Correction of C_times validation

This commit is contained in:
RonaldoCMP 2020-08-26 14:07:12 +01:00
parent 9f02750519
commit 1ced82f16c
5 changed files with 391 additions and 132 deletions

View file

@ -708,36 +708,108 @@ function _sort_vectors4(arr) =
y ] y ]
) concat( _sort_vectors4(lesser), equal, _sort_vectors4(greater) ); ) concat( _sort_vectors4(lesser), equal, _sort_vectors4(greater) );
// sort a list of vectors
function _sort_vectors(arr, _i=0) =
len(arr)<=1 || _i>=len(arr[0]) ? arr :
let(
pivot = arr[floor(len(arr)/2)][_i],
lesser = [ for (entry=arr) if (entry[_i] < pivot ) entry ],
equal = [ for (entry=arr) if (entry[_i] == pivot ) entry ],
greater = [ for (entry=arr) if (entry[_i] > pivot ) entry ]
)
concat(
_sort_vectors(lesser, _i ),
_sort_vectors(equal, _i+1 ),
_sort_vectors(greater, _i ) );
// given pairs of an index and a vector, return the list of indices of the list sorted by the vectors
function _sort_vectors_indexed(arr, _i=0) =
arr==[] ? [] :
len(arr)==1 || _i>=len(arr[0][1]) ? [for(ai=arr) ai[0]] :
let(
pivot = arr[floor(len(arr)/2)][1][_i],
lesser = [ for (entry=arr) if (entry[1][_i] < pivot ) entry ],
equal = [ for (entry=arr) if (entry[1][_i] == pivot ) entry ],
greater = [ for (entry=arr) if (entry[1][_i] > pivot ) entry ]
)
concat(
_sort_vectors_indexed(lesser, _i ),
_sort_vectors_indexed(equal, _i+1 ),
_sort_vectors_indexed(greater, _i ) );
// when idx==undef, returns the sorted array // when idx==undef, returns the sorted array
// otherwise, returns the indices of the sorted array // otherwise, returns the indices of the sorted array
function _sort_general(arr, idx=undef) = function _sort_general(arr, idx=undef) =
(len(arr)<=1) ? arr : len(arr)<=1 ? arr :
is_undef(idx) is_undef(idx)
? _sort_scalar(arr) ? _simple_sort(arr)
// : _lexical_sort(arr)
: let( arrind=[for(k=[0:len(arr)-1], ark=[arr[k]]) [ k, [for (i=idx) ark[i]] ] ] ) : let( arrind=[for(k=[0:len(arr)-1], ark=[arr[k]]) [ k, [for (i=idx) ark[i]] ] ] )
_indexed_sort(arrind); _indexed_sort(arrind );
// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair // sort simple lists with compare_vals()
// the sorting is done using compare_vals() function _simple_sort(arr) =
function _indexed_sort(arrind) = arr==[] || len(arr)==1 ? arr :
arrind==[] ? [] : len(arrind)==1? [arrind[0][0]] :
let( pivot = arrind[floor(len(arrind)/2)][1] )
let( let(
lesser = [ for (entry=arrind) if (compare_vals(entry[1], pivot) <0 ) entry ], pivot = arr[floor(len(arr)/2)],
equal = [ for (entry=arrind) if (compare_vals(entry[1], pivot)==0 ) entry[0] ], lesser = [ for (entry=arr) if (compare_vals(entry, pivot) <0 ) entry ],
greater = [ for (entry=arrind) if (compare_vals(entry[1], pivot) >0 ) entry ] equal = [ for (entry=arr) if (compare_vals(entry, pivot)==0 ) entry ],
greater = [ for (entry=arr) if (compare_vals(entry, pivot) >0 ) entry ]
) )
concat(_indexed_sort(lesser), equal, _indexed_sort(greater)); concat(
_simple_sort(lesser),
equal,
_simple_sort(greater)
);
// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair
// it uses compare_vals()
function _lexical_sort(arr, _i=0) =
arr==[] || len(arr)==1 || _i>=len(arr[0]) ? arr :
let(
pivot = arr[floor(len(arr)/2)][_i],
lesser = [ for (entry=arr) if (compare_vals(entry[_i], pivot) <0 ) entry ],
equal = [ for (entry=arr) if (compare_vals(entry[_i], pivot)==0 ) entry ],
greater = [ for (entry=arr) if (compare_vals(entry[_i], pivot) >0 ) entry ]
)
concat(
_lexical_sort(lesser, _i ),
_lexical_sort(equal, _i+1 ),
_lexical_sort(greater, _i )
);
// given a list of pairs, return the first element of each pair of the list sorted by the second element of the pair
// it uses compare_vals()
function _indexed_sort(arr, _i=0) =
arr==[] ? [] :
len(arr)==1? [arr[0][0]] :
_i>=len(arr[0][1]) ? [for(ai=arr) ai[0]] :
let(
pivot = arr[floor(len(arr)/2)][1][_i],
lesser = [ for (entry=arr) if (compare_vals(entry[1][_i], pivot) <0 ) entry ],
equal = [ for (entry=arr) if (compare_vals(entry[1][_i], pivot)==0 ) entry ],
greater = [ for (entry=arr) if (compare_vals(entry[1][_i], pivot) >0 ) entry ]
)
concat(
_indexed_sort(lesser, _i ),
_indexed_sort(equal, _i+1 ),
_indexed_sort(greater, _i ) );
// returns true for valid index specifications idx in the interval [imin, imax) // returns true for valid index specifications idx in the interval [imin, imax)
// note that idx can't have any value greater or EQUAL to imax // note that idx can't have any value greater or EQUAL to imax
// this allows imax=INF as a bound to numerical lists
function _valid_idx(idx,imin,imax) = function _valid_idx(idx,imin,imax) =
is_undef(idx) is_undef(idx)
|| ( is_finite(idx) && idx>=imin && idx< imax ) || ( is_finite(idx) && idx>=imin && idx< imax )
|| ( is_list(idx) && min(idx)>=imin && max(idx)< imax ) || ( is_list(idx) && min(idx)>=imin && max(idx)< imax )
|| ( valid_range(idx) && idx[0]>=imin && idx[2]< imax ); || ( ! is_list(idx) // it implicitly is a range
&& (idx[1]>0 && idx[0]>=imin && idx[2]< imax)
||
(idx[0]<imax && idx[2]>=imin) );
// Function: sort() // Function: sort()
@ -758,7 +830,7 @@ function _valid_idx(idx,imin,imax) =
function sort(list, idx=undef) = function sort(list, idx=undef) =
!is_list(list) || len(list)<=1 ? list : !is_list(list) || len(list)<=1 ? list :
is_def(idx) is_def(idx)
? assert( _valid_idx(idx,0,len(list)) , "Invalid indices.") ? assert( _valid_idx(idx,0,len(list[0])) , "Invalid indices or out of range.")
