mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
subarray -> columns
This commit is contained in:
parent
a65315b876
commit
2d205a2568
17 changed files with 79 additions and 79 deletions
46
arrays.scad
46
arrays.scad
|
@ -70,7 +70,7 @@ function _same_type(a,b, depth) =
|
||||||
// list = The list to get the portion of.
|
// list = The list to get the portion of.
|
||||||
// start = Either the index of the first item or an index range or a list of indices.
|
// start = Either the index of the first item or an index range or a list of indices.
|
||||||
// end = The index of the last item when `start` is a number. When `start` is a list or a range, `end` should not be given.
|
// end = The index of the last item when `start` is a number. When `start` is a list or a range, `end` should not be given.
|
||||||
// See Also: slice(), subindex(), last()
|
// See Also: slice(), columns(), last()
|
||||||
// Example:
|
// Example:
|
||||||
// l = [3,4,5,6,7,8,9];
|
// l = [3,4,5,6,7,8,9];
|
||||||
// a = select(l, 5, 6); // Returns [8,9]
|
// a = select(l, 5, 6); // Returns [8,9]
|
||||||
|
@ -111,7 +111,7 @@ function select(list, start, end) =
|
||||||
// list = The list to get the slice of.
|
// list = The list to get the slice of.
|
||||||
// s = The index of the first item to return.
|
// s = The index of the first item to return.
|
||||||
// e = The index of the last item to return.
|
// e = The index of the last item to return.
|
||||||
// See Also: select(), subindex(), last()
|
// See Also: select(), columns(), last()
|
||||||
// Example:
|
// Example:
|
||||||
// a = slice([3,4,5,6,7,8,9], 3, 5); // Returns [6,7,8]
|
// a = slice([3,4,5,6,7,8,9], 3, 5); // Returns [6,7,8]
|
||||||
// b = slice([3,4,5,6,7,8,9], 2, -1); // Returns [5,6,7,8,9]
|
// b = slice([3,4,5,6,7,8,9], 2, -1); // Returns [5,6,7,8,9]
|
||||||
|
@ -136,7 +136,7 @@ function slice(list,s=0,e=-1) =
|
||||||
// Usage:
|
// Usage:
|
||||||
// item = last(list);
|
// item = last(list);
|
||||||
// Topics: List Handling
|
// Topics: List Handling
|
||||||
// See Also: select(), slice(), subindex()
|
// See Also: select(), slice(), columns()
|
||||||
// Description:
|
// Description:
|
||||||
// Returns the last element of a list, or undef if empty.
|
// Returns the last element of a list, or undef if empty.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
|
@ -272,7 +272,7 @@ function add_scalar(v,s) =
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// val = The simple value to search for.
|
// val = The simple value to search for.
|
||||||
// list = The list to search.
|
// list = The list to search.
|
||||||
// idx = If given, searches the given subindex for matches for `val`.
|
// idx = If given, searches the given columns for matches for `val`.
|
||||||
// Example:
|
// Example:
|
||||||
// a = in_list("bar", ["foo", "bar", "baz"]); // Returns true.
|
// a = in_list("bar", ["foo", "bar", "baz"]); // Returns true.
|
||||||
// b = in_list("bee", ["foo", "bar", "baz"]); // Returns false.
|
// b = in_list("bee", ["foo", "bar", "baz"]); // Returns false.
|
||||||
|
@ -1293,7 +1293,7 @@ function idx(list, s=0, e=-1, step=1) =
|
||||||
// Something like: `[[0,l[0]], [1,l[1]], [2,l[2]], ...]`
|
// Something like: `[[0,l[0]], [1,l[1]], [2,l[2]], ...]`
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// l = List to enumerate.
|
// l = List to enumerate.
|
||||||
// idx = If given, enumerates just the given subindex items of `l`.
|
// idx = If given, enumerates just the given columns items of `l`.
|
||||||
// Example:
|
// Example:
|
||||||
// enumerate(["a","b","c"]); // Returns: [[0,"a"], [1,"b"], [2,"c"]]
|
// enumerate(["a","b","c"]); // Returns: [[0,"a"], [1,"b"], [2,"c"]]
|
||||||
// enumerate([[88,"a"],[76,"b"],[21,"c"]], idx=1); // Returns: [[0,"a"], [1,"b"], [2,"c"]]
|
// enumerate([[88,"a"],[76,"b"],[21,"c"]], idx=1); // Returns: [[0,"a"], [1,"b"], [2,"c"]]
|
||||||
|
@ -1562,9 +1562,9 @@ function set_intersection(a, b) =
|
||||||
|
|
||||||
// Section: Array Manipulation
|
// Section: Array Manipulation
|
||||||
|
|
||||||
// Function: subindex()
|
// Function: columns()
|
||||||
// Usage:
|
// Usage:
|
||||||
// list = subindex(M, idx);
|
// list = columns(M, idx);
|
||||||
// Topics: Array Handling, List Handling
|
// Topics: Array Handling, List Handling
|
||||||
// See Also: select(), slice()
|
// See Also: select(), slice()
|
||||||
// Description:
|
// Description:
|
||||||
|
@ -1577,13 +1577,13 @@ function set_intersection(a, b) =
|
||||||
// idx = The index, list of indices, or range of indices to fetch.
