa], [ea], [center], [$fn2]);
// //
// Arguments: // Arguments:
// cp = Centerpoint of slot arc. Default: `[0, 0, 0]` // cp = Centerpoint of slot arc. Default: `[0, 0, 0]`

View file

@ -16,7 +16,7 @@
// Description: // Description:
// Creates a slider to match a V-groove rail. // Creates a slider to match a V-groove rail.
// Usage: // Usage:
// slider(l, w, h, [base], [wall], [ang], [slop], [orient], [anchor]) // slider(l, w, h, [base], [wall], [ang], [slop])
// Arguments: // Arguments:
// l = Length (long axis) of slider. // l = Length (long axis) of slider.
// w = Width of slider. // w = Width of slider.
@ -25,9 +25,9 @@
// wall = Width of wall behind each side of the slider. // wall = Width of wall behind each side of the slider.
// ang = Overhang angle for slider, to facilitate supportless printig. // ang = Overhang angle for slider, to facilitate supportless printig.
// slop = Printer-specific slop value to make parts fit exactly. // slop = Printer-specific slop value to make parts fit exactly.
// anchor = Alignment of the slider. Use the constants from `constants.scad`. Default: `UP`. // anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
// orient = Orientation of the slider. Use the directional constants from `constants.scad`. Default: `BACK`. // spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
// spin = Number of degrees to rotate around the Z axis, before orienting. // orient = Vector to rotate top towards, after spin. See [orient](attachments.scad#orient). Default: `UP`
// Example: // Example:
// slider(l=30, base=10, wall=4, slop=0.2, spin=90); // slider(l=30, base=10, wall=4, slop=0.2, spin=90);
module slider(l=30, w=10, h=10, base=10, wall=5, ang=30, slop=PRINTER_SLOP, anchor=BOTTOM, spin=0, orient=UP) module slider(l=30, w=10, h=10, base=10, wall=5, ang=30, slop=PRINTER_SLOP, anchor=BOTTOM, spin=0, orient=UP)
@ -64,7 +64,7 @@ module slider(l=30, w=10, h=10, base=10, wall=5, ang=30, slop=PRINTER_SLOP, anch
// Description: // Description:
// Creates a V-groove rail. // Creates a V-groove rail.
// Usage: // Usage:
// rail(l, w, h, [chamfer], [ang], [orient], [anchor]) // rail(l, w, h, [chamfer], [ang])
// Arguments: // Arguments:
// l = Length (long axis) of slider. // l = Length (long axis) of slider.
// w = Width of slider. // w = Width of slider.

View file

@ -16,7 +16,7 @@ include <BOSL2/paths.scad>
// Module: thread_helix() // Module: thread_helix()
// Usage: // Usage:
// thread_helix(base_d, pitch, thread_depth, thread_angle, twist, [profile], [left_handed], [higbee], [interior], [orient], [anchor]); // thread_helix(base_d, pitch, thread_depth, thread_angle, twist, [profile], [left_handed], [higbee], [interior]);
// Description: // Description:
// Creates a helical thread with optional end tapering. // Creates a helical thread with optional end tapering.
// Arguments: // Arguments:

View file

@ -870,11 +870,11 @@ module zdistribute(spacing=10, sizes=undef, l=undef)
// Makes a square or hexagonal grid of copies of children. // Makes a square or hexagonal grid of copies of children.
// //
// Usage: // Usage:
// grid2d(size, spacing, [stagger], [scale], [in_poly], [orient], [anchor]) ... // grid2d(size, spacing, [stagger], [scale], [in_poly]) ...
// grid2d(size, cols, rows, [stagger], [scale], [in_poly], [orient], [anchor]) ... // grid2d(size, cols, rows, [stagger], [scale], [in_poly]) ...
// grid2d(spacing, cols, rows, [stagger], [scale], [in_poly], [orient], [anchor]) ... // grid2d(spacing, cols, rows, [stagger], [scale], [in_poly]) ...
// grid2d(spacing, in_poly, [stagger], [scale], [orient], [anchor]) ... // grid2d(spacing, in_poly, [stagger], [scale]) ...
// grid2d(cols, rows, in_poly, [stagger], [scale], [orient], [anchor]) ... // grid2d(cols, rows, in_poly, [stagger], [scale]) ...
// //
// Arguments: // Arguments:
// size = The [X,Y] size to spread the copies over. // size = The [X,Y] size to spread the copies over.

