Extend triangulate functionality and correct is_polygon_convex

This commit is contained in:
RonaldoCMP 2021-10-12 21:22:02 -03:00
parent 8de2283f91
commit 1b84a3129d

View file

@ -494,11 +494,13 @@ function _covariance_evec_eval(points) =
// Usage: // Usage:
// plane = plane_from_points(points, [fast], [eps]); // plane = plane_from_points(points, [fast], [eps]);
// Topics: Geometry, Planes, Points // Topics: Geometry, Planes, Points
// See Also: plane_from_polygon
// Description: // Description:
// Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane, // Given a list of 3 or more coplanar 3D points, returns the coefficients of the normalized cartesian equation of a plane,
// that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane and norm([A,B,C])=1. // that is [A,B,C,D] where Ax+By+Cz=D is the equation of the plane and norm([A,B,C])=1.
// If `fast` is false and the points in the list are collinear or not coplanar, then `undef` is returned. // If `fast` is false and the points in the list are collinear or not coplanar, then `undef` is returned.
// If `fast` is true, the polygon coplanarity check is skipped and a best fitting plane is returned. // If `fast` is true, the polygon coplanarity check is skipped and a best fitting plane is returned.
// It differs from `plane_from_polygon` as the plane normal is independent of the point order. It is faster, though.
// Arguments: // Arguments:
// points = The list of points to find the plane of. // points = The list of points to find the plane of.
// fast = If true, don't verify the point coplanarity. Default: false // fast = If true, don't verify the point coplanarity. Default: false
@ -529,6 +531,7 @@ function plane_from_points(points, fast=false, eps=EPSILON) =
// Usage: // Usage:
// plane = plane_from_polygon(points, [fast], [eps]); // plane = plane_from_polygon(points, [fast], [eps]);
// Topics: Geometry, Planes, Polygons // Topics: Geometry, Planes, Polygons
// See Also: plane_from_points
// Description: // Description:
// Given a 3D planar polygon, returns the normalized cartesian equation of its plane. // Given a 3D planar polygon, returns the normalized cartesian equation of its plane.
// Returns [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1. // Returns [A,B,C,D] where Ax+By+Cz=D is the equation of the plane where norm([A,B,C])=1.
@ -936,10 +939,10 @@ function point_plane_distance(plane, point) =
// the maximum distance from points to the plane // the maximum distance from points to the plane
function _pointlist_greatest_distance(points,plane) = function _pointlist_greatest_distance(points,plane) =
let( let(
normal = point3d(plane), normal = [plane[0],plane[1],plane[2]],
pt_nrm = points*normal pt_nrm = points*normal
) )
abs(max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3])) / norm(normal); max( max(pt_nrm) - plane[3], -min(pt_nrm) + plane[3]) / norm(normal);
// Function: are_points_on_plane() // Function: are_points_on_plane()
@ -1355,7 +1358,7 @@ function noncollinear_triple(points,error=true,eps=EPSILON) =
pb = points[b], pb = points[b],
nrm = norm(pa-pb) nrm = norm(pa-pb)
) )
nrm <= eps*max(norm(pa),norm(pb)) ? nrm <= eps ?