|
// idx = The index, list of indices, or range of indices to fetch.
|
||||||
// Example:
|
// Example:
|
||||||
// M = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
|
// M = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
|
||||||
// a = subindex(M,2); // Returns [3, 7, 11, 15]
|
// a = columns(M,2); // Returns [3, 7, 11, 15]
|
||||||
// b = subindex(M,[2]); // Returns [[3], [7], [11], [15]]
|
// b = columns(M,[2]); // Returns [[3], [7], [11], [15]]
|
||||||
// c = subindex(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]]
|
// c = columns(M,[2,1]); // Returns [[3, 2], [7, 6], [11, 10], [15, 14]]
|
||||||
// d = subindex(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]
|
// d = columns(M,[1:3]); // Returns [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]
|
||||||
// N = [ [1,2], [3], [4,5], [6,7,8] ];
|
// N = [ [1,2], [3], [4,5], [6,7,8] ];
|
||||||
// e = subindex(N,[0,1]); // Returns [ [1,2], [3,undef], [4,5], [6,7] ]
|
// e = columns(N,[0,1]); // Returns [ [1,2], [3,undef], [4,5], [6,7] ]
|
||||||
function subindex(M, idx) =
|
function columns(M, idx) =
|
||||||
assert( is_list(M), "The input is not a list." )
|
assert( is_list(M), "The input is not a list." )
|
||||||
assert( !is_undef(idx) && _valid_idx(idx,0,1/0), "Invalid index input." )
|
assert( !is_undef(idx) && _valid_idx(idx,0,1/0), "Invalid index input." )
|
||||||
is_finite(idx)
|
is_finite(idx)
|
||||||
|
@ -1595,7 +1595,7 @@ function subindex(M, idx) =
|
||||||
// Usage:
|
// Usage:
|
||||||
// mat = submatrix(M, idx1, idx2);
|
// mat = submatrix(M, idx1, idx2);
|
||||||
// Topics: Matrices, Array Handling
|
// Topics: Matrices, Array Handling
|
||||||
// See Also: subindex(), block_matrix(), submatrix_set()
|
// See Also: columns(), block_matrix(), submatrix_set()
|
||||||
// Description:
|
// Description:
|
||||||
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
|
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
|
@ -1628,10 +1628,10 @@ function submatrix(M,idx1,idx2) =
|
||||||
// A = hstack(M1, M2, M3)
|
// A = hstack(M1, M2, M3)
|
||||||
// A = hstack([M1, M2, M3, ...])
|
// A = hstack([M1, M2, M3, ...])
|
||||||
// Topics: Matrices, Array Handling
|
// Topics: Matrices, Array Handling
|
||||||
// See Also: subindex(), submatrix(), block_matrix()
|
// See Also: columns(), submatrix(), block_matrix()
|
||||||
// Description:
|
// Description:
|
||||||
// Constructs a matrix by horizontally "stacking" together compatible matrices or vectors. Vectors are treated as columsn in the stack.
|
// Constructs a matrix by horizontally "stacking" together compatible matrices or vectors. Vectors are treated as columsn in the stack.
|
||||||
// This command is the inverse of subindex. Note: strings given in vectors are broken apart into lists of characters. Strings given
|
// This command is the inverse of columns. Note: strings given in vectors are broken apart into lists of characters. Strings given
|
||||||
// in matrices are preserved as strings. If you need to combine vectors of strings use array_group as shown below to convert the
|
// in matrices are preserved as strings. If you need to combine vectors of strings use array_group as shown below to convert the
|
||||||
// vector into a column matrix. Also note that vertical stacking can be done directly with concat.
