Merge pull request #675 from revarbat/revarbat_dev

Enable passing a region to stroke().
This commit is contained in:
Revar Desmera 2021-10-04 18:15:59 -07:00 committed by GitHub
commit 26d4f6823a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -132,7 +132,7 @@
// path = [for (i=[0:15:360]) [(i-180)/3,20*cos(2*i)]];
// stroke(path, width=2, dots=true, color="lightgreen", dots_color="red", $fn=18);
function stroke(
path, width=1, closed=false,
path, width=1, closed,
endcaps, endcap1, endcap2, joints, dots,
endcap_width, endcap_width1, endcap_width2, joint_width, dots_width,
endcap_length, endcap_length1, endcap_length2, joint_length, dots_length,
@ -143,7 +143,7 @@ function stroke(
convexity=10, hull=true
) = no_function("stroke");
module stroke(
path, width=1, closed=false,
path, width=1, closed,
endcaps, endcap1, endcap2, joints, dots,
endcap_width, endcap_width1, endcap_width2, joint_width, dots_width,
endcap_length, endcap_length1, endcap_length2, joint_length, dots_length,
@ -200,16 +200,8 @@ module stroke(
assert(false, str("Invalid endcap: ",cap))
) * linewidth;
closed = default(closed, is_region(path));
assert(is_bool(closed));
assert(is_list(path));
if (len(path) > 1) {
assert(is_path(path,[2,3]), "The path argument must be a list of 2D or 3D points.");
}
path = deduplicate( closed? close_path(path) : path );
assert(is_num(width) || (is_vector(width) && len(width)==len(path)));
width = is_num(width)? [for (x=path) width] : width;
assert(all([for (w=width) w>0]));
dots = dots==true? "dot" : dots;
@ -247,175 +239,196 @@ module stroke(
endcap_angle1 = first_defined([endcap_angle1, endcap_angle, dots_angle]);
endcap_angle2 = first_defined([endcap_angle2, endcap_angle, dots_angle]);
joint_angle = first_defined([joint_angle, dots_angle]);
assert(is_undef(endcap_angle1)||is_num(endcap_angle1));
assert(is_undef(endcap_angle2)||is_num(endcap_angle2));
assert(is_undef(joint_angle)||is_num(joint_angle));
endcap_shape1 = _shape_path(endcap1, width[0], endcap_width1, endcap_length1, endcap_extent1);
endcap_shape2 = _shape_path(endcap2, last(width), endcap_width2, endcap_length2, endcap_extent2);
endcap_color1 = first_defined([endcap_color1, endcap_color, dots_color, color]);
endcap_color2 = first_defined([endcap_color2, endcap_color, dots_color, color]);
joint_color = first_defined([joint_color, dots_color, color]);
trim1 = width[0] * first_defined([
trim1, trim,
(endcap1=="arrow")? endcap_length1-0.01 :
(endcap1=="arrow2")? endcap_length1*3/4 :
0
]);
assert(is_num(trim1));
trim2 = last(width) * first_defined([
trim2, trim,
(endcap2=="arrow")? endcap_length2-0.01 :
(endcap2=="arrow2")? endcap_length2*3/4 :
0
]);
assert(is_num(trim2));
if (len(path) == 1) {
if (len(path[0]) == 2) {
translate(path[0]) circle(d=width[0]);
} else {
translate(path[0]) sphere(d=width[0]);
paths = is_region(path)? path : [path];
for (path = paths) {
assert(is_list(path));
if (len(path) > 1) {
assert(is_path(path,[2,3]), "The path argument must be a list of 2D or 3D points, or a region.");
}
} else {
pathcut = _path_cut_points(path, [trim1, path_length(path)-trim2], closed=false);
pathcut_su = _cut_to_seg_u_form(pathcut,path);
path2 = _path_cut_getpaths(path, pathcut, closed=false)[1];
widths = _path_select(width, pathcut_su[0][0], pathcut_su[0][1], pathcut_su[1][0], pathcut_su[1][1]);
start_vec = path[0] - path[1];
end_vec = last(path) - select(path,-2);
path = deduplicate( closed? close_path(path) : path );
if (len(path[0]) == 2) {
// Straight segments
setcolor(color) {
for (i = idx(path2,e=-2)) {
seg = select(path2,i,i+1);
delt = seg[1] - seg[0];
translate(seg[0]) {
rot(from=BACK,to=delt) {
trapezoid(w1=widths[i], w2=widths[i+1], h=norm(delt), anchor=FRONT);
assert(is_num(width) || (is_vector(width) && len(width)==len(path)));
width = is_num(width)? [for (x=path) width] : width;