View file

@ -21,7 +21,7 @@
// overhangs. // overhangs.
// //
// Usage: // Usage:
// narrowing_strut(w, l, wall, [ang], [orient], [anchor]); // narrowing_strut(w, l, wall, [ang]);
// //
// Arguments: // Arguments:
// w = Width (thickness) of the strut. // w = Width (thickness) of the strut.
@ -65,7 +65,7 @@ module narrowing_strut(w=10, l=100, wall=5, ang=30, anchor=BOTTOM, spin=0, orien
// with angled supports to prevent critical overhangs. // with angled supports to prevent critical overhangs.
// //
// Usage: // Usage:
// thinning_wall(h, l, thick, [ang], [strut], [wall], [orient], [anchor]); // thinning_wall(h, l, thick, [ang], [strut], [wall]);
// //
// Arguments: // Arguments:
// h = height of wall. // h = height of wall.
@ -210,7 +210,7 @@ module thinning_wall(h=50, l=100, thick=5, ang=30, strut=5, wall=2, anchor=CENTE
// with angled supports to prevent critical overhangs. // with angled supports to prevent critical overhangs.
// //
// Usage: // Usage:
// braced_thinning_wall(h, l, thick, [ang], [strut], [wall], [orient], [anchor]); // braced_thinning_wall(h, l, thick, [ang], [strut], [wall]);
// //
// Arguments: // Arguments:
// h = height of wall. // h = height of wall.
@ -262,7 +262,7 @@ module braced_thinning_wall(h=50, l=100, thick=5, ang=30, strut=5, wall=2, ancho
// the center, with angled supports to prevent critical overhangs. // the center, with angled supports to prevent critical overhangs.
// //
// Usage: // Usage:
// thinning_triangle(h, l, thick, [ang], [strut], [wall], [diagonly], [orient], [anchor|center]); // thinning_triangle(h, l, thick, [ang], [strut], [wall], [diagonly], [center]);
// //
// Arguments: // Arguments:
// h = height of wall. // h = height of wall.
@ -323,7 +323,7 @@ module thinning_triangle(h=50, l=100, thick=5, ang=30, strut=5, wall=3, diagonly
// the need for support material in 3D printing. // the need for support material in 3D printing.
// //
// Usage: // Usage:
// sparse_strut(h, l, thick, [strut], [maxang], [max_bridge], [orient], [anchor]) // sparse_strut(h, l, thick, [strut], [maxang], [max_bridge])
// //
// Arguments: // Arguments:
// h = height of strut wall. // h = height of strut wall.
@ -387,7 +387,7 @@ module sparse_strut(h=50, l=100, thick=4, maxang=30, strut=5, max_bridge=20, anc
// Module: sparse_strut3d() // Module: sparse_strut3d()
// //
// Usage: // Usage:
// sparse_strut3d(h, w, l, [thick], [maxang], [max_bridge], [strut], [orient], [anchor]); // sparse_strut3d(h, w, l, [thick], [maxang], [max_bridge], [strut]);
// //
// Description: // Description:
// Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce the // Makes an open rectangular strut with X-shaped cross-bracing, designed to reduce the
@ -490,7 +490,7 @@ module sparse_strut3d(h=50, l=100, w=50, thick=3, maxang=40, strut=3, max_bridge
// providing support strength. Designed with 3D printing in mind. // providing support strength. Designed with 3D printing in mind.
// //
// Usage: // Usage:
// corrugated_wall(h, l, thick, [strut], [wall], [orient], [anchor]); // corrugated_wall(h, l, thick, [strut], [wall]);
// //
// Arguments: // Arguments:
// h = height of strut wall. // h = height of strut wall.