|
// vector into a column matrix. Also note that vertical stacking can be done directly with concat.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
|
@ -1650,7 +1650,7 @@ function submatrix(M,idx1,idx2) =
|
||||||
// c = hstack([M,v1,M]); // Returns [[1, 0, 0, 2, 1, 0, 0],
|
// c = hstack([M,v1,M]); // Returns [[1, 0, 0, 2, 1, 0, 0],
|
||||||
// // [0, 1, 0, 3, 0, 1, 0],
|
// // [0, 1, 0, 3, 0, 1, 0],
|
||||||
// // [0, 0, 1, 4, 0, 0, 1]]
|
// // [0, 0, 1, 4, 0, 0, 1]]
|
||||||
// d = hstack(subindex(M,0), subindex(M,[1 2])); // Returns M
|
// d = hstack(columns(M,0), columns(M,[1 2])); // Returns M
|
||||||
// strvec = ["one","two"];
|
// strvec = ["one","two"];
|
||||||
// strmat = [["three","four"], ["five","six"]];
|
// strmat = [["three","four"], ["five","six"]];
|
||||||
// e = hstack(strvec,strvec); // Returns [["o", "n", "e", "o", "n", "e"],
|
// e = hstack(strvec,strvec); // Returns [["o", "n", "e", "o", "n", "e"],
|
||||||
|
@ -1680,7 +1680,7 @@ function hstack(M1, M2, M3) =
|
||||||
// Usage:
|
// Usage:
|
||||||
// bmat = block_matrix([[M11, M12,...],[M21, M22,...], ... ]);
|
// bmat = block_matrix([[M11, M12,...],[M21, M22,...], ... ]);
|
||||||
// Topics: Matrices, Array Handling
|
// Topics: Matrices, Array Handling
|
||||||
// See Also: subindex(), submatrix()
|
// See Also: columns(), submatrix()
|
||||||
// Description:
|
// Description:
|
||||||
// Create a block matrix by supplying a matrix of matrices, which will
|
// Create a block matrix by supplying a matrix of matrices, which will
|
||||||
// be combined into one unified matrix. Every matrix in one row
|
// be combined into one unified matrix. Every matrix in one row
|
||||||
|
@ -1724,7 +1724,7 @@ function block_matrix(M) =
|
||||||
// Usage:
|
// Usage:
|
||||||
// mat = diagonal_matrix(diag, [offdiag]);
|
// mat = diagonal_matrix(diag, [offdiag]);
|
||||||
// Topics: Matrices, Array Handling
|
// Topics: Matrices, Array Handling
|
||||||
// See Also: subindex(), submatrix()
|
// See Also: columns(), submatrix()
|
||||||
// Description:
|
// Description:
|
||||||
// Creates a square matrix with the items in the list `diag` on
|
// Creates a square matrix with the items in the list `diag` on
|
||||||
// its diagonal. The off diagonal entries are set to offdiag,
|
// its diagonal. The off diagonal entries are set to offdiag,
|
||||||
|
@ -1741,7 +1741,7 @@ function diagonal_matrix(diag, offdiag=0) =
|
||||||
// Usage:
|
// Usage:
|
||||||
// mat = submatrix_set(M, A, [m], [n]);
|
// mat = submatrix_set(M, A, [m], [n]);
|
||||||
// Topics: Matrices, Array Handling
|
// Topics: Matrices, Array Handling
|
||||||
// See Also: subindex(), submatrix()
|
// See Also: columns(), submatrix()
|
||||||
// Description:
|
// Description:
|
||||||
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
|
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
|
||||||
// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds
|
// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds
|
||||||
|
@ -1772,7 +1772,7 @@ function submatrix_set(M,A,m=0,n=0) =
|
||||||
// Takes a flat array of values, and groups items in sets of `cnt` length.
|
// Takes a flat array of values, and groups items in sets of `cnt` length.
|
||||||
// The opposite of this is `flatten()`.
|
// The opposite of this is `flatten()`.
|
||||||
// Topics: Matrices, Array Handling
|
// Topics: Matrices, Array Handling
|
||||||
// See Also: subindex(), submatrix(), hstack(), flatten(), full_flatten()
|
// See Also: columns(), submatrix(), hstack(), flatten(), full_flatten()
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// v = The list of items to group.
|
// v = The list of items to group.
|
||||||
// cnt = The number of items to put in each grouping. Default:2
|
// cnt = The number of items to put in each grouping. Default:2
|
||||||
|
@ -1829,7 +1829,7 @@ function group_data(groups, values) =
|
||||||
// Usage:
|
// Usage:
|
||||||
// list = flatten(l);
|
// list = flatten(l);
|
||||||
// Topics: Matrices, Array Handling
|
// Topics: Matrices, Array Handling
|
||||||
// See Also: subindex(), submatrix(), hstack(), full_flatten()
|
// See Also: columns(), submatrix(), hstack(), full_flatten()
|
||||||
// Description:
|
// Description:
|
||||||
// Takes a list of lists and flattens it by one level.
|
// Takes a list of lists and flattens it by one level.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
|
@ -1845,7 +1845,7 @@ function flatten(l) =
|
||||||
// Usage:
|
// Usage:
|
||||||
// list = full_flatten(l);
|
// list = full_flatten(l);
|
||||||
// Topics: Matrices, Array Handling
|
// Topics: Matrices, Array Handling
|
||||||
// See Also: subindex(), submatrix(), hstack(), flatten()
|
// See Also: columns(), submatrix(), hstack(), flatten()
|
||||||
// Description:
|
// Description:
|
||||||
// Collects in a list all elements recursively found in any level of the given list.
|
// Collects in a list all elements recursively found in any level of the given list.
|
||||||
// The output list is ordered in depth first order.
|
// The output list is ordered in depth first order.
