mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Added bez_deriv(), bezier_tangent(), bezier_curvature().
This commit is contained in:
parent
2675fb4129
commit
2a90eb01de
2 changed files with 74 additions and 8 deletions
80
beziers.scad
80
beziers.scad
|
@ -46,7 +46,7 @@ include <skin.scad>
|
||||||
// the curve, N, is one less than the number of points in `curve`.
|
// the curve, N, is one less than the number of points in `curve`.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// curve = The list of endpoints and control points for this bezier segment.
|
// curve = The list of endpoints and control points for this bezier segment.
|
||||||
// u = The proportion of the way along the curve to find the point of. 0<=`u`<=1
|
// u = The proportion of the way along the curve to find the point of. 0<=`u`<=1 If given as a list or range, returns a list of points for each u value.
|
||||||
// Example(2D): Quadratic (Degree 2) Bezier.
|
// Example(2D): Quadratic (Degree 2) Bezier.
|
||||||
// bez = [[0,0], [30,30], [80,0]];
|
// bez = [[0,0], [30,30], [80,0]];
|
||||||
// trace_bezier(bez, N=len(bez)-1);
|
// trace_bezier(bez, N=len(bez)-1);
|
||||||
|
@ -59,13 +59,79 @@ include <skin.scad>
|
||||||
// bez = [[0,0], [5,15], [40,20], [60,-15], [80,0]];
|
// bez = [[0,0], [5,15], [40,20], [60,-15], [80,0]];
|
||||||
// trace_bezier(bez, N=len(bez)-1);
|
// trace_bezier(bez, N=len(bez)-1);
|
||||||
// translate(bez_point(bez, 0.8)) color("red") sphere(1);
|
// translate(bez_point(bez, 0.8)) color("red") sphere(1);
|
||||||
function bez_point(curve,u)=
|
function bez_point(curve, u)=
|
||||||
(len(curve) <= 1) ?
|
is_num(u)? (
|
||||||
curve[0] :
|
(len(curve) <= 1)? curve[0] :
|
||||||
bez_point(
|
bez_point(
|
||||||
[for(i=[0:1:len(curve)-2]) curve[i]*(1-u)+curve[i+1]*u],
|
[
|
||||||
u
|
for(i=[0:1:len(curve)-2])
|
||||||
);
|
curve[i]*(1-u) + curve[i+1]*u
|
||||||
|
], u
|
||||||
|
)
|
||||||
|
) : [for (uu = u) bez_point(curve, uu)];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Function: bez_deriv()
|
||||||
|
// Usage:
|
||||||
|
// d = bez_deriv(curve, u, [order]);
|
||||||
|
// Description:
|
||||||
|
// Finds the `order`th derivative of the bezier segment at the given position `u`.
|
||||||
|
// The degree of the bezier segment is one less than the number of points in `curve`.
|
||||||
|
// Arguments:
|
||||||
|
// curve = The list of endpoints and control points for this bezier segment.
|
||||||
|
// u = The proportion of the way along the curve to find the derivative of. 0<=`u`<=1 If given as a list or range, returns a list of derivatives, one for each u value.
|
||||||
|
// order = The order of the derivative to return. Default: 1 (for the first derivative)
|
||||||
|
function bez_deriv(curve, u, order=1) =
|
||||||
|
assert(is_int(order) && order>=0)
|
||||||
|
order==0? bez_point(curve, u) : let(
|
||||||
|
N = len(curve) - 1,
|
||||||
|
dpts = N * deltas(curve)
|
||||||
|
) order==1? bez_point(dpts, u) :
|
||||||
|
bez_deriv(dpts, u, order-1);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Function: bezier_tangent()
|
||||||
|
// Usage:
|
||||||
|
// tanvec= bezier_tangent(curve, u);
|
||||||
|
// Description:
|
||||||
|
// Returns the unit vector of the tangent at the given position `u` on the bezier segment `curve`.
|
||||||
|
// Arguments:
|
||||||
|
// curve = The list of endpoints and control points for this bezier segment.
|
||||||
|
// u = The proportion of the way along the curve to find the tangent vector of. 0<=`u`<=1 If given as a list or range, returns a list of tangent vectors, one for each u value.
|
||||||
|
function bezier_tangent(curve, u) =
|
||||||
|
let(
|
||||||
|
res = bez_deriv(curve, u)
|
||||||
|
) is_vector(res)? unit(res) :
|
||||||
|
[for (v=res) unit(v)];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// Function: bezier_curvature()
|
||||||
|
// Usage:
|
||||||
|
// crv = bezier_curvature(curve, u);
|
||||||
|
// Description:
|
||||||
|
// Returns the curvature value for the given position `u` on the bezier segment `curve`.
|
||||||
|
// The curvature is the inverse of the radius of the tangent circle at the given point.
|
||||||
|
// Thus, the tighter the curve, the larger the curvature value. Curvature will be 0 for
|
||||||
|
// a position with no curvature, since 1/0 is not a number.
|
||||||
|
// Arguments:
|
||||||
|
// curve = The list of endpoints and control points for this bezier segment.
|
||||||
|
// u = The proportion of the way along the curve to find the curvature of. 0<=`u`<=1 If given as a list or range, returns a list of curvature values, one for each u value.
|
||||||
|
function bezier_curvature(curve, u) =
|
||||||
|
is_num(u) ? bezier_curvature(curve,[u])[0] :
|
||||||
|
let(
|
||||||
|
d1 = bez_deriv(curve, u, 1),
|
||||||
|
d2 = bez_deriv(curve, u, 2)
|
||||||
|
) [
|
||||||
|
for(i=idx(d1))
|
||||||
|
sqrt(
|
||||||
|
sqr(norm(d1[i])*norm(d2[i])) -
|
||||||
|
sqr(d1[i]*d2[i])
|
||||||
|
) / pow(norm(d1[i]),3)
|
||||||
|
];
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Function: bezier_curve()
|
// Function: bezier_curve()
|
||||||
|
|
|
@ -8,7 +8,7 @@
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
BOSL_VERSION = [2,0,298];
|
BOSL_VERSION = [2,0,299];
|
||||||
|
|
||||||
|
|
||||||
// Section: BOSL Library Version Functions
|
// Section: BOSL Library Version Functions
|
||||||
|
|
Loading…
Reference in a new issue