Merge pull request #723 from revarbat/revarbat_dev

Fixes for extrude_path2d()
This commit is contained in:
Revar Desmera 2021-11-07 16:39:58 -08:00 committed by GitHub
commit 22847597b1
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 63 additions and 63 deletions

View file

@ -1001,8 +1001,7 @@ function triplet(list, wrap=false) =
if(wrap) [list[L-1], list[0], list[1]], if(wrap) [list[L-1], list[0], list[1]],
for (i=[0:1:L-3]) [list[i],list[i+1],list[i+2]], for (i=[0:1:L-3]) [list[i],list[i+1],list[i+2]],
if(wrap) [list[L-2], list[L-1], list[0]] if(wrap) [list[L-2], list[L-1], list[0]]
]; ];
// Function: combinations() // Function: combinations()

View file

@ -477,13 +477,16 @@ module chain_hull()
// Usage: // Usage:
// path_extrude2d(path, [caps], [closed]) {...} // path_extrude2d(path, [caps], [closed]) {...}
// Description: // Description:
// Extrudes 2D children along the given 2D path, with optional rounded endcaps. This module works properly in general only if the given // Extrudes 2D children along the given 2D path, with optional rounded endcaps.
// children are convex and symmetric across the Y axis. It works by constructing flat sections corresponding to each segment of the path and // It works by constructing straight sections corresponding to each segment of the path and inserting rounded joints at each corner.
// inserting rounded joints at each corner. // If the children are symmetric across the Y axis line then you can set caps=true to produce rounded caps on the ends of the profile.
// If you set caps to true for asymmetric children then incorrect caps will be generated.
// Arguments: // Arguments:
// path = The 2D path to extrude the geometry along. // path = The 2D path to extrude the geometry along.
// caps = If true, caps each end of the path with a `rotate_extrude()`d copy of the children. This may interact oddly when given asymmetric profile children. Default: false // caps = If true, caps each end of the path with a `rotate_extrude()`d copy of the children. This may interact oddly when given asymmetric profile children. Default: false
// closed = If true, connect the starting point of the path to the ending point. Default: false // closed = If true, connect the starting point of the path to the ending point. Default: false
// convexity = The max number of times a line could pass though a wall. Default: 10
// s = Mask size to use. Use a number larger than twice your object's largest axis. If you make this too large, it messes with centering your view. Default: The length of the diagonal of the path's bounding box.
// Example: // Example:
// path = [ // path = [
// each right(50, p=arc(d=100,angle=[90,180])), // each right(50, p=arc(d=100,angle=[90,180])),
@ -502,13 +505,55 @@ module chain_hull()
// [-50,0], [-25,50], [0,0], [50,0] // [-50,0], [-25,50], [0,0], [50,0]
// ]); // ]);
// path_extrude2d(path, caps=false) // path_extrude2d(path, caps=false)
// trapezoid(w1=10, w2=1, h=5, anchor=BACK); // trapezoid(w1=10, w2=3, h=5, anchor=BACK);
module path_extrude2d(path, caps=false, closed=false) { // Example: Un-Closed Path
// $fn=16;
// spath = star(id=15,od=35,n=5);
// path_extrude2d(spath, caps=false, closed=false)
// move_copies([[-3.5,1.5],[0.0,3.0],[3.5,1.5]])
// circle(r=1.5);
// Example: Complex Endcaps
// $fn=16;
// spath = star(id=15,od=35,n=5);