assert(!error, "Cannot find three noncollinear points in pointlist.") [] : assert(!error, "Cannot find three noncollinear points in pointlist.") [] :
let( let(
n = (pb-pa)/nrm, n = (pb-pa)/nrm,
@ -1659,7 +1662,7 @@ function polygon_triangulate(poly, ind, eps=EPSILON) =
// requires ccw 2d polygons // requires ccw 2d polygons
// returns ccw triangles // returns ccw triangles
function _triangulate(poly, ind, eps=EPSILON, tris=[]) = function _old_triangulate(poly, ind, eps=EPSILON, tris=[]) =
len(ind)==3 ? concat(tris,[ind]) : len(ind)==3 ? concat(tris,[ind]) :
let( ear = _get_ear(poly,ind,eps) ) let( ear = _get_ear(poly,ind,eps) )
assert( ear!=undef, assert( ear!=undef,
@ -1671,7 +1674,7 @@ function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
_triangulate(poly, indr, eps, concat(tris,[ear_tri])); _triangulate(poly, indr, eps, concat(tris,[ear_tri]));
// search a valid ear from the remaining polygon // search a valid ear from the remaining polygon
function _get_ear(poly, ind, eps, _i=0) = function _old_get_ear(poly, ind, eps, _i=0) =
_i>=len(ind) ? undef : // poly has no ears _i>=len(ind) ? undef : // poly has no ears
let( // the _i-th ear candidate let( // the _i-th ear candidate
p0 = poly[ind[_i]], p0 = poly[ind[_i]],
@ -1703,6 +1706,67 @@ function _get_ear(poly, ind, eps, _i=0) =
// check the next ear candidate // check the next ear candidate
_get_ear(poly, ind, eps, _i=_i+1); _get_ear(poly, ind, eps, _i=_i+1);
function _triangulate(poly, ind, eps=EPSILON, tris=[]) =
len(ind)==3
? _is_degenerate(select(poly,ind),eps)
? tris // last 3 pts perform a degenerate triangle, ignore it
: concat(tris,[ind]) // otherwise, include it
: let( ear = _get_ear(poly,ind,eps) )
assert( ear!=undef,
"The polygon has self-intersections or its vertices are collinear or non coplanar.")
ear<0 // degenerate ear
? let( indr = select(ind,-ear+1, -ear-1) ) // discard it
_triangulate(poly, indr, eps, tris)
: let(
ear_tri = select(ind,ear,ear+2),
indr = select(ind,ear+2, ear) // indices of the remaining points
)
_triangulate(poly, indr, eps, concat(tris,[ear_tri]));
// a returned ear will be:
// 1. a CCW triangle without points inside except possibly at its vertices
// 2. or a degenerate triangle where two vertices are coincident
// the returned ear is specified by the index of `ind` of its first vertex
function _get_ear(poly, ind, eps, _i=0) =
_i>=len(ind) ? undef : // poly has no ears
let( // the _i-th ear candidate
p0 = poly[ind[_i]],
p1 = poly[ind[(_i+1)%len(ind)]],
p2 = poly[ind[(_i+2)%len(ind)]]
)
// if it is a degenerate triangle, return it (codified)
_is_degenerate([p0,p1,p2],eps) ? -(_i+1) :
// if it is not a convex vertex, try the next one
_is_cw2(p0,p1,p2,eps) ? _get_ear(poly,ind,eps, _i=_i+1) :
let( // vertex p1 is convex
// check if the triangle contains any other point
// except possibly its own vertices
to_tst = select(ind,_i+3, _i-1),
pt2tst = select(poly,to_tst), // points other than p0, p1 and p2
q = [(p0-p2).y, (p2-p0).x], // orthogonal to ray [p0,p2] pointing right
q0 = q*p0,
r = [(p2-p1).y, (p1-p2).x], // orthogonal to ray [p2,p1] pointing right
r0 = r*p2,
s = [(p1-p0).y, (p0-p1).x], // orthogonal to ray [p1,p0] pointing right
s0 = s*p1,
inside = [for(p=pt2tst)
if( p*q<=q0 && p*r<=r0 && p*s<=s0 ) // p is in the triangle
if( norm(p-p0)>eps // and doesn't coincide with
&& norm(p-p1)>eps // any of its vertices
&& norm(p-p2)>eps )
p ]
)
inside==[] ? _i : // no point inside -> an ear