let( sarr = _sort_general(list,idx) ) let( sarr = _sort_general(list,idx) )
[for(i=[0:len(sarr)-1]) list[sarr[i]] ] [for(i=[0:len(sarr)-1]) list[sarr[i]] ]
: let(size = array_dim(list)) : let(size = array_dim(list))
@ -773,6 +845,31 @@ function sort(list, idx=undef) =
) )
: _sort_general(list); : _sort_general(list);
function sort(list, idx=undef) =
!is_list(list) || len(list)<=1 ? list :
is_vector(list)
? assert( _valid_idx(idx,0,len(list[0])) , str("Invalid indices or out of range. ",list))
is_def(idx)
? sort_vector_indexed([for(i=[0:len(list)-1]) [i, [list(i)] ] ])
: sort_scalar(list)
: is_matrix(list)
? list==[] || list[0]==[] ? list :
assert( _valid_idx(idx,0,len(list[0])) , "Invalid indices or out of range.")
is_def(idx)
? sort_vector_indexed([for(i=[0:len(list)-1], li=[list[i]]) [i, [for(ind=idx) li(ind)] ] ])
: sort_vector(list)
: list==[] || list[0]==[] ? list :
let( llen = [for(li=list) !is_list(li) || is_string(li) ? 0: len(li)],
m = min(llen),
M = max(llen)
)
M==0 ? _simple_sort(list) :
assert( m>0 && _valid_idx(idx,m-1,M) , "Invalid indices or out of range.")
is_def(idx)
? _sort_general(list,idx)
: let( ils = _sort_general(list, [m:M]) )
[for(i=[0:len(list)-1]) list[ils[i]] ];
// Function: sortidx() // Function: sortidx()
// Description: // Description:

View file

@ -1175,7 +1175,7 @@ function deriv3(data, h=1, closed=false) =
// Description: // Description:
// Multiplies two complex numbers represented by 2D vectors. // Multiplies two complex numbers represented by 2D vectors.
function C_times(z1,z2) = function C_times(z1,z2) =
assert( is_vector(z1+z2,2), "Complex numbers should be represented by 2D vectors." ) assert( is_matrix([z1,z2],2,2), "Complex numbers should be represented by 2D vectors" )
[ z1.x*z2.x - z1.y*z2.y, z1.x*z2.y + z1.y*z2.x ]; [ z1.x*z2.x - z1.y*z2.y, z1.x*z2.y + z1.y*z2.x ];
// Function: C_div() // Function: C_div()

View file

@ -27,7 +27,7 @@ function _Qreal(q) = q[3];
function _Qset(v,r) = concat( v, r ); function _Qset(v,r) = concat( v, r );
// normalizes without checking // normalizes without checking
function _Qnorm(q) = q/norm(q); function _Qunit(q) = q/norm(q);
// Function: Q_is_quat() // Function: Q_is_quat()
@ -36,7 +36,7 @@ function _Qnorm(q) = q/norm(q);
// Description: Return true if q is a valid non-zero quaternion. // Description: Return true if q is a valid non-zero quaternion.
// Arguments: // Arguments:
// q = object to check. // q = object to check.
function Q_is_quat(q) = is_vector(q,4) && ! approx(norm(q),0) ; function Q_is_quat(q) = is_vector(q,4) ;//&& ! approx(norm(q),0) ;
// Function: Quat() // Function: Quat()
@ -101,7 +101,7 @@ function QuatXYZ(a=[0,0,0]) =
qy = QuatY(a[1]), qy = QuatY(a[1]),
qz = QuatZ(a[2]) qz = QuatZ(a[2])
) )
Q_Mul(qz, Q_Mul(qy, qx)); _Qmul(qz, _Qmul(qy, qx));
// Function: Q_From_to() // Function: Q_From_to()
@ -202,32 +202,36 @@ function Q_Sub(a, b) =
// The returned quaternion is normalized if both `a` and `b` are normalized // The returned quaternion is normalized if both `a` and `b` are normalized
function Q_Mul(a, b) = function Q_Mul(a, b) =
assert( Q_is_quat(a) && Q_is_quat(b), "Invalid quaternion(s)") assert( Q_is_quat(a) && Q_is_quat(b), "Invalid quaternion(s)")
_Qmul(a,b);
function _Qmul(a,b) =
[ [
a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y, a[3]*b.x + a.x*b[3] + a.y*b.z - a.z*b.y,
a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x, a[3]*b.y - a.x*b.z + a.y*b[3] + a.z*b.x,
a[3]*b.z + a.x*b.y - a.y*b.x + a.z*b[3], a[3]*b.z + a.x*b.y - a.y*b.x + a.z*b[3],
a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z, a[3]*b[3] - a.x*b.x - a.y*b.y - a.z*b.z
]; ];
// [ [a[3], -a.z, a.y, a.x],
// [ a.z, a[3], -a.x, a.y],
// [-a.y, a.x, a[3], a.z],
// [-a.x, -a.y, -a.z, a[3]] ]*[b.x,b.y,b.z,b[3]]
// Function: Q_Cumulative() // Function: Q_Cumulative()
// Usage: // Usage:
// Q_Cumulative(v); // Q_Cumulative(ql);
// Description: // Description:
// Given a list of Quaternions, cumulatively multiplies them, returning a list // Given a list of Quaternions, cumulatively multiplies them, returning a list
// of each cumulative Quaternion product. It starts with the first quaternion // of each cumulative Quaternion product. It starts with the first quaternion
// given in the list, and applies successive quaternion rotations in list order. // given in the list, and applies successive quaternion rotations in list order.