assert(all([for (w=width) w>0]));
endcap_shape1 = _shape_path(endcap1, width[0], endcap_width1, endcap_length1, endcap_extent1);
endcap_shape2 = _shape_path(endcap2, last(width), endcap_width2, endcap_length2, endcap_extent2);
trim1 = width[0] * first_defined([
trim1, trim,
(endcap1=="arrow")? endcap_length1-0.01 :
(endcap1=="arrow2")? endcap_length1*3/4 :
0
]);
assert(is_num(trim1));
trim2 = last(width) * first_defined([
trim2, trim,
(endcap2=="arrow")? endcap_length2-0.01 :
(endcap2=="arrow2")? endcap_length2*3/4 :
0
]);
assert(is_num(trim2));
if (len(path) == 1) {
if (len(path[0]) == 2) {
translate(path[0]) circle(d=width[0]);
} else {
translate(path[0]) sphere(d=width[0]);
}
} else {
pathcut = _path_cut_points(path, [trim1, path_length(path)-trim2], closed=false);
pathcut_su = _cut_to_seg_u_form(pathcut,path);
path2 = _path_cut_getpaths(path, pathcut, closed=false)[1];
widths = _path_select(width, pathcut_su[0][0], pathcut_su[0][1], pathcut_su[1][0], pathcut_su[1][1]);
start_vec = path[0] - path[1];
end_vec = last(path) - select(path,-2);
if (len(path[0]) == 2) {
// Straight segments
setcolor(color) {
for (i = idx(path2,e=-2)) {
seg = select(path2,i,i+1);
delt = seg[1] - seg[0];
translate(seg[0]) {
rot(from=BACK,to=delt) {
trapezoid(w1=widths[i], w2=widths[i+1], h=norm(delt), anchor=FRONT);
}
}
}
}
}
// Joints
setcolor(joint_color) {
for (i = [1:1:len(path2)-2]) {
$fn = quantup(segs(widths[i]/2),4);
translate(path2[i]) {
if (joints != undef) {
joint_shape = _shape_path(
joints, width[i],
joint_width,
joint_length,
joint_extent
);
v1 = unit(path2[i] - path2[i-1]);
v2 = unit(path2[i+1] - path2[i]);
vec = unit((v1+v2)/2);
mat = is_undef(joint_angle)
? rot(from=BACK,to=v1)
: zrot(joint_angle);
multmatrix(mat) polygon(joint_shape);
} else if (hull) {
hull() {
// Joints
setcolor(joint_color) {
for (i = [1:1:len(path2)-2]) {
$fn = quantup(segs(widths[i]/2),4);
translate(path2[i]) {
if (joints != undef) {
joint_shape = _shape_path(
joints, width[i],
joint_width,
joint_length,
joint_extent
);
v1 = unit(path2[i] - path2[i-1]);
v2 = unit(path2[i+1] - path2[i]);
vec = unit((v1+v2)/2);
mat = is_undef(joint_angle)
? rot(from=BACK,to=v1)
: zrot(joint_angle);
multmatrix(mat) polygon(joint_shape);
} else if (hull) {
hull() {
rot(from=BACK, to=path2[i]-path2[i-1])
circle(d=widths[i]);
rot(from=BACK, to=path2[i+1]-path2[i])
circle(d=widths[i]);
}
} else {
rot(from=BACK, to=path2[i]-path2[i-1])
circle(d=widths[i]);
rot(from=BACK, to=path2[i+1]-path2[i])
circle(d=widths[i]);
}
} else {
rot(from=BACK, to=path2[i]-path2[i-1])
circle(d=widths[i]);
rot(from=BACK, to=path2[i+1]-path2[i])
circle(d=widths[i]);
}
}
}
}
// Endcap1
setcolor(endcap_color1) {
translate(path[0]) {
mat = is_undef(endcap_angle1)? rot(from=BACK,to=start_vec) :
zrot(endcap_angle1);
multmatrix(mat) polygon(endcap_shape1);
// Endcap1
setcolor(endcap_color1) {
translate(path[0]) {
mat = is_undef(endcap_angle1)? rot(from=BACK,to=start_vec) :
zrot(endcap_angle1);
multmatrix(mat) polygon(endcap_shape1);
}
}
}
// Endcap2
setcolor(endcap_color2) {
translate(last(path)) {
mat = is_undef(endcap_angle2)? rot(from=BACK,to=end_vec) :
zrot(endcap_angle2);
multmatrix(mat) polygon(endcap_shape2);
// Endcap2
setcolor(endcap_color2) {
translate(last(path)) {
mat = is_undef(endcap_angle2)? rot(from=BACK,to=end_vec) :
zrot(endcap_angle2);
multmatrix(mat) polygon(endcap_shape2);
}
}
}
} else {
quatsums = q_cumulative([
for (i = idx(path2,e=-2)) let(
vec1 = i==0? UP : unit(path2[i]-path2[i-1], UP),
vec2 = unit(path2[i+1]-path2[i], UP),
axis = vector_axis(vec1,vec2),
ang = vector_angle(vec1,vec2)
) quat(axis,ang)
]);
rotmats = [for (q=quatsums) q_matrix4(q)];
sides = [
for (i = idx(path2,e=-2))
quantup(segs(max(widths[i],widths[i+1])/2),4)
];
} else {
quatsums = q_cumulative([
for (i = idx(path2,e=-2)) let(
vec1 = i==0? UP : unit(path2[i]-path2[i-1], UP),