|
||||||
|
|
|
@ -1594,9 +1594,9 @@ function _find_anchor(anchor, geom) =
|
||||||
hits = [
|
hits = [
|
||||||
for (face = faces) let(
|
for (face = faces) let(
|
||||||
verts = select(rpts, face),
|
verts = select(rpts, face),
|
||||||
xs = subindex(verts,0),
|
xs = columns(verts,0),
|
||||||
ys = subindex(verts,1),
|
ys = columns(verts,1),
|
||||||
zs = subindex(verts,2)
|
zs = columns(verts,2)
|
||||||
) if (
|
) if (
|
||||||
max(xs) >= -eps &&
|
max(xs) >= -eps &&
|
||||||
max(ys) >= -eps &&
|
max(ys) >= -eps &&
|
||||||
|
@ -1615,7 +1615,7 @@ function _find_anchor(anchor, geom) =
|
||||||
)
|
)
|
||||||
assert(len(hits)>0, "Anchor vector does not intersect with the shape. Attachment failed.")
|
assert(len(hits)>0, "Anchor vector does not intersect with the shape. Attachment failed.")
|
||||||
let(
|
let(
|
||||||
furthest = max_index(subindex(hits,0)),
|
furthest = max_index(columns(hits,0)),
|
||||||
dist = hits[furthest][0],
|
dist = hits[furthest][0],
|
||||||
pos = hits[furthest][2],
|
pos = hits[furthest][2],
|
||||||
hitnorms = [for (hit = hits) if (approx(hit[0],dist,eps=eps)) hit[1]],
|
hitnorms = [for (hit = hits) if (approx(hit[0],dist,eps=eps)) hit[1]],
|
||||||
|
@ -1640,7 +1640,7 @@ function _find_anchor(anchor, geom) =
|
||||||
) vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] :
|
) vnf==EMPTY_VNF? [anchor, [0,0,0], unit(anchor), 0] :
|
||||||
let(
|
let(
|
||||||
rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), vnf[0]),
|
rpts = apply(rot(from=anchor, to=RIGHT) * move(point3d(-cp)), vnf[0]),
|
||||||
maxx = max(subindex(rpts,0)),
|
maxx = max(columns(rpts,0)),
|
||||||
idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i],
|
idxs = [for (i = idx(rpts)) if (approx(rpts[i].x, maxx)) i],
|
||||||
mm = pointlist_bounds(select(rpts,idxs)),
|
mm = pointlist_bounds(select(rpts,idxs)),
|
||||||
avgy = (mm[0].y+mm[1].y)/2,
|
avgy = (mm[0].y+mm[1].y)/2,
|
||||||
|
@ -1681,7 +1681,7 @@ function _find_anchor(anchor, geom) =
|
||||||
)
|
)
|
||||||
if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2]
|
if(!is_undef(isect) && !approx(isect,t[0])) [norm(isect), isect, n2]
|
||||||
],
|
],
|
||||||
maxidx = max_index(subindex(isects,0)),
|
maxidx = max_index(columns(isects,0)),
|
||||||
isect = isects[maxidx],
|
isect = isects[maxidx],
|
||||||
pos = point2d(cp) + isect[1],
|
pos = point2d(cp) + isect[1],
|
||||||
vec = unit(isect[2],[0,1])
|
vec = unit(isect[2],[0,1])
|
||||||
|
@ -1691,7 +1691,7 @@ function _find_anchor(anchor, geom) =
|
||||||
path = geom[1],
|
path = geom[1],
|
||||||
anchor = point2d(anchor),
|
anchor = point2d(anchor),
|
||||||
rpath = rot(from=anchor, to=RIGHT, p=move(point2d(-cp), p=path)),
|
rpath = rot(from=anchor, to=RIGHT, p=move(point2d(-cp), p=path)),
|
||||||
maxx = max(subindex(rpath,0)),
|
maxx = max(columns(rpath,0)),
|
||||||
idxs = [for (i = idx(rpath)) if (approx(rpath[i].x, maxx)) i],
|
idxs = [for (i = idx(rpath)) if (approx(rpath[i].x, maxx)) i],
|
||||||
miny = min([for (i=idxs) rpath[i].y]),
|
miny = min([for (i=idxs) rpath[i].y]),
|
||||||
maxy = max([for (i=idxs) rpath[i].y]),
|
maxy = max([for (i=idxs) rpath[i].y]),
|
||||||
|
@ -1717,7 +1717,7 @@ function _find_anchor(anchor, geom) =
|
||||||
if(!is_undef(isect) && !approx(isect,t[0]))
|
if(!is_undef(isect) && !approx(isect,t[0]))
|
||||||