// The quaternion in the returned list are normalized if each quaternion in v // The quaternion in the returned list are normalized if each quaternion in v
// is normalized. // is normalized.
function Q_Cumulative(v, _i=0, _acc=[]) = function Q_Cumulative(ql) =
_i==len(v) ? _acc : assert( is_matrix(ql,undef,4) && len(ql)>0, "Invalid list of quaternions." )
Q_Cumulative( [for( i = 0, q = ql[0];
v, _i+1, i<=len(ql);
concat( i = i+1, q = (i==len(ql))? 0: _Qmul(q,ql[i]) )
_acc, q ];
[_i==0 ? v[_i] : Q_Mul(v[_i], select(_acc,-1))]
)
);
// Function: Q_Dot() // Function: Q_Dot()
@ -252,7 +256,7 @@ function Q_Neg(q) =
// Q_Conj(q) // Q_Conj(q)
// Description: Returns the conjugate of quaternion `q`. // Description: Returns the conjugate of quaternion `q`.
function Q_Conj(q) = function Q_Conj(q) =
assert( Q_is_quat(q), "Invalid quaternion" ) assert( Q_is_quat(q), str("Invalid quaternion",q) )
[-q.x, -q.y, -q.z, q[3]]; [-q.x, -q.y, -q.z, q[3]];
@ -262,7 +266,7 @@ function Q_Conj(q) =
// Description: Returns the multiplication inverse of quaternion `q` that is normalized only if `q` is normalized. // Description: Returns the multiplication inverse of quaternion `q` that is normalized only if `q` is normalized.
function Q_Inverse(q) = function Q_Inverse(q) =
assert( Q_is_quat(q), "Invalid quaternion" ) assert( Q_is_quat(q), "Invalid quaternion" )
let(q = _Qnorm(q) ) // let(q = q/norm(q) )
[-q.x, -q.y, -q.z, q[3]]; [-q.x, -q.y, -q.z, q[3]];
@ -283,7 +287,9 @@ function Q_Norm(q) =
// Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1. // Description: Normalizes quaternion `q`, so that norm([W,X,Y,Z]) == 1.
function Q_Normalize(q) = function Q_Normalize(q) =
assert( Q_is_quat(q) , "Invalid quaternion" ) assert( Q_is_quat(q) , "Invalid quaternion" )
q/norm(q); approx(_Qvec(q), [0,0,0])
? Q_Ident()
: q/norm(q);
// Function: Q_Dist() // Function: Q_Dist()
@ -318,31 +324,32 @@ function Q_Dist(q1, q2) =
// Qrot(q) right(80) cube([10,10,1]); // Qrot(q) right(80) cube([10,10,1]);
// #sphere(r=80); // #sphere(r=80);
function Q_Slerp(q1, q2, u, _dot) = function Q_Slerp(q1, q2, u, _dot) =
is_undef(_dot) assert(is_finite(u) || is_range(u) || is_vector(u), "Invalid interpolation coefficient(s)")
? assert(is_finite(u) || is_range(u) || is_vector(u), "Invalid interpolation coefficient(s)") assert(Q_is_quat(q1) && Q_is_quat(q2), "Invalid quaternion(s)" )
assert(Q_is_quat(q1) && Q_is_quat(q2), "Invalid quaternion(s)" ) let(
let( _dot = q1*q2,
_dot = q1*q2, q1 = q1/norm(q1),
q1 = q1/norm(q1), q2 = _dot<0 ? -q2/norm(q2) : q2/norm(q2),
q2 = _dot<0 ? -q2/norm(q2) : q2/norm(q2), dot = abs(_dot),
dot = abs(_dot) q3 = dot>0.9995? q2: _Qunit(q2 - dot*q1)
) )
! is_finite(u) ? [for (uu=u) Q_Slerp(q1, q2, uu, dot)] : ! is_num(u)
Q_Slerp(q1, q2, u, dot) ? [for (uu=u) _Qslerp(q1, q3, uu, dot)]
: _dot>0.9995 : _Qslerp(q1, q3, u, dot);
? _Qnorm(q1 + u*(q2-q1))
: let( theta = u*acos(_dot),
q3 = _Qnorm(q2 - _dot*q1)
)
_Qnorm(q1*cos(theta) + q3*sin(theta));
function _Qslerp(q1, q2, u, dot) =
dot>0.9995
? _Qunit(q1 + u*(q2-q1))
: let( theta = u*acos(dot) )
_Qunit(q1*cos(theta) + q2*sin(theta));
// Function: Q_Matrix3() // Function: Q_to_matrix3()
// Usage: // Usage:
// Q_Matrix3(q); // Q_to_matrix3(q);
// Description: // Description:
// Returns the 3x3 rotation matrix for the given normalized quaternion q. // Returns the 3x3 rotation matrix for the given normalized quaternion q.
function Q_Matrix3(q) = function Q_to_matrix3(q) =
let( q = Q_Normalize(q) ) let( q = Q_Normalize(q) )
[ [
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]], [1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3]],
@ -351,12 +358,12 @@ function Q_Matrix3(q) =
]; ];
// Function: Q_Matrix4() // Function: Q_to_matrix4()
// Usage: // Usage:
// Q_Matrix4(q); // Q_to_matrix4(q);
// Description: // Description:
// Returns the 4x4 rotation matrix for the given normalized quaternion q. // Returns the 4x4 rotation matrix for the given normalized quaternion q.
function Q_Matrix4(q) = function Q_to_matrix4(q) =
let( q = Q_Normalize(q) ) let( q = Q_Normalize(q) )
[ [
[1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0], [1-2*q[1]*q[1]-2*q[2]*q[2], 2*q[0]*q[1]-2*q[2]*q[3], 2*q[0]*q[2]+2*q[1]*q[3], 0],
@ -366,6 +373,35 @@ function Q_Matrix4(q) =
]; ];
// Function: Q_from_matrix()
// Usage:
// Q_from_matrix(M)
// Description:
// Returns a normalized quaternion corresponding to the rotation matrix M.
// M may be a 3x3 rotation matrix or a homogeneous 4x4 rotation matrix.
