mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Merge branch 'master' of https://github.com/revarbat/BOSL2
This commit is contained in:
commit
1f923bf091
5 changed files with 250 additions and 67 deletions
77
common.scad
77
common.scad
|
@ -458,10 +458,79 @@ module shape_compare(eps=1/1024) {
|
|||
}
|
||||
|
||||
|
||||
function loop_start() = 0;
|
||||
function loop_done(x) = x==1;
|
||||
function looping(x) = x<2;
|
||||
function loop_next(x,b) = x>=1? 2 : (b? 0 : 1);
|
||||
// Section: Looping Helpers
|
||||
// You can use a list comprehension with a C-style for loop to iteratively make a calculation.
|
||||
// .
|
||||
// The syntax is: `[for (INIT; CONDITION; NEXT) RETVAL]` where:
|
||||
// - INIT is zero or more `let()` style assignments that are evaluated exactly one time, before the first loop.
|
||||
// - CONDITION is an expression evaluated at the start of each loop. If true, continues with the loop.
|
||||
// - RETVAL is an expression that returns a list item for each loop.
|
||||
// - NEXT is one or more `let()` style assignments that is evaluated at the end of each loop.
|
||||
// .
|
||||
// Since the INIT phase is only run once, and the CONDITION and RETVAL expressions cannot update
|
||||
// variables, that means that only the NEXT phase can be used for iterative calculations.
|
||||
// Unfortunately, the NEXT phase runs *after* the RETVAL expression, which means that you need
|
||||
// to run the loop one extra time to return the final value. This tends to make the loop code
|
||||
// look rather ugly. The `looping()`, `loop_while()` and `loop_done()` functions
|
||||
// can make this somewhat more legible.
|
||||
// ```openscad
|
||||
// function flat_sum(l) = [
|
||||
// for (
|
||||
// i = 0,
|
||||
// total = 0,
|
||||
// state = 0;
|
||||
//
|
||||
// looping(state);
|
||||
//
|
||||
// state = loop_while(state, i < len(l)),
|
||||
// total = total +
|
||||
// loop_done(state) ? 0 :
|
||||
// let( x = l[i] )
|
||||
// is_list(x) ? flat_sum(x) : x,
|
||||
// i = i + 1
|
||||
// ) if (loop_done(state)) total;
|
||||
// ].x;
|
||||
// ```
|
||||
|
||||
|
||||
// Function: looping()
|
||||
// Usage:
|
||||
// looping(state)
|
||||
// Description:
|
||||
// Returns true if the `state` value indicates the current loop should continue.
|
||||
// This is useful when using C-style for loops to iteratively calculate a value.
|
||||
// Used with `loop_while()` and `loop_done()`. See [Looping Helpers](#5-looping-helpers) for an example.
|
||||
// Arguments:
|
||||
// state = The loop state value.
|
||||
function looping(state) = state < 2;
|
||||
|
||||
|
||||
// Function: loop_while()
|
||||
// Usage:
|
||||
// state = loop_while(state, continue)
|
||||
// Description:
|
||||
// Given the current `state`, and a boolean `continue` that indicates if the loop should still be
|
||||
// continuing, returns the updated state value for the the next loop.
|
||||
// This is useful when using C-style for loops to iteratively calculate a value.
|
||||
// Used with `looping()` and `loop_done()`. See [Looping Helpers](#5-looping-helpers) for an example.
|
||||
// Arguments:
|
||||
// state = The loop state value.
|
||||
// continue = A boolean value indicating whether the current loop should progress.
|
||||
function loop_while(state, continue) =
|
||||
state > 0 ? 2 :
|
||||
continue ? 0 : 1;
|
||||
|
||||
|
||||
// Function: loop_done()
|
||||
// Usage:
|
||||
// loop_done(state)
|
||||
// Description:
|
||||
// Returns true if the `state` value indicates the loop is finishing.
|
||||
// This is useful when using C-style for loops to iteratively calculate a value.
|
||||
// Used with `looping()` and `loop_while()`. See [Looping Helpers](#5-looping-helpers) for an example.
|
||||
// Arguments:
|
||||
// state = The loop state value.