// path_extrude2d(spath, caps=true, closed=false)
// move_copies([[-3.5,1.5],[0.0,3.0],[3.5,1.5]])
// circle(r=1.5);
module path_extrude2d(path, caps=false, closed=false, s, convexity=10) {
extra_ang = 0.1; // Extra angle for overlap of joints extra_ang = 0.1; // Extra angle for overlap of joints
assert(caps==false || closed==false, "Cannot have caps on a closed extrusion"); assert(caps==false || closed==false, "Cannot have caps on a closed extrusion");
assert(is_path(path,2));
path = deduplicate(path); path = deduplicate(path);
for (p=pair(path,wrap=closed)) s = s!=undef? s :
extrude_from_to(p[0],p[1]) xflip()rot(-90)children(); let(b = pointlist_bounds(path))
norm(b[1]-b[0]);
assert(is_finite(s));
L = len(path);
for (i = [0:1:L-(closed?1:2)]) {
seg = select(path, i, i+1);
segv = seg[1] - seg[0];
seglen = norm(segv);
translate((seg[0]+seg[1])/2) {
rot(from=BACK, to=segv) {
difference() {
xrot(90) {
linear_extrude(height=seglen, center=true, convexity=convexity) {
children();
}
}
if (closed || i>0) {
pt = select(path, i-1);
pang = v_theta(rot(from=-segv, to=RIGHT, p=pt - seg[0]));
fwd(seglen/2+0.01) zrot(pang/2) cube(s, anchor=BACK);
}
if (closed || i<L-2) {
pt = select(path, i+2);
pang = v_theta(rot(from=segv, to=RIGHT, p=pt - seg[1]));
back(seglen/2+0.01) zrot(pang/2) cube(s, anchor=FWD);
}
}
}
}
}
for (t=triplet(path,wrap=closed)) { for (t=triplet(path,wrap=closed)) {
ang = -(180-vector_angle(t)) * sign(_point_left_of_line2d(t[2],[t[0],t[1]])); ang = -(180-vector_angle(t)) * sign(_point_left_of_line2d(t[2],[t[0],t[1]]));
delt = point3d(t[2] - t[1]); delt = point3d(t[2] - t[1]);
@ -525,60 +570,16 @@ module path_extrude2d(path, caps=false, closed=false) {
} }
if (caps) { if (caps) {
move_copies([path[0],last(path)]) bseg = select(path,0,1);
rotate_extrude() move(bseg[0])
right_half(planar=true) children(); rot(from=BACK, to=bseg[0]-bseg[1])
} rotate_extrude(angle=180)
} right_half(planar=true) children();
module new_path_extrude2d(path, caps=false, closed=false) { eseg = select(path,-2,-1);
extra_ang = 0.1; // Extra angle for overlap of joints move(eseg[1])
assert(caps==false || closed==false, "Cannot have caps on a closed extrusion"); rot(from=BACK, to=eseg[1]-eseg[0])
path = deduplicate(path); rotate_extrude(angle=180)
right_half(planar=true) children();
for (i=[0:1:len(path)-(closed?1:2)]){
// for (i=[0:1:1]){
difference(){
extrude_from_to(path[i],select(path,i+1)) xflip()rot(-90)children();
# for(t = [select(path,i-1,i+1)]){ //, select(path,i,i+2)]){
ang = -(180-vector_angle(t)) * sign(_point_left_of_line2d(t[2],[t[0],t[1]]));
echo(ang=ang);
delt = point3d(t[2] - t[1]);
if (ang!=0)
translate(t[1]) {
frame_map(y=delt, z=UP)
rotate(-sign(ang)*extra_ang/2)
rotate_extrude(angle=ang+sign(ang)*extra_ang)
if (ang<0)
left_half(planar=true) children();
else
right_half(planar=true) children();
}
}
}
}
for (t=triplet(path,wrap=closed)) {
ang = -(180-vector_angle(t)) * sign(_point_left_of_line2d(t[2],[t[0],t[1]]));
echo(oang=ang);
delt = point3d(t[2] - t[1]);
if (ang!=0)
translate(t[1]) {
frame_map(y=delt, z=UP)
rotate(-sign(ang)*extra_ang/2)
rotate_extrude(angle=ang+sign(ang)*extra_ang)
if (ang<0)
right_half(planar=true) children();
else
left_half(planar=true) children();
}
}
if (caps) {
move_copies([path[0],last(path)])
rotate_extrude()
right_half(planar=true) children();
} }
} }