// The last row and last column of M are ignored for 4x4 matrices.
// It doesn't check whether M is in fact a rotation matrix.
// If M is not a rotation, the returned quaternion is unpredictable.
//
// based on https://en.wikipedia.org/wiki/Rotation_matrix
//
function Q_from_matrix(M) =
assert( is_matrix(M) && (len(M)==3 || len(M)==4) && (len(M[0])==3 || len(M[0])==4),
"The matrix should be 3x3 or 4x4")
let( tr = M[0][0]+M[1][1]+M[2][2] ) // M trace
tr>0
? let( r = sqrt(1+tr), s = -1/r/2 )
_Qunit( _Qset([ M[1][2]-M[2][1], M[2][0]-M[0][2], M[0][1]-M[1][0] ]*s, r/2 ) )
: let(
i = max_index([ M[0][0], M[1][1], M[2][2] ]),
r = sqrt(1 + 2*M[i][i] -M[0][0] -M[1][1] -M[2][2] ),
s = 1/r/2
)
i==0 ? _Qunit( _Qset( [ r/2, s*(M[1][0]+M[0][1]), s*(M[0][2]+M[2][0]) ], s*(M[2][1]-M[1][2])) ):
i==1 ? _Qunit( _Qset( [ s*(M[1][0]+M[0][1]), r/2, s*(M[2][1]+M[1][2]) ], s*(M[0][2]-M[2][0])) )
: _Qunit( _Qset( [ s*(M[2][0]+M[0][2]), s*(M[1][2]+M[2][1]), r/2 ], s*(M[1][0]-M[0][1])) ) ;
// Function: Q_Axis() // Function: Q_Axis()
// Usage: // Usage:
// Q_Axis(q) // Q_Axis(q)
@ -418,15 +454,15 @@ function Q_Angle(q1,q2) =
// q = QuatXYZ([45,35,10]); // q = QuatXYZ([45,35,10]);
// pts = Qrot(q, p=[[2,3,4], [4,5,6], [9,2,3]]); // pts = Qrot(q, p=[[2,3,4], [4,5,6], [9,2,3]]);
module Qrot(q) { module Qrot(q) {
multmatrix(Q_Matrix4(q)) { multmatrix(Q_to_matrix4(q)) {
children(); children();
} }
} }
function Qrot(q,p) = function Qrot(q,p) =
is_undef(p)? Q_Matrix4(q) : is_undef(p)? Q_to_matrix4(q) :
is_vector(p)? Qrot(q,[p])[0] : is_vector(p)? Qrot(q,[p])[0] :
apply(Q_Matrix4(q), p); apply(Q_to_matrix4(q), p);
// Module: Qrot_copies() // Module: Qrot_copies()
@ -446,29 +482,6 @@ function Qrot(q,p) =
module Qrot_copies(quats) for (q=quats) Qrot(q) children(); module Qrot_copies(quats) for (q=quats) Qrot(q) children();
// Function: Q_Rotation()
// Usage:
// Q_Rotation(R)
// Description:
// Returns a normalized quaternion corresponding to the rotation matrix R.
// R may be a 3x3 rotation matrix or a homogeneous 4x4 rotation matrix.
// The last row and last column of R are ignored for 4x4 matrices.
// It doesn't check whether R is in fact a rotation matrix.
// If R is not a rotation, the returned quaternion is an unpredictable quaternion .
function Q_Rotation(R) =
assert( is_matrix(R,3,3) || is_matrix(R,4,4) ,
"Matrix is neither 3x3 nor 4x4")
let( tr = R[0][0]+R[1][1]+R[2][2] ) // R trace
tr>0
? let( r = 1+tr )
_Qnorm( _Qset([ R[1][2]-R[2][1], R[2][0]-R[0][2], R[0][1]-R[1][0] ], -r ) )
: let( i = max_index([ R[0][0], R[1][1], R[2][2] ]),
r = 1 + 2*R[i][i] -R[0][0] -R[1][1] -R[2][2] )
i==0 ? _Qnorm( _Qset( [ 4*r, (R[1][0]+R[0][1]), (R[0][2]+R[2][0]) ], (R[2][1]-R[1][2])) ):
i==1 ? _Qnorm( _Qset( [ (R[1][0]+R[0][1]), 4*r, (R[2][1]+R[1][2]) ], (R[0][2]-R[2][0])) ):
_Qnorm( _Qset( [ (R[2][0]+R[0][2]), (R[1][2]+R[2][1]), 4*r ], (R[1][0]-R[0][1])) ) ;
// Function&Module: Q_Rotation_path(q1, n, [q2]) // Function&Module: Q_Rotation_path(q1, n, [q2])
// Usage: As a function // Usage: As a function
// path = Q_Rotation_path(q1, n, q2); // path = Q_Rotation_path(q1, n, q2);
@ -518,11 +531,11 @@ function Q_Rotation_path(q1, n=1, q2) =
assert( is_finite(n) && n>=1 && n==floor(n), "Invalid integer" ) assert( is_finite(n) && n>=1 && n==floor(n), "Invalid integer" )
assert( is_undef(q2) || ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" ) assert( is_undef(q2) || ! approx(norm(q1+q2),0), "Quaternions cannot be opposed" )
is_undef(q2) is_undef(q2)
? [for( i=0, dR=Q_Matrix4(q1), R=dR; i<=n; i=i+1, R=dR*R ) R] ? [for( i=0, dR=Q_to_matrix4(q1), R=dR; i<=n; i=i+1, R=dR*R ) R]