|
||||
function loop_done(state) = state > 0;
|
||||
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
|
@ -573,7 +573,7 @@ function hyp_opp_to_adj(hyp,opp) =
|
|||
// adj = hyp_ang_to_adj(8,60); // Returns: 4
|
||||
function hyp_ang_to_adj(hyp,ang) =
|
||||
assert(is_finite(hyp) && hyp>=0, "Triangle side length should be a positive number." )
|
||||
assert(is_finite(ang) && ang>0 && ang<90, "The angle should be an acute angle." )
|
||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||
hyp*cos(ang);
|
||||
|
||||
|
||||
|
@ -590,7 +590,7 @@ function hyp_ang_to_adj(hyp,ang) =
|
|||
// adj = opp_ang_to_adj(8,30); // Returns: 4
|
||||
function opp_ang_to_adj(opp,ang) =
|
||||
assert(is_finite(opp) && opp>=0, "Triangle side length should be a positive number." )
|
||||
assert(is_finite(ang) && ang>0 && ang<90, "The angle should be an acute angle." )
|
||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||
opp/tan(ang);
|
||||
|
||||
|
||||
|
@ -622,7 +622,7 @@ function hyp_adj_to_opp(hyp,adj) =
|
|||
// opp = hyp_ang_to_opp(8,30); // Returns: 4
|
||||
function hyp_ang_to_opp(hyp,ang) =
|
||||
assert(is_finite(hyp)&&hyp>=0, "Triangle side length should be a positive number." )
|
||||
assert(is_finite(ang) && ang>0 && ang<90, "The angle should be an acute angle." )
|
||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||
hyp*sin(ang);
|
||||
|
||||
|
||||
|
@ -638,7 +638,7 @@ function hyp_ang_to_opp(hyp,ang) =
|
|||
// opp = adj_ang_to_opp(8,45); // Returns: 8
|
||||
function adj_ang_to_opp(adj,ang) =
|
||||
assert(is_finite(adj)&&adj>=0, "Triangle side length should be a positive number." )
|
||||
assert(is_finite(ang) && ang>0 && ang<90, "The angle should be an acute angle." )
|
||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||
adj*tan(ang);
|
||||
|
||||
|
||||
|
@ -670,7 +670,7 @@ function adj_opp_to_hyp(adj,opp) =
|
|||
// hyp = adj_ang_to_hyp(4,60); // Returns: 8
|
||||
function adj_ang_to_hyp(adj,ang) =
|
||||
assert(is_finite(adj) && adj>=0, "Triangle side length should be a positive number." )
|
||||
assert(is_finite(ang) && ang>0 && ang<90, "The angle should be an acute angle." )
|
||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||
adj/cos(ang);
|
||||
|
||||
|
||||
|
@ -686,7 +686,7 @@ function adj_ang_to_hyp(adj,ang) =
|
|||
// hyp = opp_ang_to_hyp(4,30); // Returns: 8
|
||||
function opp_ang_to_hyp(opp,ang) =
|
||||
assert(is_finite(opp) && opp>=0, "Triangle side length should be a positive number." )
|
||||
assert(is_finite(ang) && ang>0 && ang<90, "The angle should be an acute angle." )
|
||||
assert(is_finite(ang) && ang>-90 && ang<90, "The angle should be an acute angle." )
|
||||
opp/sin(ang);
|
||||
|
||||
|
||||
|
|
224
shapes2d.scad
224
shapes2d.scad
|
@ -472,7 +472,7 @@ function _normal_segment(p1,p2) =
|
|||
|
||||
// Function: turtle()
|
||||
// Usage:
|
||||
// turtle(commands, [state], [return_state])
|
||||
// turtle(commands, [state], [full_state], [repeat])
|
||||
// Description:
|
||||
// Use a sequence of turtle graphics commands to generate a path. The parameter `commands` is a list of
|
||||
// turtle commands and optional parameters for each command. The turtle state has a position, movement direction,
|
||||
|
@ -481,9 +481,8 @@ function _normal_segment(p1,p2) =
|
|||
// the computed turtle path. If you set `full_state` to true then it instead returns the full turtle state.
|
||||
// You can invoke `turtle` again with this full state to continue the turtle path where you left off.
|
||||
// .
|
||||
// The turtle state is a list with three entries: the path constructed so far, the current step as a 2-vector, and the current default angle.
|
||||
// .