vec2 = unit(path2[i+1]-path2[i], UP),
axis = vector_axis(vec1,vec2),
ang = vector_angle(vec1,vec2)
) quat(axis,ang)
]);
rotmats = [for (q=quatsums) q_matrix4(q)];
sides = [
for (i = idx(path2,e=-2))
quantup(segs(max(widths[i],widths[i+1])/2),4)
];
// Straight segments
setcolor(color) {
for (i = idx(path2,e=-2)) {
dist = norm(path2[i+1] - path2[i]);
w1 = widths[i]/2;
w2 = widths[i+1]/2;
$fn = sides[i];
translate(path2[i]) {
multmatrix(rotmats[i]) {
cylinder(r1=w1, r2=w2, h=dist, center=false);
// Straight segments
setcolor(color) {
for (i = idx(path2,e=-2)) {
dist = norm(path2[i+1] - path2[i]);
w1 = widths[i]/2;
w2 = widths[i+1]/2;
$fn = sides[i];
translate(path2[i]) {
multmatrix(rotmats[i]) {
cylinder(r1=w1, r2=w2, h=dist, center=false);
}
}
}
}
}
// Joints
setcolor(joint_color) {
for (i = [1:1:len(path2)-2]) {
$fn = sides[i];
translate(path2[i]) {
if (joints != undef) {
joint_shape = _shape_path(
joints, width[i],
joint_width,
joint_length,
joint_extent
);
multmatrix(rotmats[i] * xrot(180)) {
$fn = sides[i];
if (is_undef(joint_angle)) {
rotate_extrude(convexity=convexity) {
right_half(planar=true) {
polygon(joint_shape);
// Joints
setcolor(joint_color) {
for (i = [1:1:len(path2)-2]) {
$fn = sides[i];
translate(path2[i]) {
if (joints != undef) {
joint_shape = _shape_path(
joints, width[i],
joint_width,
joint_length,
joint_extent
);
multmatrix(rotmats[i] * xrot(180)) {
$fn = sides[i];
if (is_undef(joint_angle)) {
rotate_extrude(convexity=convexity) {
right_half(planar=true) {
polygon(joint_shape);
}
}
}
} else {
rotate([90,0,joint_angle]) {
linear_extrude(height=max(widths[i],0.001), center=true, convexity=convexity) {
polygon(joint_shape);
} else {
rotate([90,0,joint_angle]) {
linear_extrude(height=max(widths[i],0.001), center=true, convexity=convexity) {
polygon(joint_shape);
}
}
}
}
}
} else if (hull) {
hull(){
} else if (hull) {
hull(){
multmatrix(rotmats[i]) {
sphere(d=widths[i],style="aligned");
}
multmatrix(rotmats[i-1]) {
sphere(d=widths[i],style="aligned");
}
}
} else {
multmatrix(rotmats[i]) {
sphere(d=widths[i],style="aligned");
}
@ -423,55 +436,48 @@ module stroke(
sphere(d=widths[i],style="aligned");
}
}
} else {
multmatrix(rotmats[i]) {
sphere(d=widths[i],style="aligned");
}
multmatrix(rotmats[i-1]) {
sphere(d=widths[i],style="aligned");
}
}
}
}
}
// Endcap1
setcolor(endcap_color1) {
translate(path[0]) {
multmatrix(rotmats[0] * xrot(180)) {
$fn = sides[0];
if (is_undef(endcap_angle1)) {
rotate_extrude(convexity=convexity) {
right_half(planar=true) {
polygon(endcap_shape1);
// Endcap1
setcolor(endcap_color1) {
translate(path[0]) {
multmatrix(rotmats[0] * xrot(180)) {
$fn = sides[0];
if (is_undef(endcap_angle1)) {
rotate_extrude(convexity=convexity) {
right_half(planar=true) {
polygon(endcap_shape1);
}
}
}
} else {
rotate([90,0,endcap_angle1]) {
linear_extrude(height=max(widths[0],0.001), center=true, convexity=convexity) {
polygon(endcap_shape1);
} else {
rotate([90,0,endcap_angle1]) {
linear_extrude(height=max(widths[0],0.001), center=true, convexity=convexity) {
polygon(endcap_shape1);
}
}
}
}
}
}
}
// Endcap2
setcolor(endcap_color2) {
translate(last(path)) {
multmatrix(last(rotmats)) {
$fn = last(sides);
if (is_undef(endcap_angle2)) {
rotate_extrude(convexity=convexity) {
right_half(planar=true) {
polygon(endcap_shape2);
// Endcap2
setcolor(endcap_color2) {
translate(last(path)) {
multmatrix(last(rotmats)) {
$fn = last(sides);
if (is_undef(endcap_angle2)) {
rotate_extrude(convexity=convexity) {
right_half(planar=true) {
polygon(endcap_shape2);
}
}
}
} else {
rotate([90,0,endcap_angle2]) {
linear_extrude(height=max(last(widths),0.001), center=true, convexity=convexity) {
polygon(endcap_shape2);
} else {
rotate([90,0,endcap_angle2]) {
linear_extrude(height=max(last(widths),0.001), center=true, convexity=convexity) {
polygon(endcap_shape2);
}
}
}
}