[norm(isect), isect, n2]
|
[norm(isect), isect, n2]
|
||||||
],
|
],
|
||||||
maxidx = max_index(subindex(isects,0)),
|
maxidx = max_index(columns(isects,0)),
|
||||||
isect = isects[maxidx],
|
isect = isects[maxidx],
|
||||||
pos = point3d(cp) + point3d(isect[1]) + unit([0,0,anchor.z],CENTER)*l/2,
|
pos = point3d(cp) + point3d(isect[1]) + unit([0,0,anchor.z],CENTER)*l/2,
|
||||||
xyvec = unit(isect[2],[0,1]),
|
xyvec = unit(isect[2],[0,1]),
|
||||||
|
@ -1730,7 +1730,7 @@ function _find_anchor(anchor, geom) =
|
||||||
anchor = point3d(anchor),
|
anchor = point3d(anchor),
|
||||||
xyanch = point2d(anchor),
|
xyanch = point2d(anchor),
|
||||||
rpath = rot(from=xyanch, to=RIGHT, p=move(point2d(-cp), p=path)),
|
rpath = rot(from=xyanch, to=RIGHT, p=move(point2d(-cp), p=path)),
|
||||||
maxx = max(subindex(rpath,0)),
|
maxx = max(columns(rpath,0)),
|
||||||
idxs = [for (i = idx(rpath)) if (approx(rpath[i].x, maxx)) i],
|
idxs = [for (i = idx(rpath)) if (approx(rpath[i].x, maxx)) i],
|
||||||
ys = [for (i=idxs) rpath[i].y],
|
ys = [for (i=idxs) rpath[i].y],
|
||||||
avgy = (min(ys)+max(ys))/2,
|
avgy = (min(ys)+max(ys))/2,
|
||||||
|
|
20
beziers.scad
20
beziers.scad
|
@ -1043,9 +1043,9 @@ function bezier_patch_points(patch, u, v) =
|
||||||
assert(is_num(u) || !is_undef(u[0]))
|
assert(is_num(u) || !is_undef(u[0]))
|
||||||
assert(is_num(v) || !is_undef(v[0]))
|
assert(is_num(v) || !is_undef(v[0]))
|
||||||
let(
|
let(
|
||||||
vbezes = [for (i = idx(patch[0])) bezier_points(subindex(patch,i), is_num(u)? [u] : u)]
|
vbezes = [for (i = idx(patch[0])) bezier_points(columns(patch,i), is_num(u)? [u] : u)]
|
||||||
)
|
)
|
||||||
[for (i = idx(vbezes[0])) bezier_points(subindex(vbezes,i), is_num(v)? [v] : v)];
|
[for (i = idx(vbezes[0])) bezier_points(columns(vbezes,i), is_num(v)? [v] : v)];
|
||||||
|
|
||||||
|
|
||||||
// Function: bezier_triangle_point()
|
// Function: bezier_triangle_point()
|
||||||
|
@ -1357,7 +1357,7 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
|
||||||
all(row_degen) && all(col_degen) ? // fully degenerate case
|
all(row_degen) && all(col_degen) ? // fully degenerate case
|
||||||
[EMPTY_VNF, repeat([patch[0][0]],4)] :
|
[EMPTY_VNF, repeat([patch[0][0]],4)] :
|
||||||
all(row_degen) ? // degenerate to a line (top to bottom)
|
all(row_degen) ? // degenerate to a line (top to bottom)
|
||||||
let(pts = bezier_points(subindex(patch,0), samplepts))
|
let(pts = bezier_points(columns(patch,0), samplepts))
|
||||||
[EMPTY_VNF, [pts,pts,[pts[0]],[last(pts)]]] :
|
[EMPTY_VNF, [pts,pts,[pts[0]],[last(pts)]]] :
|
||||||
all(col_degen) ? // degenerate to a line (left to right)
|
all(col_degen) ? // degenerate to a line (left to right)
|
||||||
let(pts = bezier_points(patch[0], samplepts))
|
let(pts = bezier_points(patch[0], samplepts))
|
||||||
|
@ -1366,7 +1366,7 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
|
||||||
let(pts = bezier_patch_points(patch, samplepts, samplepts))
|
let(pts = bezier_patch_points(patch, samplepts, samplepts))
|
||||||
[
|
[
|
||||||
vnf_vertex_array(pts, reverse=!reverse),
|
vnf_vertex_array(pts, reverse=!reverse),
|
||||||
[subindex(pts,0), subindex(pts,len(pts)-1), pts[0], last(pts)]
|
[columns(pts,0), columns(pts,len(pts)-1), pts[0], last(pts)]
|
||||||
] :
|
] :
|
||||||
top_degen && bot_degen ?
|
top_degen && bot_degen ?