|
||||
// For the list below, `dist` is the current movement distance.
|
||||
// The turtle state is a list with three entries: the path constructed so far, the current step as a 2-vector, the current default angle,
|
||||
// and the current arcsteps setting.
|
||||
// .
|
||||
// Commands | Arguments | What it does
|
||||
// ------------ | ------------------ | -------------------------------
|
||||
|
@ -613,7 +612,7 @@ function _turtle(commands, state, full_state, index=0) =
|
|||
) :
|
||||
( full_state ? state : state[0] );
|
||||
|
||||
// Turtle state: state = [path, step_vector, default angle]
|
||||
// Turtle state: state = [path, step_vector, default angle, default arcsteps]
|
||||
|
||||
function _turtle_command(command, parm, parm2, state, index) =
|
||||
command == "repeat"?
|
||||
|
@ -910,6 +909,8 @@ function oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
|
|||
// side = Length of each side.
|
||||
// rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding)
|
||||
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
|
||||
// align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin.
|
||||
// align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Extra Anchors:
|
||||
|
@ -925,11 +926,22 @@ function oval(r, d, realign=false, circum=false, anchor=CENTER, spin=0) =
|
|||
// regular_ngon(n=8, side=20);
|
||||
// Example(2D): Realigned
|
||||
// regular_ngon(n=8, side=20, realign=true);
|
||||
// Example(2D): Alignment by Tip
|
||||
// regular_ngon(n=5, r=30, align_tip=BACK+RIGHT)
|
||||
// attach("tip0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Alignment by Side
|
||||
// regular_ngon(n=5, r=30, align_side=BACK+RIGHT)
|
||||
// attach("side0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Rounded
|
||||
// regular_ngon(n=5, od=100, rounding=20, $fn=20);
|
||||
// Example(2D): Called as Function
|
||||
// stroke(closed=true, regular_ngon(n=6, or=30));
|
||||
function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) =
|
||||
function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0, _mat, _anchs) =
|
||||
assert(is_undef(align_tip) || is_vector(align_tip))
|
||||
assert(is_undef(align_side) || is_vector(align_side))
|
||||
assert(is_undef(align_tip) || is_undef(align_side), "Can only specify one of align_tip and align-side")
|
||||
let(
|
||||
sc = 1/cos(180/n),
|
||||
ir = is_finite(ir)? ir*sc : undef,
|
||||
|
@ -940,13 +952,19 @@ function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false
|
|||
assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side.")
|
||||
let(
|
||||
inset = opp_ang_to_hyp(rounding, (180-360/n)/2),
|
||||
path = rounding==0? oval(r=r, realign=realign, $fn=n) : (
|
||||
mat = !is_undef(_mat) ? _mat :
|
||||
( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
||||
!is_undef(align_side)? rot(from=RIGHT, to=point2d(align_side), planar=true) * rot(180/n, planar=true) :
|
||||
affine2d_identity()
|
||||
),
|
||||
path4 = rounding==0? oval(r=r, $fn=n) : (
|
||||
let(
|
||||
steps = floor(segs(r)/n),
|
||||
step = 360/n/steps,
|
||||
path2 = [
|
||||
for (i = [0:1:n-1]) let(
|
||||
a = 360 - i*360/n - (realign? 180/n : 0),
|
||||
a = 360 - i*360/n,
|
||||
p = polar_to_xy(r-inset, a)
|
||||
)
|
||||
each arc(N=steps, cp=p, r=rounding, start=a+180/n, angle=-360/n)
|
||||
|
@ -955,13 +973,15 @@ function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false
|
|||
path3 = polygon_shift(path2,maxx_idx)
|
||||
) path3
|
||||
),
|
||||
anchors = !is_string(anchor)? [] : [
|
||||
path = apply(mat, path4),
|
||||
anchors = !is_undef(_anchs) ? _anchs :
|
||||
!is_string(anchor)? [] : [
|
||||
for (i = [0:1:n-1]) let(
|
||||
a1 = 360 - i*360/n - (realign? 180/n : 0),
|
||||
a1 = 360 - i*360/n,
|
||||
a2 = a1 - 360/n,
|
||||
p1 = polar_to_xy(r,a1),
|
||||
p2 = polar_to_xy(r,a2),
|
||||
tipp = polar_to_xy(r-inset+rounding,a1),
|
||||
p1 = apply(mat, polar_to_xy(r,a1)),
