mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-04 03:09:45 +00:00
Merge pull request #647 from adrianVmariano/master
doc tweask, speedups, bug fix
This commit is contained in:
commit
254d9ea3e5
2 changed files with 31 additions and 21 deletions
|
@ -159,17 +159,16 @@ function line_normal(p1,p2) =
|
|||
// it returns undef.
|
||||
function _general_line_intersection(s1,s2,eps=EPSILON) =
|
||||
let(
|
||||
denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]])
|
||||
denominator = cross(s1[0]-s1[1],s2[0]-s2[1])
|
||||
)
|
||||
approx(denominator,0,eps=eps) ? undef :
|
||||
let(
|
||||
t = det2([s1[0],s2[0]]-s2) / denominator,
|
||||
u = det2([s1[0],s1[0]]-[s2[0],s1[1]]) / denominator
|
||||
t = cross(s1[0]-s2[0],s2[0]-s2[1]) / denominator,
|
||||
u = cross(s1[0]-s2[0],s1[0]-s1[1]) / denominator
|
||||
)
|
||||
[s1[0]+t*(s1[1]-s1[0]), t, u];
|
||||
|
||||
|
||||
|
||||
// Function: line_intersection()
|
||||
// Usage:
|
||||
// pt = line_intersection(line1, line2, [bounded1], [bounded2], [bounded=], [eps=]);
|
||||
|
@ -1308,7 +1307,7 @@ function polygon_normal(poly) =
|
|||
cross(poly[(i+1)%L]-poly[0],
|
||||
poly[(i+2)%L]-poly[(i+1)%L])])
|
||||
)
|
||||
area_vec==0 ? undef : unit(-area_vec);
|
||||
norm(area_vec)<EPSILON ? undef : -unit(area_vec);
|
||||
|
||||
|
||||
// Function: point_in_polygon()
|
||||
|
@ -1332,31 +1331,31 @@ function polygon_normal(poly) =
|
|||
// depends on how many times they overlap. The Nonzero rule considers point inside the polygon if
|
||||
// the polygon overlaps them any number of times. For more information see
|
||||
// https://en.wikipedia.org/wiki/Nonzero-rule and https://en.wikipedia.org/wiki/Even–odd_rule.
|
||||
// Figure(2D,Med):
|
||||
// a=20*2/3;
|
||||
// b=30*2/3;
|
||||
// ofs = 17*2/3;
|
||||
// curve = [for(theta=[0:10:140]) [a * theta/360*2*PI - b*sin(theta), a-b*cos(theta)-20*2/3]];
|
||||
// Figure(2D,Med,NoAxes):
|
||||
// a=20;
|
||||
// b=30;
|
||||
// ofs = 17;
|
||||
// curve = [for(theta=[0:10:140]) [a * theta/360*2*PI - b*sin(theta), a-b*cos(theta)-20]];
|
||||
// path = deduplicate(concat( reverse(offset(curve,r=ofs)),
|
||||
// xflip(offset(curve,r=ofs)),
|
||||
// xflip(reverse(curve)),
|
||||
// curve
|
||||
// ));
|
||||
// left(30){
|
||||
// left(40){
|
||||
// polygon(path);
|
||||
// color("red")stroke(path, width=1, closed=true);
|
||||
// color("red")back(28)text("Even-Odd", size=5, halign="center");
|
||||
// color("red")back(28/(2/3))text("Even-Odd", size=5/(2/3), halign="center");
|
||||
// }
|
||||
// right(30){
|
||||
// right(40){
|
||||
// dp = decompose_path(path,closed=true);
|
||||
// region(dp);
|
||||
// color("red"){stroke(path,width=1,closed=true);
|
||||
// back(28)text("Nonzero", size=5, halign="center");
|
||||
// back(28/(2/3))text("Nonzero", size=5/(2/3), halign="center");
|
||||
// }
|
||||
// }
|
||||
// Arguments:
|
||||
// point = The 2D point to check position of.
|
||||
// poly = The list of 2D path points forming the perimeter of the polygon.
|
||||
// point = The 2D point to check
|
||||
// poly = The list of 2D points forming the perimeter of the polygon.
|
||||
// nonzero = The rule to use: true for "Nonzero" rule and false for "Even-Odd" (Default: true )
|
||||
// eps = Tolerance in geometric comparisons. Default: `EPSILON` (1e-9)
|
||||
// Example(2D): With nonzero set to true, we get this result. Green dots are inside the polygon and red are outside:
|
||||
|
@ -1369,7 +1368,7 @@ function polygon_normal(poly) =
|
|||
// xflip(reverse(curve)),
|
||||
// curve
|
||||
// ));
|
||||
// stroke(path);
|
||||
// stroke(path,closed=true);
|
||||
// pts = [[0,0],[10,0],[0,20]];
|
||||
// for(p=pts){
|
||||
// color(point_in_polygon(p,path)==1 ? "green" : "red")
|
||||
|
@ -1385,7 +1384,7 @@ function polygon_normal(poly) =
|
|||
// xflip(reverse(curve)),
|
||||
// curve
|
||||
// ));
|
||||
// stroke(path);
|
||||
// stroke(path,closed=true);
|
||||
// pts = [[0,0],[10,0],[0,20]];
|
||||
// for(p=pts){
|
||||
// color(point_in_polygon(p,path,nonzero=false)==1 ? "green" : "red")
|
||||
|
@ -1443,9 +1442,20 @@ function point_in_polygon(point, poly, nonzero=true, eps=EPSILON) =
|
|||
// Results for complex (self-intersecting) polygon are indeterminate.
|
||||
// Arguments:
|
||||
// poly = The list of 2D path points for the perimeter of the polygon.
|
||||
|
||||
// For algorithm see 2.07 here: http://www.faqs.org/faqs/graphics/algorithms-faq/
|
||||
function is_polygon_clockwise(poly) =
|
||||
assert(is_path(poly,dim=2), "Input should be a 2d path")
|
||||
polygon_area(poly, signed=true)<-EPSILON;
|
||||
let(
|
||||
minx = min(poly*[1,0]),
|
||||
lowind = search(minx, poly, 0, 0),
|
||||
lowpts = select(poly,lowind),
|
||||
miny = min(lowpts*[0,1]),
|
||||
extreme_sub = search(miny, lowpts, 1, 1)[0],
|
||||
extreme = lowind[extreme_sub]
|
||||
)
|
||||
cross(select(poly,extreme+1)-poly[extreme],
|
||||
select(poly,extreme-1)-poly[extreme])<0;
|
||||
|
||||
|
||||
// Function: clockwise_polygon()
|
||||
|
|
|
@ -155,7 +155,7 @@ module threaded_nut(
|
|||
// By default produces the nominal dimensions
|
||||
// for metric trapezoidal threads: a thread angle of 30 degrees and a depth set to half the pitch.
|
||||
// You can also specify your own trapezoid parameters. For ACME threads see acme_threaded_rod().
|
||||
// Figure(2D,Med):
|
||||
// Figure(2D,Med,NoAxes):
|
||||
// pa_delta = tan(15)/4;
|
||||
// rr1 = -1/2;
|
||||
// z1 = 1/4-pa_delta;
|
||||
|
|
Loading…
Reference in a new issue