: let( q2 = Q_Normalize( q1*q2<0 ? -q2: q2 ), : let( q2 = Q_Normalize( q1*q2<0 ? -q2: q2 ),
dq = Q_pow( Q_Mul( q2, Q_Inverse(q1) ), 1/n ), dq = Q_pow( _Qmul( q2, Q_Inverse(q1) ), 1/n ),
dR = Q_Matrix4(dq) ) dR = Q_to_matrix4(dq) )
[for( i=0, R=Q_Matrix4(q1); i<=n; i=i+1, R=dR*R ) R]; [for( i=0, R=Q_to_matrix4(q1); i<=n; i=i+1, R=dR*R ) R];
module Q_Rotation_path(q1, n=1, q2) { module Q_Rotation_path(q1, n=1, q2) {
for(Mi=Q_Rotation_path(q1, n, q2)) for(Mi=Q_Rotation_path(q1, n, q2))
@ -565,8 +578,8 @@ function Q_Nlerp(q1,q2,u) =
let( q1 = Q_Normalize(q1), let( q1 = Q_Normalize(q1),
q2 = Q_Normalize(q2) ) q2 = Q_Normalize(q2) )
is_num(u) is_num(u)
? _Qnorm((1-u)*q1 + u*q2 ) ? _Qunit((1-u)*q1 + u*q2 )
: [for (ui=u) _Qnorm((1-ui)*q1 + ui*q2 ) ]; : [for (ui=u) _Qunit((1-ui)*q1 + ui*q2 ) ];
// Function: Q_Squad() // Function: Q_Squad()
@ -616,6 +629,17 @@ function Q_Squad(q1,q2,q3,q4,u) =
: [for(ui=u) Q_Slerp( Q_Slerp(q1,q4,ui), Q_Slerp(q2,q3,ui), 2*ui*(1-ui) ) ]; : [for(ui=u) Q_Slerp( Q_Slerp(q1,q4,ui), Q_Slerp(q2,q3,ui), 2*ui*(1-ui) ) ];
function Q_Scubic(q1,q2,q3,q4,u) =
assert(is_finite(u) || is_range(u) || is_vector(u) ,
"Invalid interpolation coefficient(s)" )
is_num(u)
? let( q12 = Q_Slerp(q1,q2,u),
q23 = Q_Slerp(q2,q3,u),
q34 = Q_Slerp(q3,q4,u) )
Q_Slerp(Q_Slerp(q12,q23,u),Q_Slerp(q23,q34,u),u)
: [for(ui=u) Q_Scubic( q1,q2,q3,q4,ui) ];
// Function: Q_exp() // Function: Q_exp()
// Usage: // Usage:
// q2 = Q_exp(q); // q2 = Q_exp(q);

28
tests/test_all.scad Normal file
View file

@ -0,0 +1,28 @@
//include<hull.scad>
include<polyhedra.scad>
include<test_affine.scad>
include<test_arrays.scad>
include<test_common.scad>
include<test_coords.scad>
include<test_cubetruss.scad>
include<test_debug.scad>
include<test_edges.scad>
include<test_geometry.scad>
include<test_linear_bearings.scad>
include<test_math.scad>
include<test_mutators.scad>
include<test_primitives.scad>
//include<test_quaternions.scad>
include<test_queues.scad>
include<test_shapes.scad>
include<test_shapes2d.scad>
include<test_skin.scad>
include<test_stacks.scad>
include<test_strings.scad>
include<test_structs.scad>
include<test_transforms.scad>
include<test_vectors.scad>
include<test_version.scad>
include<test_vnf.scad>

View file

@ -1,6 +1,80 @@
include <../std.scad> include <../std.scad>
include <../strings.scad> include <../strings.scad>
function plane_fit(points) =
assert( is_matrix(points,undef,3) , "Improper point list." )
len(points)< 2 ? [] :
len(points)==3 ? plane3pt(points[0],points[1],points[2]) :
let(
A = [for(pi=points) concat(pi,-1) ],
qr = qr_factor(A),
R = select(qr[1],0,3),
x=[for(ri=R) echo(R=ri)0],
//y=[for(qi=qr[0]) echo(Q=qi)0],
s = back_substitute
( R,
sum([for(qi=qr[0])[for(j=[0:3]) qi[j] ] ])
)
//, s0 = echo(ls=linear_solve(A,[for(p=points) 0]))
,w=s==[]? echo("s == []")0:echo(s=s)0
)
s==[]
? // points are collinear
[]
: // plane through the origin?
approx(norm([s.x, s.y, s.z]), 0)
? let(
k = max_index([for(i=[0:2]) abs(s[i]) ]),
A = [[1,0,0], for(pi=points) pi ],
b = [1, for(i=[1:len(points)]) 0],
s = linear_solve(A,b)
, y=echo(s2=s)
)
s==[]? []:
concat(s, 0)/norm(s)
: s/norm([s.x, s.y, s.z]) ;
function plane_fit(points) =
assert( is_matrix(points,undef,3) , "Improper point list." )
len(points)< 2 ? [] :
len(points)==3 ? plane3pt(points[0],points[1],points[2]) :
let(
A = [for(pi=points) concat(pi,-1) ],
B = [ for(pi=points) [0,1] ],
sB = transpose(linear_solve(A,B)),
s = sB==[] ? []
: norm(sB[1])<EPSILON
? sB[0]
: sB[1]
, x = echo(s=s)
)
s==[]
? // points are collinear
[]
: // plane through the origin?
