From 1cb73732845e06cde742f613768b9f4e828bf8b0 Mon Sep 17 00:00:00 2001 From: Adrian Mariano Date: Tue, 5 Oct 2021 22:09:48 -0400 Subject: [PATCH] doc fixes --- geometry.scad | 35 +++++++++++++++-------------------- 1 file changed, 15 insertions(+), 20 deletions(-) diff --git a/geometry.scad b/geometry.scad index 8832589..bc74473 100644 --- a/geometry.scad +++ b/geometry.scad @@ -646,14 +646,14 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // bounded = If false, the line is considered unbounded. If true, it is treated as a bounded line segment. If given as `[true, false]` or `[false, true]`, the boundedness of the points are specified individually, allowing the line to be treated as a half-bounded ray. Default: false (unbounded) // nonzero = set to true to use the nonzero rule for determining it points are in a polygon. See point_in_polygon. Default: false. // eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9) -// Example: The line intersects the 3d hexagon in a single point. +// Example(3D): The line intersects the 3d hexagon in a single point. // hex = zrot(140,p=rot([-45,40,20],p=path3d(hexagon(r=15)))); // line = [[5,0,-13],[-3,-5,13]]; // isect = polygon_line_intersection(hex,line); // stroke(hex,closed=true); // stroke(line); -// color("red")move(isect)sphere(r=1); -// Example: In 2D things are more complicated. The output is a list of intersection parts, in the simplest case a single segment. +// color("red")move(isect)sphere(r=1,$fn=12); +// Example(2D): In 2D things are more complicated. The output is a list of intersection parts, in the simplest case a single segment. // hex = hexagon(r=15); // line = [[-20,10],[25,-7]]; // isect = polygon_line_intersection(hex,line); @@ -665,7 +665,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) sphere(r=1); // else // stroke(part); -// Example: In 2D things are more complicated. Here the line is treated as a ray. +// Example(2D): Here the line is treated as a ray. // hex = hexagon(r=15); // line = [[0,0],[25,-7]]; // isect = polygon_line_intersection(hex,line,RAY); @@ -677,7 +677,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Here the intersection is a single point, which is returned as a single point "path" on the path list. +// Example(2D): Here the intersection is a single point, which is returned as a single point "path" on the path list. // hex = hexagon(r=15); // line = [[15,-10],[15,13]]; // isect = polygon_line_intersection(hex,line,RAY); @@ -689,7 +689,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Another way to get a single segment +// Example(2D): Another way to get a single segment // hex = hexagon(r=15); // line = rot(30,p=[[15,-10],[15,25]],cp=[15,0]); // isect = polygon_line_intersection(hex,line,RAY); @@ -701,7 +701,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Single segment again +// Example(2D): Single segment again // star = star(r=15,n=8,step=2); // line = [[20,-5],[-5,20]]; // isect = polygon_line_intersection(star,line,RAY); @@ -713,7 +713,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Solution is two points +// Example(2D): Solution is two points // star = star(r=15,n=8,step=3); // line = rot(22.5,p=[[15,-10],[15,20]],cp=[15,0]); // isect = polygon_line_intersection(star,line,SEGMENT); @@ -725,7 +725,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Solution is list of three segments +// Example(2D): Solution is list of three segments // star = star(r=25,ir=9,n=8); // line = [[-25,12],[25,12]]; // isect = polygon_line_intersection(star,line); @@ -737,7 +737,7 @@ function plane_line_intersection(plane, line, bounded=false, eps=EPSILON) = // move(part[0]) circle(r=1,$fn=12); // else // stroke(part); -// Example: Solution is a mixture of segments and points +// Example(2D): Solution is a mixture of segments and points // star = star(r=25,ir=9,n=7); // line = [left(10,p=star[8]), right(50,p=star[8])]; // isect = polygon_line_intersection(star,line); @@ -1591,22 +1591,17 @@ function point_in_polygon(point, poly, nonzero=false, eps=EPSILON) = // poly = Array of vertices for the polygon. // ind = A list indexing the vertices of the polygon in `poly`. // eps = A maximum tolerance in geometrical tests. Default: EPSILON -// Example: +// Example(2D): // poly = star(id=10, od=15,n=11); // tris = polygon_triangulate(poly); -// polygon(poly); -// up(1) -// color("blue"); -// for(tri=tris) trace_path(select(poly,tri), size=.1, closed=true); -// -// Example: -// include +// for(tri=tris) stroke(select(poly,tri), width=.1, closed=true); +// Example(3D): +// include // vnf = regular_polyhedron_info(name="dodecahedron",side=5,info="vnf"); // %vnf_polyhedron(vnf); // vnf_tri = [vnf[0], [for(face=vnf[1]) each polygon_triangulate(vnf[0], face) ] ]; // color("blue") -// vnf_wireframe(vnf_tri, d=.15); - +// vnf_wireframe(vnf_tri, width=.15); function polygon_triangulate(poly, ind, eps=EPSILON) = assert(is_path(poly), "Polygon `poly` should be a list of 2d or 3d points") assert(is_undef(ind)