diff --git a/beziers.scad b/beziers.scad
index 9a27a41..01b38f5 100644
--- a/beziers.scad
+++ b/beziers.scad
@@ -42,6 +42,9 @@
 //   and intermediate values of `u` fill in the curve in a non-uniform fashion.  This function uses an optimized method which
 //   is best when `u` is a long list and the bezier degree is 10 or less.  The degree of the bezier
 //   curve is `len(bezier)-1`.
+//   .
+//   Note that if you have a bezier **path** (see below) then you should use {{bezpath_points()}} to
+//   evaluate the points on that bezier path.  This function is for a single bezier.  
 // Arguments:
 //   bezier = The list of endpoints and control points for this bezier curve.
 //   u = Parameter values for evaluating the curve, given as a single value, a list or a range.  
@@ -194,6 +197,9 @@ function _bezier_matrix(N) =
 //   of the bezier curve, but you still get the same number of (more tightly spaced) points.  
 //   The distance between the points will *not* be equidistant.  
 //   The degree of the bezier curve is one less than the number of points in `curve`.
+//   .
+//   Note that if you have a bezier **path** (see below) then you should use {{bezpath_curve()}} to
+//   evaluate the that bezier path.  This function is for a single bezier.  
 // Arguments:
 //   bezier = The list of control points that define the Bezier curve. 
 //   splinesteps = The number of segments to create on the bezier curve.  Default: 16
diff --git a/vnf.scad b/vnf.scad
index 9812cad..555eef5 100644
--- a/vnf.scad
+++ b/vnf.scad
@@ -1677,7 +1677,7 @@ function vnf_bend(vnf,r,d,axis="Z") =
         step = (extent[1]-extent[0]) / steps,
         bend_at = [for(i = [1:1:steps-1]) i*step+extent[0]],
         slicedir = axis=="X"? "Y" : "X",   // slice in y dir for X axis case, and x dir otherwise
-        sliced = vnf_slice(vnf, slicedir, bend_at),
+        sliced = vnf_triangulate(vnf_slice(vnf, slicedir, bend_at)),
         coord = axis=="X" ? [0,sign(bmax.z),0] : axis=="Y" ? [sign(bmax.z),0,0] : [sign(bmax.y),0,0],
         new_vert = [for(p=sliced[0])
                        let(a=coord*p*180/(PI*r))