|
||||
p2 = apply(mat, polar_to_xy(r,a2)),
|
||||
tipp = apply(mat, polar_to_xy(r-inset+rounding,a1)),
|
||||
pos = (p1+p2)/2
|
||||
) each [
|
||||
anchorpt(str("tip",i), tipp, unit(tipp,BACK), 0),
|
||||
|
@ -971,28 +991,33 @@ function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false
|
|||
) reorient(anchor,spin, two_d=true, path=path, extent=false, p=path, anchors=anchors);
|
||||
|
||||
|
||||
module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) {
|
||||
module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) {
|
||||
sc = 1/cos(180/n);
|
||||
ir = is_finite(ir)? ir*sc : undef;
|
||||
id = is_finite(id)? id*sc : undef;
|
||||
side = is_finite(side)? side/2/sin(180/n) : undef;
|
||||
r = get_radius(r1=ir, r2=or, r=r, d1=id, d2=od, d=d, dflt=side);
|
||||
assert(!is_undef(r), "regular_ngon(): need to specify one of r, d, or, od, ir, id, side.");
|
||||
path = regular_ngon(n=n, r=r, rounding=rounding, realign=realign);
|
||||
mat = ( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
||||
!is_undef(align_side)? rot(from=RIGHT, to=point2d(align_side), planar=true) * rot(180/n, planar=true) :
|
||||
affine2d_identity()
|
||||
);
|
||||
inset = opp_ang_to_hyp(rounding, (180-360/n)/2);
|
||||
anchors = [
|
||||
for (i = [0:1:n-1]) let(
|
||||
a1 = 360 - i*360/n - (realign? 180/n : 0),
|
||||
a1 = 360 - i*360/n,
|
||||
a2 = a1 - 360/n,
|
||||
p1 = polar_to_xy(r,a1),
|
||||
p2 = polar_to_xy(r,a2),
|
||||
tipp = polar_to_xy(r-inset+rounding,a1),
|
||||
p1 = apply(mat, polar_to_xy(r,a1)),
|
||||
p2 = apply(mat, polar_to_xy(r,a2)),
|
||||
tipp = apply(mat, polar_to_xy(r-inset+rounding,a1)),
|
||||
pos = (p1+p2)/2
|
||||
) each [
|
||||
anchorpt(str("tip",i), tipp, unit(tipp,BACK), 0),
|
||||
anchorpt(str("side",i), pos, unit(pos,BACK), 0),
|
||||
]
|
||||
];
|
||||
path = regular_ngon(n=n, r=r, rounding=rounding, _mat=mat, _anchs=anchors);
|
||||
attachable(anchor,spin, two_d=true, path=path, extent=false, anchors=anchors) {
|
||||
polygon(path);
|
||||
children();
|
||||
|
@ -1018,6 +1043,8 @@ module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false,
|
|||
// side = Length of each side.
|
||||
// rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding)
|
||||
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
|
||||
// align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin.
|
||||
// align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Extra Anchors:
|
||||
|
@ -1033,16 +1060,24 @@ module regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false,
|
|||
// pentagon(side=20);
|
||||
// Example(2D): Realigned
|
||||
// pentagon(side=20, realign=true);
|
||||
// Example(2D): Alignment by Tip
|
||||
// pentagon(r=30, align_tip=BACK+RIGHT)
|
||||
// attach("tip0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Alignment by Side
|
||||
// pentagon(r=30, align_side=BACK+RIGHT)
|
||||
// attach("side0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Rounded
|
||||
// pentagon(od=100, rounding=20, $fn=20);
|
||||
// Example(2D): Called as Function
|
||||
// stroke(closed=true, pentagon(or=30));
|
||||
function pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) =
|
||||
regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin);
|
||||
function pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) =
|
||||
regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin);
|
||||
|
||||
|
||||
module pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0)
|
||||
regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin) children();
|
||||
module pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0)
|
||||
regular_ngon(n=5, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children();
|
||||
|
||||
|
||||
// Function&Module: hexagon()
|
||||
|
@ -1061,6 +1096,8 @@ module pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CE
|
|||
// side = Length of each side.