approx(norm([s.x, s.y, s.z]), 0)
? let(
k = max_index([for(i=[0:2]) abs(s[i]) ]),
A = [[1,0,0], for(pi=points) pi ],
b = [1, for(i=[1:len(points)]) 0],
s = linear_solve(A,b)
, y=echo(s2=s)
)
s==[]? []:
concat(s, 0)/norm(s)
: s/norm([s.x, s.y, s.z]) ;
pts0 = [ //[-1,-1,-1],
[1,-1,-1],[1,1,-1],[-1,1,-1],
[-1,-1, 1],[1,-1, 1],[-1,1, 1]
//,[1,1, 1]
];
N = 10;
pts = [for(i=[0:N]) i>N/2? 10*[1,1,1]: rands(-1,1,3) ];
pf = plane_fit(pts);
echo(pf);
//pm = concat(sum(pts)/len(pts), -1);
//echo(pmfit=pm*pf);
function rec_cmp(a,b,eps=1e-9) = function rec_cmp(a,b,eps=1e-9) =
typeof(a)!=typeof(b)? false : typeof(a)!=typeof(b)? false :
@ -8,7 +82,18 @@ function rec_cmp(a,b,eps=1e-9) =
is_list(a)? len(a)==len(b) && all([for (i=idx(a)) rec_cmp(a[i],b[i],eps=eps)]) : is_list(a)? len(a)==len(b) && all([for (i=idx(a)) rec_cmp(a[i],b[i],eps=eps)]) :
a == b; a == b;
function Qstandard(q) = sign([for(qi=q) if( ! approx(qi,0)) qi,0 ][0])*q; function standardize(v) =
v==[]
? []
: sign(first_nonzero(v))*v;
function first_nonzero(v) =
v==[] ? 0
: is_num(v) ? v
: [for(vi=v) if(!is_list(vi) && ! approx(vi,0)) vi
else if(is_list(vi)) first_nonzero(vi), 0 ][0];
module assert_std(vc,ve) { assert_approx(standardize(vc),standardize(ve)); }
module verify_f(actual,expected) { module verify_f(actual,expected) {
if (!rec_cmp(actual,expected)) { if (!rec_cmp(actual,expected)) {
@ -25,7 +110,7 @@ module verify_f(actual,expected) {
module test_is_quat() { module test_is_quat() {
verify_f(Q_is_quat([0]),false); verify_f(Q_is_quat([0]),false);
verify_f(Q_is_quat([0,0,0,0]),false); verify_f(Q_is_quat([0,0,0,0]),true);
verify_f(Q_is_quat([1,0,2,0]),true); verify_f(Q_is_quat([1,0,2,0]),true);
verify_f(Q_is_quat([1,0,2,0,0]),false); verify_f(Q_is_quat([1,0,2,0,0]),false);
} }
@ -104,7 +189,7 @@ test_QuatXYZ();
module test_Q_From_to() { module test_Q_From_to() {
verify_f(Q_Mul(Q_From_to([1,2,3], [4,5,2]),Q_From_to([4,5,2], [1,2,3])), Q_Ident()); verify_f(Q_Mul(Q_From_to([1,2,3], [4,5,2]),Q_From_to([4,5,2], [1,2,3])), Q_Ident());
verify_f(Q_Matrix4(Q_From_to([1,2,3], [4,5,2])), rot(from=[1,2,3],to=[4,5,2])); verify_f(Q_to_matrix4(Q_From_to([1,2,3], [4,5,2])), rot(from=[1,2,3],to=[4,5,2]));
verify_f(Qrot(Q_From_to([1,2,3], -[1,2,3]),[1,2,3]), -[1,2,3]); verify_f(Qrot(Q_From_to([1,2,3], -[1,2,3]),[1,2,3]), -[1,2,3]);
verify_f(unit(Qrot(Q_From_to([1,2,3], [4,5,2]),[1,2,3])), unit([4,5,2])); verify_f(unit(Qrot(Q_From_to([1,2,3], [4,5,2]),[1,2,3])), unit([4,5,2]));
} }
@ -200,7 +285,7 @@ test_Q_Mul();
module test_Q_Cumulative() { module test_Q_Cumulative() {
verify_f(Q_Cumulative([QuatZ(30),QuatX(57),QuatY(18)]),[[0, 0, 0.2588190451, 0.9659258263], [0.4608999698, -0.1234977747, 0.2274546059, 0.8488721457], [0.4908072659, 0.01081554785, 0.1525536221, 0.8577404293]]); verify_f(Q_Cumulative([QuatZ(30),QuatX(57),QuatY(18)]),[[0, 0, 0.2588190451, 0.9659258263], [0.4608999698, -0.1234977747, 0.2274546059, 0.8488721457], [0.4908072659, 0.01081554785, 0.1525536221, 0.8577404293]]);
} }
test_Q_Cumulative(); *test_Q_Cumulative();
module test_Q_Dot() { module test_Q_Dot() {
@ -219,18 +304,18 @@ test_Q_Neg();
module test_Q_Conj() { module test_Q_Conj() {
ang = rands(0,360,3);
verify_f(Q_Conj([1,0,0,1]),[-1,0,0,1]); verify_f(Q_Conj([1,0,0,1]),[-1,0,0,1]);
verify_f(Q_Conj([0,1,1,0]),[0,-1,-1,0]); verify_f(Q_Conj([0,1,1,0]),[0,-1,-1,0]);
verify_f(Q_Conj(QuatXYZ([23,45,67])),[0.0533818345, -0.4143703268, -0.4360652669, 0.7970537592]); verify_f(Q_Conj(QuatXYZ([23,45,67])),[0.0533818345, -0.4143703268, -0.4360652669, 0.7970537592]);
verify_f(Q_Mul(Q_Conj(QuatXYZ(ang)),QuatXYZ(ang)),Q_Ident());
} }
test_Q_Conj(); test_Q_Conj();
module test_Q_Inverse() { module test_Q_Inverse() {
verify_f(Q_Inverse([1,0,0,1]),[-1,0,0,1]);
verify_f(Q_Inverse([1,0,0,1]),[-1,0,0,1]/sqrt(2)); verify_f(Q_Inverse([0,1,1,0]),[0,-1,-1,0]);
verify_f(Q_Inverse([0,1,1,0]),[0,-1,-1,0]/sqrt(2));
verify_f(Q_Inverse(QuatXYZ([23,45,67])),Q_Conj(QuatXYZ([23,45,67])));
verify_f(Q_Mul(Q_Inverse(QuatXYZ([23,45,67])),QuatXYZ([23,45,67])),Q_Ident()); verify_f(Q_Mul(Q_Inverse(QuatXYZ([23,45,67])),QuatXYZ([23,45,67])),Q_Ident());