|
||||||
let(
|
let(
|
||||||
|
@ -1375,17 +1375,17 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
|
||||||
if (splinesteps%2==0) splinesteps+1,
|
if (splinesteps%2==0) splinesteps+1,
|
||||||
each reverse(list([3:2:splinesteps]))
|
each reverse(list([3:2:splinesteps]))
|
||||||
],
|
],
|
||||||
bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(subindex(patch,i), samplepts)],
|
bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(columns(patch,i), samplepts)],
|
||||||
pts = [
|
pts = [
|
||||||
[bpatch[0][0]],
|
[bpatch[0][0]],
|
||||||
for(j=[0:splinesteps-2]) bezier_points(subindex(bpatch,j+1), lerpn(0,1,rowcount[j])),
|
for(j=[0:splinesteps-2]) bezier_points(columns(bpatch,j+1), lerpn(0,1,rowcount[j])),
|
||||||
[last(bpatch[0])]
|
[last(bpatch[0])]
|
||||||
],
|
],
|
||||||
vnf = vnf_tri_array(pts, reverse=!reverse)
|
vnf = vnf_tri_array(pts, reverse=!reverse)
|
||||||
) [
|
) [
|
||||||
vnf,
|
vnf,
|
||||||
[
|
[
|
||||||
subindex(pts,0),
|
columns(pts,0),
|
||||||
[for(row=pts) last(row)],
|
[for(row=pts) last(row)],
|
||||||
pts[0],
|
pts[0],
|
||||||
last(pts),
|
last(pts),
|
||||||
|
@ -1404,16 +1404,16 @@ function bezier_patch_degenerate(patch, splinesteps=16, reverse=false, return_ed
|
||||||
full_degen = len(patch)>=4 && all(select(row_degen,1,ceil(len(patch)/2-1))),
|
full_degen = len(patch)>=4 && all(select(row_degen,1,ceil(len(patch)/2-1))),
|
||||||
rowmax = full_degen ? count(splinesteps+1) :
|
rowmax = full_degen ? count(splinesteps+1) :
|
||||||
[for(j=[0:splinesteps]) j<=splinesteps/2 ? 2*j : splinesteps],
|
[for(j=[0:splinesteps]) j<=splinesteps/2 ? 2*j : splinesteps],
|
||||||
bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(subindex(patch,i), samplepts)],
|
bpatch = [for(i=[0:1:len(patch[0])-1]) bezier_points(columns(patch,i), samplepts)],
|
||||||
pts = [
|
pts = [
|
||||||
[bpatch[0][0]],
|
[bpatch[0][0]],
|
||||||
for(j=[1:splinesteps]) bezier_points(subindex(bpatch,j), lerpn(0,1,rowmax[j]+1))
|
for(j=[1:splinesteps]) bezier_points(columns(bpatch,j), lerpn(0,1,rowmax[j]+1))
|
||||||
],
|
],
|
||||||
vnf = vnf_tri_array(pts, reverse=!reverse)
|
vnf = vnf_tri_array(pts, reverse=!reverse)
|
||||||
) [
|
) [
|
||||||
vnf,
|
vnf,
|
||||||
[
|
[
|
||||||
subindex(pts,0),
|
columns(pts,0),
|
||||||
[for(row=pts) last(row)],
|
[for(row=pts) last(row)],
|
||||||
pts[0],
|
pts[0],
|
||||||
last(pts),
|
last(pts),
|
||||||
|
|
|
@ -1121,7 +1121,7 @@ module sp_neck(diam,type,wall,id,style="L",bead=false, anchor, spin, orient)
|
||||||
|
|
||||||
isect400 = [for(seg=pair(beadpts)) let(segisect = line_intersection([[T/2,0],[T/2,1]] , seg, LINE, SEGMENT)) if (is_def(segisect)) segisect.y];
|
isect400 = [for(seg=pair(beadpts)) let(segisect = line_intersection([[T/2,0],[T/2,1]] , seg, LINE, SEGMENT)) if (is_def(segisect)) segisect.y];
|
||||||
|
|
||||||
extra_bot = type==400 && bead ? -min(subindex(beadpts,1))+max(isect400) : 0;
|
extra_bot = type==400 && bead ? -min(columns(beadpts,1))+max(isect400) : 0;
|
||||||
bead_shift = type==400 ? H+max(isect400) : entry[5]+W/2; // entry[5] is L
|
bead_shift = type==400 ? H+max(isect400) : entry[5]+W/2; // entry[5] is L
|
||||||
|
|
||||||
attachable(anchor,spin,orient,r=bead ? beadmax : T/2, l=H+extra_bot){
|
attachable(anchor,spin,orient,r=bead ? beadmax : T/2, l=H+extra_bot){
|
||||||
|
|
|
@ -1965,7 +1965,7 @@ function align_polygon(reference, poly, angles, cp, trans, return_ind=false) =
|
||||||
return_error=true
|
return_error=true
|
||||||
)
|
)
|
||||||
],
|
],
|
||||||
scores = subindex(alignments,1),
|
scores = columns(alignments,1),
|
||||||
minscore = min(scores),
|
minscore = min(scores),
|
||||||
minind = [for(i=idx(scores)) if (scores[i]<minscore+EPSILON) i],
|