|
||||
// rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding)
|
||||
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
|
||||
// align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin.
|
||||
// align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Extra Anchors:
|
||||
|
@ -1076,16 +1113,24 @@ module pentagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CE
|
|||
// hexagon(side=20);
|
||||
// Example(2D): Realigned
|
||||
// hexagon(side=20, realign=true);
|
||||
// Example(2D): Alignment by Tip
|
||||
// hexagon(r=30, align_tip=BACK+RIGHT)
|
||||
// attach("tip0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Alignment by Side
|
||||
// hexagon(r=30, align_side=BACK+RIGHT)
|
||||
// attach("side0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Rounded
|
||||
// hexagon(od=100, rounding=20, $fn=20);
|
||||
// Example(2D): Called as Function
|
||||
// stroke(closed=true, hexagon(or=30));
|
||||
function hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) =
|
||||
regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin);
|
||||
function hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) =
|
||||
regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin);
|
||||
|
||||
|
||||
module hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0)
|
||||
regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin) children();
|
||||
module hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0)
|
||||
regular_ngon(n=6, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children();
|
||||
|
||||
|
||||
// Function&Module: octagon()
|
||||
|
@ -1104,6 +1149,8 @@ module hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CEN
|
|||
// side = Length of each side.
|
||||
// rounding = Radius of rounding for the tips of the polygon. Default: 0 (no rounding)
|
||||
// realign = If false, a tip is aligned with the Y+ axis. If true, the midpoint of a side is aligned with the Y+ axis. Default: false
|
||||
// align_tip = If given as a 2D vector, rotates the whole shape so that the first vertex points in that direction. This occurs before spin.
|
||||
// align_side = If given as a 2D vector, rotates the whole shape so that the normal of side0 points in that direction. This occurs before spin.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Extra Anchors:
|
||||
|
@ -1119,16 +1166,24 @@ module hexagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CEN
|
|||
// octagon(side=20);
|
||||
// Example(2D): Realigned
|
||||
// octagon(side=20, realign=true);
|
||||
// Example(2D): Alignment by Tip
|
||||
// octagon(r=30, align_tip=BACK+RIGHT)
|
||||
// attach("tip0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Alignment by Side
|
||||
// octagon(r=30, align_side=BACK+RIGHT)
|
||||
// attach("side0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Rounded
|
||||
// octagon(od=100, rounding=20, $fn=20);
|
||||
// Example(2D): Called as Function
|
||||
// stroke(closed=true, octagon(or=30));
|
||||
function octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0) =
|
||||
regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin);
|
||||
function octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0) =
|
||||
regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin);
|
||||
|
||||
|
||||
module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CENTER, spin=0)
|
||||
regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, anchor=anchor, spin=spin) children();
|
||||
module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, align_tip, align_side, anchor=CENTER, spin=0)
|
||||
regular_ngon(n=8, r=r, d=d, or=or, od=od, ir=ir, id=id, side=side, rounding=rounding, realign=realign, align_tip=align_tip, align_side=align_side, anchor=anchor, spin=spin) children();
|
||||
|
||||
|
||||
|
||||
|
@ -1145,26 +1200,56 @@ module octagon(r, d, or, od, ir, id, side, rounding=0, realign=false, anchor=CEN
|
|||
// h = The Y axis height of the trapezoid.
|
||||
// w1 = The X axis width of the front end of the trapezoid.
|
||||
// w2 = The X axis width of the back end of the trapezoid.
|
||||
// angle = If given in place of `h`, `w1`, or `w2`, then the missing value is calculated such that the right side has that angle away from the Y axis.