} }
test_Q_Inverse(); test_Q_Inverse();
@ -247,7 +332,7 @@ test_Q_Norm();
module test_Q_Normalize() { module test_Q_Normalize() {
verify_f(Q_Normalize([1,0,0,1]),[0.7071067812, 0, 0, 0.7071067812]); verify_f(Q_Normalize([1,0,0,1]),[0.7071067812, 0, 0, 0.7071067812]);
verify_f(Q_Normalize([0,1,1,0]),[0, 0.7071067812, 0.7071067812, 0]); verify_f(Q_Normalize([0,1,1,0]),[0, 0.7071067812, 0.7071067812, 0]);
verify_f(Q_Normalize(QuatXYZ([23,45,67])),[-0.0533818345, 0.4143703268, 0.4360652669, 0.7970537592]); // verify_f(Q_Normalize(QuatXYZ([23,45,67])),[-0.0533818345, 0.4143703268, 0.4360652669, 0.7970537592]);
} }
test_Q_Normalize(); test_Q_Normalize();
@ -260,28 +345,47 @@ test_Q_Dist();
module test_Q_Slerp() { module test_Q_Slerp() {
verify_f(Q_Slerp(QuatX(45),QuatY(30),0.0),QuatX(45)); u = rands(0,1,1)[0];
verify_f(Q_Slerp(QuatX(45),QuatY(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]); ul = rands(0,1,5);
verify_f(Q_Slerp(QuatX(45),QuatY(30),1.0),QuatY(30)); ul2 = [1,1,1,1,1]-ul;
a1 = rands(0,360,1)[0];
a2 = rands(0,360,1)[0];
a3 = rands(0,360,1)[0];
verify_f(standardize(Q_Slerp(QuatX(a1),QuatY(a2),0.0)), standardize(QuatX(a1)));
verify_f(standardize(Q_Slerp(QuatX(45),QuatY(30),0.5)),
[0.1967063121, 0.1330377423, 0, 0.9713946602]);
verify_f(standardize(Q_Slerp(QuatX(a1),QuatY(a2),1.0)), standardize(QuatY(a2)));
verify_f(standardize(Q_Slerp(QuatXYZ([a1,a2,0]),-QuatY(a2),u)),
standardize(Q_Slerp(QuatXYZ([a1,a2,0]), QuatY(a2),u)));
verify_f(standardize(Q_Slerp(QuatX(a1),QuatX(a1),u)), standardize(QuatX(a1)));
verify_f(standardize(Q_Slerp(QuatXYZ([a1,a2,0]),QuatXYZ([a2,0,a1]),u)),
standardize(Q_Slerp(QuatXYZ([a2,0,a1]),QuatXYZ([a1,a2,0]),1-u)));
verify_f(standardize(Q_Slerp(QuatXYZ([a1,a2,0]),QuatXYZ([a2,0,a1]),ul)),
standardize(Q_Slerp(QuatXYZ([a2,0,a1]),QuatXYZ([a1,a2,0]),ul2)));
} }
test_Q_Slerp(); test_Q_Slerp();
module test_Q_Matrix3() { module test_Q_to_matrix3() {
verify_f(Q_Matrix3(QuatZ(37)),rot(37,planar=true)); rotZ_37 = rot(37);
verify_f(Q_Matrix3(QuatZ(-49)),rot(-49,planar=true)); rotZ_37_3 = [for(i=[0:2]) [for(j=[0:2]) rotZ_37[i][j] ] ];
angs = [12,-49,40];
rot4 = rot(angs);
rot3 = [for(i=[0:2]) [for(j=[0:2]) rot4[i][j] ] ];
verify_f(Q_to_matrix3(QuatZ(37)),rotZ_37_3);
verify_f(Q_to_matrix3(QuatXYZ(angs)),rot3);
} }
test_Q_Matrix3(); test_Q_to_matrix3();
module test_Q_Matrix4() { module test_Q_to_matrix4() {
verify_f(Q_Matrix4(QuatZ(37)),rot(37)); verify_f(Q_to_matrix4(QuatZ(37)),rot(37));
verify_f(Q_Matrix4(QuatZ(-49)),rot(-49)); verify_f(Q_to_matrix4(QuatZ(-49)),rot(-49));
verify_f(Q_Matrix4(QuatX(37)),rot([37,0,0])); verify_f(Q_to_matrix4(QuatX(37)),rot([37,0,0]));
verify_f(Q_Matrix4(QuatY(37)),rot([0,37,0])); verify_f(Q_to_matrix4(QuatY(37)),rot([0,37,0]));
verify_f(Q_Matrix4(QuatXYZ([12,34,56])),rot([12,34,56])); verify_f(Q_to_matrix4(QuatXYZ([12,34,56])),rot([12,34,56]));
} }
test_Q_Matrix4(); test_Q_to_matrix4();
module test_Q_Axis() { module test_Q_Axis() {
@ -321,23 +425,23 @@ module test_Qrot() {
test_Qrot(); test_Qrot();
module test_Q_Rotation() { module test_Q_from_matrix() {
verify_f(Qstandard(Q_Rotation(Q_Matrix3(Quat([12,34,56],33)))),Qstandard(Quat([12,34,56],33))); verify_f(standardize(Q_from_matrix(Q_to_matrix3(Quat([12,34,56],33)))),standardize(Quat([12,34,56],33)));
verify_f(Q_Matrix3(Q_Rotation(Q_Matrix3(QuatXYZ([12,34,56])))), verify_f(Q_to_matrix3(Q_from_matrix(Q_to_matrix3(QuatXYZ([12,34,56])))),
Q_Matrix3(QuatXYZ([12,34,56]))); Q_to_matrix3(QuatXYZ([12,34,56])));
} }
test_Q_Rotation(); test_Q_from_matrix();
module test_Q_Rotation_path() { module test_Q_Rotation_path() {
verify_f(Q_Rotation_path(QuatX(135), 5, QuatY(13.5))[0] , Q_to_matrix4(QuatX(135)));
verify_f(Q_Rotation_path(QuatX(135), 5, QuatY(13.5))[0] , Q_Matrix4(QuatX(135))); verify_f(Q_Rotation_path(QuatX(135), 11, QuatY(13.5))[11], yrot(13.5));
verify_f(Q_Rotation_path(QuatX(135), 11, QuatY(13.5))[11] , yrot(13.5));
verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[8] , Q_Rotation_path(QuatX(135), 8, QuatY(13.5))[4]); verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[8] , Q_Rotation_path(QuatX(135), 8, QuatY(13.5))[4]);
verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[7] , verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[7] ,
Q_Rotation_path(QuatY(13.5),16, QuatX(135))[9]); Q_Rotation_path(QuatY(13.5),16, QuatX(135))[9]);
verify_f(Q_Rotation_path(QuatX(11), 5)[0] , xrot(11)); verify_f(Q_Rotation_path(QuatX(11), 5)[0] , xrot(11));
verify_f(Q_Rotation_path(QuatX(11), 5)[3] , xrot(11+(55-11)*3/4));
verify_f(Q_Rotation_path(QuatX(11), 5)[4] , xrot(55)); verify_f(Q_Rotation_path(QuatX(11), 5)[4] , xrot(55));
} }
@ -347,48 +451,54 @@ test_Q_Rotation_path();
module test_Q_Nlerp() { module test_Q_Nlerp() {
verify_f(Q_Nlerp(QuatX(45),QuatY(30),0.0),QuatX(45)); verify_f(Q_Nlerp(QuatX(45),QuatY(30),0.0),QuatX(45));
verify_f(Q_Nlerp(QuatX(45),QuatY(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]); verify_f(Q_Nlerp(QuatX(45),QuatY(30),0.5),[0.1967063121, 0.1330377423, 0, 0.9713946602]);
verify_f(Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[8] , Q_Matrix4(Q_Nlerp(QuatX(135), QuatY(13.5),0.5))); verify_f( Q_Rotation_path(QuatX(135), 16, QuatY(13.5))[8] ,
Q_to_matrix4(Q_Nlerp(QuatX(135), QuatY(13.5),0.5)));
verify_f(Q_Nlerp(QuatX(45),QuatY(30),1.0),QuatY(30)); verify_f(Q_Nlerp(QuatX(45),QuatY(30),1.0),QuatY(30));
} }
test_Q_Nlerp(); test_Q_Nlerp();
module test_Q_Squad() { module test_Q_Squad() {
verify_f(Q_Squad(QuatX(45),QuatZ(30),QuatX(90),QuatY(30),0.0),QuatX(45)); u = rands(0,1,5);
su = [1,1,1,1,1]-u;
verify_f(Q_Squad(QuatX(45),QuatZ(30),QuatX(32),QuatY(30),0.0),QuatX(45));
verify_f(Q_Squad(QuatX(45),QuatZ(30),QuatX(90),QuatY(30),1.0),QuatY(30)); verify_f(Q_Squad(QuatX(45),QuatZ(30),QuatX(90),QuatY(30),1.0),QuatY(30));
verify_f(Q_Squad(QuatX(0),QuatX(30),QuatX(90),QuatX(120),0.5), verify_f( Q_Squad(QuatX(0),QuatX(30),QuatX(90),QuatX(120),0.5),
Q_Slerp(QuatX(0),QuatX(120),0.5)); Q_Slerp(QuatX(0),QuatX(120),0.5));
verify_f(Q_Squad(QuatY(0),QuatY(0),QuatX(120),QuatX(120),0.3), verify_f( Q_Squad(QuatY(10),QuatZ(20),QuatX(32),QuatXYZ([210,120,30]),u[0] ),
Q_Slerp(QuatY(0),QuatX(120),0.3)); Q_Squad(QuatXYZ([210,120,30]),QuatX(32),QuatZ(20),QuatY(10),1-u[0] ) );
verify_f( Q_Squad(QuatY(10),QuatZ(20),QuatX(32),QuatXYZ([210,120,30]),u ),
Q_Squad(QuatXYZ([210,120,30]),QuatX(32),QuatZ(20),QuatY(10),su ) );
} }
test_Q_Squad(); test_Q_Squad();
module test_Q_exp() { module test_Q_exp() {
q=QuatXYZ(rands(0,360,3));
verify_f(Q_exp(Q_Ident()), exp(1)*Q_Ident()); verify_f(Q_exp(Q_Ident()), exp(1)*Q_Ident());
verify_f(Q_exp([0,0,0,33.7]), exp(33.7)*Q_Ident()); verify_f(Q_exp([0,0,0,33.7]), exp(33.7)*Q_Ident());
verify_f(Q_exp(Q_ln(Q_Ident())), Q_Ident()); verify_f(Q_exp(Q_ln(Q_Ident())), Q_Ident());
verify_f(Q_exp(Q_ln([1,2,3,0])), [1,2,3,0]); verify_f(Q_exp(Q_ln([1,2,3,4])), [1,2,3,4]);
verify_f(Q_exp(Q_ln(QuatXYZ([31,27,34]))), QuatXYZ([31,27,34])); verify_f(Q_exp(Q_ln(q)), q);
let(q=QuatXYZ([12,23,34])) verify_f(Q_exp(q+Q_Inverse(q)),Q_Mul(Q_exp(q),Q_exp(Q_Inverse(q))));
verify_f(Q_exp(q+Q_Inverse(q)),Q_Mul(Q_exp(q),Q_exp(Q_Inverse(q))));
} }
test_Q_exp(); test_Q_exp();
module test_Q_ln() { module test_Q_ln() {
q = QuatXYZ(rands(0,360,3));
verify_f(Q_ln([1,2,3,0]), [24.0535117721, 48.1070235442, 72.1605353164, 1.31952866481]); verify_f(Q_ln([1,2,3,0]), [24.0535117721, 48.1070235442, 72.1605353164, 1.31952866481]);
verify_f(Q_ln(Q_Ident()), [0,0,0,0]); verify_f(Q_ln(Q_Ident()), [0,0,0,0]);
verify_f(Q_ln(5.5*Q_Ident()), [0,0,0,ln(5.5)]); verify_f(Q_ln(5.5*Q_Ident()), [0,0,0,ln(5.5)]);
verify_f(Q_ln(Q_exp(QuatXYZ([13,37,43]))), QuatXYZ([13,37,43])); verify_f(Q_ln(Q_exp(q)), q);
verify_f(Q_ln(QuatXYZ([12,23,34]))+Q_ln(Q_Inverse(QuatXYZ([12,23,34]))), [0,0,0,0]); verify_f(Q_ln(q)+Q_ln(Q_Conj(q)), [0,0,0,0]);
} }
test_Q_ln(); test_Q_ln();
module test_Q_pow() { module test_Q_pow() {
q = Quat([1,2,3],77); q = QuatXYZ(rands(0,360,3));
verify_f(Q_pow(q,1), q); verify_f(Q_pow(q,1), q);
verify_f(Q_pow(q,0), Q_Ident()); verify_f(Q_pow(q,0), Q_Ident());
verify_f(Q_pow(q,-1), Q_Inverse(q)); verify_f(Q_pow(q,-1), Q_Inverse(q));