Merge pull request #223 from adrianVmariano/master

improved back_substitute, cleaned up a few other functions, removed some non-breaking space characters.
This commit is contained in:
Revar Desmera 2020-07-30 18:55:05 -07:00 committed by GitHub
commit 1ef7dc0c92
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -773,26 +773,26 @@ function _qr_factor(A,Q, column, m, n) =
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix
// is singular (e.g. has a zero on the diagonal) then it returns [].
function back_substitute(R, b, x=[],transpose = false) =
function back_substitute(R, b, transpose = false) =
assert(is_matrix(R, square=true))
let(n=len(R))
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) :
transpose?
reverse(back_substitute(
[for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
reverse(b), x, false
)) :
len(x) == n ? x :
let(
ind = n - len(x) - 1
transpose
? reverse(_back_substitute([for(i=[0:n-1]) [for(j=[0:n-1]) R[n-1-j][n-1-i]]],
reverse(b)))
: _back_substitute(R,b);
function _back_substitute(R, b, x=[]) =
let(n=len(R))
len(x) == n ? x
: let(ind = n - len(x) - 1)
R[ind][ind] == 0 ? []
: let(
newvalue = len(x)==0
? b[ind]/R[ind][ind]
: (b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
)
R[ind][ind] == 0 ? [] :
let(
newvalue =
len(x)==0? b[ind]/R[ind][ind] :
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
) back_substitute(R, b, concat([newvalue],x));
_back_substitute(R, b, concat([newvalue],x));
// Function: det2()
@ -1120,19 +1120,21 @@ function _deriv_nonuniform(data, h, closed) =
// closed = boolean to indicate if the data set should be wrapped around from the end to the start.
function deriv2(data, h=1, closed=false) =
assert( is_consistent(data) , "Input list is not consistent or not numerical.")
assert( len(data)>=3, "Input list has less than 3 elements.")
assert( is_finite(h), "The sampling `h` must be a number." )
let( L = len(data) )
closed? [
assert( L>=3, "Input list has less than 3 elements.")
closed
? [
for(i=[0:1:L-1])
(data[(i+1)%L]-2*data[i]+data[(L+i-1)%L])/h/h
] :
]
:
let(
first = L<3? undef :
first =
L==3? data[0] - 2*data[1] + data[2] :
L==4? 2*data[0] - 5*data[1] + 4*data[2] - data[3] :
(35*data[0] - 104*data[1] + 114*data[2] - 56*data[3] + 11*data[4])/12,
last = L<3? undef :
last =
L==3? data[L-1] - 2*data[L-2] + data[L-3] :
L==4? -2*data[L-1] + 5*data[L-2] - 4*data[L-3] + data[L-4] :
(35*data[L-1] - 104*data[L-2] + 114*data[L-3] - 56*data[L-4] + 11*data[L-5])/12
@ -1212,34 +1214,13 @@ function C_div(z1,z2) =
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
// where a_n is the z^n coefficient. Polynomial coefficients are real.
// The result is a number if `z` is a number and a complex number otherwise.
// Note: this should probably be recoded to use division by [1,-z], which is more accurate
// and avoids overflow with large coefficients, but requires poly_div to support complex coefficients.
function polynomial(p, z, _k, _zk, _total) =
is_undef(_k)
? assert( is_vector(p), "Input polynomial coefficients must be a vector." )
let(p = _poly_trim(p))
assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
polynomial( p,
z,
len(p)-1,
is_num(z)? 1 : [1,0],
is_num(z) ? 0 : [0,0])
: _k==0
? _total + +_zk*p[0]
: polynomial( p,
z,
_k-1,
is_num(z) ? _zk*z : C_times(_zk,z),
_total+_zk*p[_k]);
function polynomial(p,z,k,total) =
     is_undef(k)
   ?    assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
        assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
        polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
   : k==len(p) ? total
   : polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]);
is_undef(k)
? assert( is_vector(p) , "Input polynomial coefficients must be a vector." )
assert( is_finite(z) || is_vector(z,2), "The value of `z` must be a real or a complex number." )
polynomial( _poly_trim(p), z, 0, is_num(z) ? 0 : [0,0])
: k==len(p) ? total
: polynomial(p,z,k+1, is_num(z) ? total*z+p[k] : C_times(total,z)+[p[k],0]);
// Function: poly_mult()
// Usage:
@ -1266,18 +1247,18 @@ function poly_mult(p,q) =
]);
function poly_mult(p,q) =
    is_undef(q) ?
       len(p)==2 ? poly_mult(p[0],p[1])
                 : poly_mult(p[0], poly_mult(select(p,1,-1)))
    :
    assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
is_undef(q) ?
len(p)==2 ? poly_mult(p[0],p[1])
: poly_mult(p[0], poly_mult(select(p,1,-1)))
:
assert( is_vector(p) && is_vector(q),"Invalid arguments to poly_mult")
_poly_trim( [
                  for(n = [len(p)+len(q)-2:-1:0])
                      sum( [for(i=[0:1:len(p)-1])
                           let(j = len(p)+len(q)- 2 - n - i)
                           if (j>=0 && j<len(q)) p[i]*q[j]
                               ])
                   ]);
for(n = [len(p)+len(q)-2:-1:0])
sum( [for(i=[0:1:len(p)-1])
let(j = len(p)+len(q)- 2 - n - i)
if (j>=0 && j<len(q)) p[i]*q[j]
])
]);
// Function: poly_div()