mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-17 01:49:48 +00:00
apply tweaks
This commit is contained in:
parent
88e0c6aa15
commit
1d72c91454
3 changed files with 14 additions and 13 deletions
|
@ -404,6 +404,8 @@ function affine3d_rot_from_to(from, to) =
|
||||||
from = unit(point3d(from)),
|
from = unit(point3d(from)),
|
||||||
to = unit(point3d(to))
|
to = unit(point3d(to))
|
||||||
) approx(from,to)? affine3d_identity() :
|
) approx(from,to)? affine3d_identity() :
|
||||||
|
from.z==0 && to.z==0 ? affine3d_zrot(v_theta(point2d(to)) - v_theta(point2d(from)))
|
||||||
|
:
|
||||||
let(
|
let(
|
||||||
u = vector_axis(from,to),
|
u = vector_axis(from,to),
|
||||||
ang = vector_angle(from,to),
|
ang = vector_angle(from,to),
|
||||||
|
|
|
@ -462,7 +462,7 @@ function matrix_inverse(A) =
|
||||||
// B = rot_inverse(A)
|
// B = rot_inverse(A)
|
||||||
// Description:
|
// Description:
|
||||||
// Inverts a 2d (3x3) or 3d (4x4) rotation matrix. The matrix can be a rotation around any center,
|
// Inverts a 2d (3x3) or 3d (4x4) rotation matrix. The matrix can be a rotation around any center,
|
||||||
// so it may include a translation.
|
// so it may include a translation. This is faster and likely to be more accurate than using `matrix_inverse()`.
|
||||||
function rot_inverse(T) =
|
function rot_inverse(T) =
|
||||||
assert(is_matrix(T,square=true),"Matrix must be square")
|
assert(is_matrix(T,square=true),"Matrix must be square")
|
||||||
let( n = len(T))
|
let( n = len(T))
|
||||||
|
|
|
@ -493,23 +493,21 @@ function rot(a=0, v, cp, from, to, reverse=false, planar=false, p=_NO_ARG, _m) =
|
||||||
v_theta(from)
|
v_theta(from)
|
||||||
),
|
),
|
||||||
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
|
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
|
||||||
m3 = reverse? matrix_inverse(m2) : m2
|
m3 = reverse? rot_inverse(m2) : m2
|
||||||
) m3 : let(
|
) m3 : let(
|
||||||
from = is_undef(from)? undef : point3d(from),
|
from = is_undef(from)? undef : point3d(from),
|
||||||
to = is_undef(to)? undef : point3d(to),
|
to = is_undef(to)? undef : point3d(to),
|
||||||
cp = is_undef(cp)? undef : point3d(cp),
|
cp = is_undef(cp)? undef : point3d(cp),
|
||||||
m1 = !is_undef(from)? (
|
m1 = !is_undef(from) ?
|
||||||
assert(is_num(a))
|
assert(is_num(a))
|
||||||
(from.z == 0 && to.z == 0
|
affine3d_rot_from_to(from,to) * affine3d_rot_by_axis(from,a)
|
||||||
? affine3d_zrot(v_theta(point2d(to)) - v_theta(point2d(from)))
|
: !is_undef(v)?
|
||||||
: affine3d_rot_from_to(from,to)
|
assert(is_num(a))
|
||||||
) * affine3d_rot_by_axis(from,a)
|
affine3d_rot_by_axis(v,a)
|
||||||
) :
|
: is_num(a) ? affine3d_zrot(a)
|
||||||
!is_undef(v)? assert(is_num(a)) affine3d_rot_by_axis(v,a) :
|
: affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x),
|
||||||
is_num(a)? affine3d_zrot(a) :
|
|
||||||
affine3d_zrot(a.z) * affine3d_yrot(a.y) * affine3d_xrot(a.x),
|
|
||||||
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
|
m2 = is_undef(cp)? m1 : (move(cp) * m1 * move(-cp)),
|
||||||
m3 = reverse? matrix_inverse(m2) : m2
|
m3 = reverse? rot_inverse(m2) : m2
|
||||||
) m3
|
) m3
|
||||||
)
|
)
|
||||||
p==_NO_ARG ? m : apply(m, p);
|
p==_NO_ARG ? m : apply(m, p);
|
||||||
|
@ -1381,7 +1379,8 @@ function _apply(transform,points) =
|
||||||
assert(len(transform)==tdim || len(transform)-1==tdim, "transform matrix height not compatible with width")
|
assert(len(transform)==tdim || len(transform)-1==tdim, "transform matrix height not compatible with width")
|
||||||
assert(datadim==2 || datadim==3,"Data must be 2D or 3D")
|
assert(datadim==2 || datadim==3,"Data must be 2D or 3D")
|
||||||
let(
|
let(
|
||||||
matrix = [for(i=[0:1:tdim]) [for(j=[0:1:datadim-1]) transform[j][i]]]
|
scale = len(transform)==tdim ? 1 : transform[tdim][tdim],
|
||||||
|
matrix = [for(i=[0:1:tdim]) [for(j=[0:1:datadim-1]) transform[j][i]/scale]]
|
||||||
)
|
)
|
||||||
tdim==datadim
|
tdim==datadim
|
||||||
? [for(p=points) concat(p,1)] * matrix
|
? [for(p=points) concat(p,1)] * matrix
|
||||||
|
|
Loading…
Reference in a new issue