minind = [for(i=idx(scores)) if (scores[i]<minscore+EPSILON) i],
|
||||||
dummy = is_def(angles) ? echo(best_angles = select(list(angles), minind)):0,
|
dummy = is_def(angles) ? echo(best_angles = select(list(angles), minind)):0,
|
||||||
|
|
|
@ -999,7 +999,7 @@ function null_space(A,eps=1e-12) =
|
||||||
zrow = [for(i=idx(R)) if (all_zero(R[i],eps)) i]
|
zrow = [for(i=idx(R)) if (all_zero(R[i],eps)) i]
|
||||||
)
|
)
|
||||||
len(zrow)==0 ? [] :
|
len(zrow)==0 ? [] :
|
||||||
transpose(subindex(Q_R[0],zrow));
|
transpose(columns(Q_R[0],zrow));
|
||||||
|
|
||||||
|
|
||||||
// Function: qr_factor()
|
// Function: qr_factor()
|
||||||
|
|
|
@ -427,7 +427,7 @@ function resample_path(path, N, spacing, closed=false) =
|
||||||
distlist = lerpn(0,length,N,false),
|
distlist = lerpn(0,length,N,false),
|
||||||
cuts = _path_cut_points(path, distlist, closed=closed)
|
cuts = _path_cut_points(path, distlist, closed=closed)
|
||||||
)
|
)
|
||||||
[ each subindex(cuts,0),
|
[ each columns(cuts,0),
|
||||||
if (!closed) last(path) // Then add last point here
|
if (!closed) last(path) // Then add last point here
|
||||||
];
|
];
|
||||||
|
|
||||||
|
@ -1174,7 +1174,7 @@ function _assemble_path_fragments(fragments, eps=EPSILON, _finished=[]) =
|
||||||
len(fragments)==0? _finished :
|
len(fragments)==0? _finished :
|
||||||
let(
|
let(
|
||||||
minxidx = min_index([
|
minxidx = min_index([
|
||||||
for (frag=fragments) min(subindex(frag,0))
|
for (frag=fragments) min(columns(frag,0))
|
||||||
]),
|
]),
|
||||||
result_l = _assemble_a_path_from_fragments(
|
result_l = _assemble_a_path_from_fragments(
|
||||||
fragments=fragments,
|
fragments=fragments,
|
||||||
|
|
|
@ -267,7 +267,7 @@ function _region_region_intersections(region1, region2, closed1=true,closed2=tru
|
||||||
cornerpts = [for(i=[0:1])
|
cornerpts = [for(i=[0:1])
|
||||||
[for(k=vector_search(points[i],eps,points[i]))
|
[for(k=vector_search(points[i],eps,points[i]))
|
||||||
each if (len(k)>1) select(ptind[i],k)]],
|
each if (len(k)>1) select(ptind[i],k)]],
|
||||||
risect = [for(i=[0:1]) concat(subindex(intersections,i), cornerpts[i])],
|
risect = [for(i=[0:1]) concat(columns(intersections,i), cornerpts[i])],
|
||||||
counts = [count(len(region1)), count(len(region2))],
|
counts = [count(len(region1)), count(len(region2))],
|
||||||
pathind = [for(i=[0:1]) search(counts[i], risect[i], 0)]
|
pathind = [for(i=[0:1]) search(counts[i], risect[i], 0)]
|
||||||
)
|
)
|
||||||
|
|
|
@ -1270,7 +1270,7 @@ module convex_offset_extrude(
|
||||||
// The entry r[i] is [radius,z] for a given layer
|
// The entry r[i] is [radius,z] for a given layer
|
||||||
r = move([0,bottom_height],p=concat(
|
r = move([0,bottom_height],p=concat(
|
||||||
reverse(offsets_bot), [[0,0], [0,middle]], move([0,middle], p=offsets_top)));
|
reverse(offsets_bot), [[0,0], [0,middle]], move([0,middle], p=offsets_top)));
|
||||||
delta = [for(val=deltas(subindex(r,0))) sign(val)];
|
delta = [for(val=deltas(columns(r,0))) sign(val)];
|
||||||
below=[-thickness,0];
|
below=[-thickness,0];
|
||||||
above=[0,thickness];
|
above=[0,thickness];
|
||||||
// layers is a list of pairs of the relative positions for each layer, e.g. [0,thickness]
|
// layers is a list of pairs of the relative positions for each layer, e.g. [0,thickness]
|
||||||
|
@ -1937,8 +1937,8 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b
|
||||||
verify_vert =
|
verify_vert =
|
||||||
[for(i=[0:N-1],j=[0:4])
|
[for(i=[0:N-1],j=[0:4])
|
||||||
let(
|
let(
|
||||||
vline = concat(select(subindex(top_patch[i],j),2,4),
|
vline = concat(select(columns(top_patch[i],j),2,4),
|
||||||
select(subindex(bot_patch[i],j),2,4))
|
select(columns(bot_patch[i],j),2,4))
|
||||||
)
|
)
|
||||||
if (!is_collinear(vline)) [i,j]],
|