|
||||
// shift = Scalar value to shift the back of the trapezoid along the X axis by. Default: 0
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Examples(2D):
|
||||
// trapezoid(h=30, w1=40, w2=20);
|
||||
// trapezoid(h=25, w1=20, w2=35);
|
||||
// trapezoid(h=20, w1=40, w2=0);
|
||||
// trapezoid(h=20, w1=30, angle=30);
|
||||
// trapezoid(h=20, w1=20, angle=-30);
|
||||
// trapezoid(h=20, w2=10, angle=30);
|
||||
// trapezoid(h=20, w2=30, angle=-30);
|
||||
// trapezoid(w1=30, w2=10, angle=30);
|
||||
// Example(2D): Called as Function
|
||||
// stroke(closed=true, trapezoid(h=30, w1=40, w2=20));
|
||||
function trapezoid(h, w1, w2, anchor=CENTER, spin=0) =
|
||||
function trapezoid(h, w1, w2, angle, shift=0, anchor=CENTER, spin=0) =
|
||||
assert(is_undef(h) || is_finite(h))
|
||||
assert(is_undef(w1) || is_finite(w1))
|
||||
assert(is_undef(w2) || is_finite(w2))
|
||||
assert(is_undef(angle) || is_finite(angle))
|
||||
assert(num_defined([h, w1, w2, angle]) == 3, "Must give exactly 3 of the arguments h, w1, w2, and angle.")
|
||||
assert(is_finite(shift))
|
||||
let(
|
||||
path = [[w1/2,-h/2], [-w1/2,-h/2], [-w2/2,h/2], [w2/2,h/2]]
|
||||
) reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, p=path);
|
||||
h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle)),
|
||||
w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift),
|
||||
w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift),
|
||||
path = [[w1/2,-h/2], [-w1/2,-h/2], [-w2/2+shift,h/2], [w2/2+shift,h/2]]
|
||||
)
|
||||
assert(w1>=0 && w2>=0 && h>0, "Degenerate trapezoid geometry.")
|
||||
reorient(anchor,spin, two_d=true, size=[w1,h], size2=w2, p=path);
|
||||
|
||||
|
||||
|
||||
module trapezoid(h, w1, w2, anchor=CENTER, spin=0) {
|
||||
path = [[w1/2,-h/2], [-w1/2,-h/2], [-w2/2,h/2], [w2/2,h/2]];
|
||||
attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2) {
|
||||
polygon(path);
|
||||
children();
|
||||
module trapezoid(h, w1, w2, angle, shift=0, anchor=CENTER, spin=0) {
|
||||
assert(is_undef(h) || is_finite(h));
|
||||
assert(is_undef(w1) || is_finite(w1));
|
||||
assert(is_undef(w2) || is_finite(w2));
|
||||
assert(is_undef(angle) || is_finite(angle));
|
||||
assert(num_defined([h, w1, w2, angle]) == 3, "Must give exactly 3 of the arguments h, w1, w2, and angle.");
|
||||
assert(is_finite(shift));
|
||||
union() {
|
||||
h = !is_undef(h)? h : opp_ang_to_adj(abs(w2-w1)/2, abs(angle));
|
||||
w1 = !is_undef(w1)? w1 : w2 + 2*(adj_ang_to_opp(h, angle) + shift);
|
||||
w2 = !is_undef(w2)? w2 : w1 - 2*(adj_ang_to_opp(h, angle) + shift);
|
||||
assert(w1>=0 && w2>=0 && h>0, "Degenerate trapezoid geometry.");
|
||||
path = [[w1/2,-h/2], [-w1/2,-h/2], [-w2/2+shift,h/2], [w2/2+shift,h/2]];
|
||||
attachable(anchor,spin, two_d=true, size=[w1,h], size2=w2) {
|
||||
polygon(path);
|
||||
children();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1299,12 +1384,14 @@ module glued_circles(r, d, spread=10, tangent=30, anchor=CENTER, spin=0) {
|
|||
// id = The diameter to the inner corners of the star.
|
||||
// step = Calculates the radius of the inner star corners by virtually drawing a straight line `step` tips around the star. 2 <= step < n/2
|
||||
// realign = If false, a tip is aligned with the Y+ axis. If true, an inner corner is aligned with the Y+ axis. Default: false
|
||||
// align_tip = If given as a 2D vector, rotates the whole shape so that the first star tip points in that direction. This occurs before spin.
|
||||
// align_pit = If given as a 2D vector, rotates the whole shape so that the first inner corner is pointed towards that direction. This occurs before spin.
|
||||
// anchor = Translate so anchor point is at origin (0,0,0). See [anchor](attachments.scad#anchor). Default: `CENTER`
|
||||
// spin = Rotate this many degrees around the Z axis after anchor. See [spin](attachments.scad#spin). Default: `0`
|
||||
// Extra Anchors:
|
||||
// "tip0" ... "tip4" = Each tip has an anchor, pointing outwards.