// check the next ear candidate
_get_ear(poly, ind, eps, _i=_i+1);
// true for some specific kinds of degeneracy
function _is_degenerate(tri,eps) =
norm(tri[0]-tri[1])<eps || norm(tri[1]-tri[2])<eps || norm(tri[2]-tri[0])<eps ;
function _is_cw2(a,b,c,eps=EPSILON) = cross(a-c,b-c)<eps*norm(a-c)*norm(b-c); function _is_cw2(a,b,c,eps=EPSILON) = cross(a-c,b-c)<eps*norm(a-c)*norm(b-c);
@ -1903,6 +1967,8 @@ function old_align_polygon(reference, poly, angles, cp) =
], ],
best = min_index(subindex(alignments,1)) best = min_index(subindex(alignments,1))
) alignments[best][0]; ) alignments[best][0];
function align_polygon(reference, poly, angles, cp) = function align_polygon(reference, poly, angles, cp) =
assert(is_path(reference,dim=2) && is_path(poly,dim=2), assert(is_path(reference,dim=2) && is_path(poly,dim=2),
"Invalid polygon(s). " ) "Invalid polygon(s). " )
@ -1985,11 +2051,11 @@ function __is_polygon_in_list(poly, polys, i) =
// Topics: Geometry, Convexity, Test // Topics: Geometry, Convexity, Test
// Description: // Description:
// Returns true if the given 2D or 3D polygon is convex. // Returns true if the given 2D or 3D polygon is convex.
// The result is meaningless if the polygon is not simple (self-intersecting) or non coplanar. // The result is meaningless if the polygon is not simple (self-crossing) or non coplanar.
// If the points are collinear an error is generated. // If the points are collinear or not coplanar an error may be generated.
// Arguments: // Arguments:
// poly = Polygon to check. // poly = Polygon to check.
// eps = Tolerance for the collinearity test. Default: EPSILON. // eps = Tolerance for the collinearity and coplanarity tests. Default: EPSILON.
// Example: // Example:
// test1 = is_polygon_convex(circle(d=50)); // Returns: true // test1 = is_polygon_convex(circle(d=50)); // Returns: true
// test2 = is_polygon_convex(rot([50,120,30], p=path3d(circle(1,$fn=50)))); // Returns: true // test2 = is_polygon_convex(rot([50,120,30], p=path3d(circle(1,$fn=50)))); // Returns: true
@ -2004,13 +2070,24 @@ function is_polygon_convex(poly,eps=EPSILON) =
assert( lp>=3 , "A polygon must have at least 3 points" ) assert( lp>=3 , "A polygon must have at least 3 points" )
let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] ) let( crosses = [for(i=[0:1:lp-1]) cross(poly[(i+1)%lp]-poly[i], poly[(i+2)%lp]-poly[(i+1)%lp]) ] )
len(p0)==2 len(p0)==2
? assert( !approx(sqrt(max(max(crosses),-min(crosses))),eps), "The points are collinear" ) ? let( size = max([for(p=poly) norm(p-p0)]), tol=pow(size,2)*eps )
min(crosses) >=0 || max(crosses)<=0 assert( size>eps, "The polygon is self-crossing or its points are collinear" )
: let( prod = crosses*sum(crosses), min(crosses) >=-tol || max(crosses)<=tol
minc = min(prod), : let( ip = noncollinear_triple(poly,error=false,eps=eps) )
maxc = max(prod) ) assert( ip!=[], "The points are collinear")
assert( !approx(sqrt(max(maxc,-minc)),eps), "The points are collinear" ) let(
minc>=0 || maxc<=0; crx = cross(poly[ip[1]]-poly[ip[0]],poly[ip[2]]-poly[ip[1]]),
nrm = crx/norm(crx),
plane = concat(nrm, nrm*poly[0]),
prod = crosses*nrm,
size = norm(poly[ip[1]]-poly[ip[0]]),
tol = pow(size,2)*eps
)
assert(_pointlist_greatest_distance(poly,plane) < size*eps, "The polygon points are not coplanar")
let(
minc = min(prod),
maxc = max(prod) )
minc>=-tol || maxc<=tol;
// Function: convex_distance() // Function: convex_distance()