|
||||
// "corner0" ... "corner4" = The inside corner between each tip has an anchor, pointing outwards.
|
||||
// "midpt0" ... "midpt4" = The center-point between each pair or tips has an anchor, pointing outwards.
|
||||
// "pit0" ... "pit4" = The inside corner between each tip has an anchor, pointing outwards.
|
||||
// "midpt0" ... "midpt4" = The center-point between each pair of tips has an anchor, pointing outwards.
|
||||
// Examples(2D):
|
||||
// star(n=5, r=50, ir=25);
|
||||
// star(n=5, r=50, step=2);
|
||||
|
@ -1312,9 +1399,20 @@ module glued_circles(r, d, spread=10, tangent=30, anchor=CENTER, spin=0) {
|
|||
// star(n=7, r=50, step=3);
|
||||
// Example(2D): Realigned
|
||||
// star(n=7, r=50, step=3, realign=true);
|
||||
// Example(2D): Alignment by Tip
|
||||
// star(n=5, ir=15, or=30, align_tip=BACK+RIGHT)
|
||||
// attach("tip0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Alignment by Pit
|
||||
// star(n=5, ir=15, or=30, align_pit=BACK+RIGHT)
|
||||
// attach("pit0", FWD) color("blue")
|
||||
// stroke([[0,0],[0,7]], endcap2="arrow2");
|
||||
// Example(2D): Called as Function
|
||||
// stroke(closed=true, star(n=5, r=50, ir=25));
|
||||
function star(n, r, d, or, od, ir, id, step, realign=false, anchor=CENTER, spin=0) =
|
||||
function star(n, r, d, or, od, ir, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0, _mat, _anchs) =
|
||||
assert(is_undef(align_tip) || is_vector(align_tip))
|
||||
assert(is_undef(align_pit) || is_vector(align_pit))
|
||||
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit")
|
||||
let(
|
||||
r = get_radius(r1=or, d1=od, r=r, d=d),
|
||||
count = num_defined([ir,id,step]),
|
||||
|
@ -1324,48 +1422,64 @@ function star(n, r, d, or, od, ir, id, step, realign=false, anchor=CENTER, spin=
|
|||
assert(count==1, "Must specify exactly one of ir, id, step")
|
||||
assert(stepOK, str("Parameter 'step' must be between 2 and ",floor(n/2)," for ",n," point star"))
|
||||
let(
|
||||
mat = !is_undef(_mat) ? _mat :
|
||||
( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
||||
!is_undef(align_pit)? rot(from=RIGHT, to=point2d(align_pit), planar=true) * rot(180/n, planar=true) :
|
||||
affine2d_identity()
|
||||
),
|
||||
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n),
|
||||
ir = get_radius(r=ir, d=id, dflt=stepr),
|
||||
offset = realign? 180/n : 0,
|
||||
path = [for(i=[2*n:-1:1]) let(theta=180*i/n+offset, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]],
|
||||
anchors = !is_string(anchor)? [] : [
|
||||
path1 = [for(i=[2*n:-1:1]) let(theta=180*i/n, radius=(i%2)?ir:r) radius*[cos(theta), sin(theta)]],
|
||||
path = apply(mat, path1),
|
||||
anchors = !is_undef(_anchs) ? _anchs :
|
||||
!is_string(anchor)? [] : [
|
||||
for (i = [0:1:n-1]) let(
|
||||
a1 = 360 - i*360/n - (realign? 180/n : 0),
|
||||
a1 = 360 - i*360/n,
|
||||
a2 = a1 - 180/n,
|
||||
a3 = a1 - 360/n,
|
||||
p1 = polar_to_xy(r,a1),
|
||||
p2 = polar_to_xy(ir,a2),
|
||||
p3 = polar_to_xy(r,a3),
|
||||
p1 = apply(mat, polar_to_xy(r,a1)),
|
||||
p2 = apply(mat, polar_to_xy(ir,a2)),
|
||||
p3 = apply(mat, polar_to_xy(r,a3)),
|
||||
pos = (p1+p3)/2
|
||||
) each [
|
||||
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
|
||||
anchorpt(str("corner",i), p2, unit(p2,BACK), 0),
|
||||
anchorpt(str("pit",i), p2, unit(p2,BACK), 0),
|
||||
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
|
||||
]
|
||||
]
|
||||
) reorient(anchor,spin, two_d=true, path=path, p=path, anchors=anchors);
|
||||
|
||||
|
||||
module star(n, r, d, or, od, ir, id, step, realign=false, anchor=CENTER, spin=0) {
|
||||
module star(n, r, d, or, od, ir, id, step, realign=false, align_tip, align_pit, anchor=CENTER, spin=0) {
|
||||
assert(is_undef(align_tip) || is_vector(align_tip));
|
||||
assert(is_undef(align_pit) || is_vector(align_pit));
|
||||
assert(is_undef(align_tip) || is_undef(align_pit), "Can only specify one of align_tip and align_pit");
|
||||
r = get_radius(r1=or, d1=od, r=r, d=d, dflt=undef);
|
||||
stepr = is_undef(step)? r : r*cos(180*step/n)/cos(180*(step-1)/n);
|
||||
ir = get_radius(r=ir, d=id, dflt=stepr);
|
||||
path = star(n=n, r=r, ir=ir, realign=realign);
|
||||
mat = ( realign? rot(-180/n, planar=true) : affine2d_identity() ) * (
|
||||
!is_undef(align_tip)? rot(from=RIGHT, to=point2d(align_tip), planar=true) :
|
||||
!is_undef(align_pit)? rot(from=RIGHT, to=point2d(align_pit), planar=true) * rot(180/n, planar=true) :
|
||||
affine2d_identity()
|
||||
);
|
||||
anchors = [
|
||||
for (i = [0:1:n-1]) let(
|
||||
a1 = 360 - i*360/n - (realign? 180/n : 0),
|
||||
a2 = a1 - 180/n,
|
||||
a3 = a1 - 360/n,
|
||||
p1 = polar_to_xy(r,a1),
|
||||
p2 = polar_to_xy(ir,a2),
|
||||
p3 = polar_to_xy(r,a3),
|
||||
p1 = apply(mat, polar_to_xy(r,a1)),
|
||||
p2 = apply(mat, polar_to_xy(ir,a2)),
|
||||
p3 = apply(mat, polar_to_xy(r,a3)),
|
||||
pos = (p1+p3)/2
|
||||
) each [
|
||||
anchorpt(str("tip",i), p1, unit(p1,BACK), 0),
|
||||
anchorpt(str("corner",i), p2, unit(p2,BACK), 0),
|
||||
anchorpt(str("pit",i), p2, unit(p2,BACK), 0),
|
||||
anchorpt(str("midpt",i), pos, unit(pos,BACK), 0),
|
||||
]
|
||||
];
|
||||
path = star(n=n, r=r, ir=ir, realign=realign, _mat=mat, _anchs=anchors);
|
||||
attachable(anchor,spin, two_d=true, path=path, anchors=anchors) {
|
||||
polygon(path);
|
||||
children();
|
||||
|
|
|
@ -1190,7 +1190,7 @@ function path_sweep(shape, path, method="incremental", normal, closed=false, twi
|
|||
assert(is_undef(normal) || (is_vector(normal) && len(normal)==3) || (is_path(normal) && len(normal)==len(path) && len(normal[0])==3), "Invalid normal specified")
|
||||
assert(is_undef(tangent) || (is_path(tangent) && len(tangent)==len(path) && len(tangent[0])==3), "Invalid tangent specified")
|
||||
let(
|
||||
tangents = is_undef(tangent) ? path_tangents(path) : [for(t=tangent) unit(t)],
|
||||
tangents = is_undef(tangent) ? path_tangents(path,closed=closed) : [for(t=tangent) unit(t)],
|
||||
normal = is_path(normal) ? [for(n=normal) unit(n)] :
|
||||
is_def(normal) ? unit(normal) :
|
||||
method =="incremental" && abs(tangents[0].z) > 1/sqrt(2) ? BACK : UP,
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
//////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
BOSL_VERSION = [2,0,440];
|
||||
BOSL_VERSION = [2,0,446];
|
||||
|
||||
|
||||
// Section: BOSL Library Version Functions
|
||||
|
|
Loading…
Reference in a new issue