if (!is_collinear(vline)) [i,j]],
|
||||||
//verify horiz edges
|
//verify horiz edges
|
||||||
|
@ -1955,8 +1955,8 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b
|
||||||
"Roundovers interfere with each other on bottom face: either input is self intersecting or top joint length is too large")
|
"Roundovers interfere with each other on bottom face: either input is self intersecting or top joint length is too large")
|
||||||
assert(debug || (verify_vert==[] && verify_horiz==[]), "Curvature continuity failed")
|
assert(debug || (verify_vert==[] && verify_horiz==[]), "Curvature continuity failed")
|
||||||
let(
|
let(
|
||||||
vnf = vnf_merge([ each subindex(top_samples,0),
|
vnf = vnf_merge([ each columns(top_samples,0),
|
||||||
each subindex(bot_samples,0),
|
each columns(bot_samples,0),
|
||||||
for(pts=edge_points) vnf_vertex_array(pts),
|
for(pts=edge_points) vnf_vertex_array(pts),
|
||||||
debug ? vnf_from_polygons(faces)
|
debug ? vnf_from_polygons(faces)
|
||||||
: vnf_triangulate(vnf_from_polygons(faces))
|
: vnf_triangulate(vnf_from_polygons(faces))
|
||||||
|
@ -2114,7 +2114,7 @@ function _circle_mask(r) =
|
||||||
// ]),
|
// ]),
|
||||||
// radius = [0,0,each repeat(slotradius,4),0,0], closed=false
|
// radius = [0,0,each repeat(slotradius,4),0,0], closed=false
|
||||||
// )
|
// )
|
||||||
// ) apply(left(max(subindex(slot,0))/2)*fwd(min(subindex(slot,1))), slot);
|
// ) apply(left(max(columns(slot,0))/2)*fwd(min(columns(slot,1))), slot);
|
||||||
// stroke(slot(15,29,7));
|
// stroke(slot(15,29,7));
|
||||||
// Example: A cylindrical container with rounded edges and a rounded finger slot.
|
// Example: A cylindrical container with rounded edges and a rounded finger slot.
|
||||||
// function slot(slotwidth, slotheight, slotradius) = let(
|
// function slot(slotwidth, slotheight, slotradius) = let(
|
||||||
|
@ -2138,7 +2138,7 @@ function _circle_mask(r) =
|
||||||
// ]),
|
// ]),
|
||||||
// radius = [0,0,each repeat(slotradius,4),0,0], closed=false
|
// radius = [0,0,each repeat(slotradius,4),0,0], closed=false
|
||||||
// )
|
// )
|
||||||
// ) apply(left(max(subindex(slot,0))/2)*fwd(min(subindex(slot,1))), slot);
|
// ) apply(left(max(columns(slot,0))/2)*fwd(min(columns(slot,1))), slot);
|
||||||
// diam = 80;
|
// diam = 80;
|
||||||
// wall = 4;
|
// wall = 4;
|
||||||
// height = 40;
|
// height = 40;
|
||||||
|
@ -2162,12 +2162,12 @@ module bent_cutout_mask(r, thickness, path, radius, convexity=10)
|
||||||
path = clockwise_polygon(path);
|
path = clockwise_polygon(path);
|
||||||
curvepoints = arc(d=thickness, angle = [-180,0]);
|
curvepoints = arc(d=thickness, angle = [-180,0]);
|
||||||
profiles = [for(pt=curvepoints) _cyl_hole(r+pt.x,apply(xscale((r+pt.x)/r), offset(path,delta=thickness/2+pt.y,check_valid=false,closed=true)))];
|
profiles = [for(pt=curvepoints) _cyl_hole(r+pt.x,apply(xscale((r+pt.x)/r), offset(path,delta=thickness/2+pt.y,check_valid=false,closed=true)))];
|
||||||
pathx = subindex(path,0);
|
pathx = columns(path,0);
|
||||||
minangle = (min(pathx)-thickness/2)*360/(2*PI*r);
|
minangle = (min(pathx)-thickness/2)*360/(2*PI*r);
|
||||||
maxangle = (max(pathx)+thickness/2)*360/(2*PI*r);
|
maxangle = (max(pathx)+thickness/2)*360/(2*PI*r);
|
||||||
mindist = (r+thickness/2)/cos((maxangle-minangle)/2);
|
mindist = (r+thickness/2)/cos((maxangle-minangle)/2);
|
||||||
assert(maxangle-minangle<180,"Cutout angle span is too large. Must be smaller than 180.");
|
assert(maxangle-minangle<180,"Cutout angle span is too large. Must be smaller than 180.");
|
||||||
zmean = mean(subindex(path,1));
|
zmean = mean(columns(path,1));
|
||||||
innerzero = repeat([0,0,zmean], len(path));
|
innerzero = repeat([0,0,zmean], len(path));
|
||||||
outerpt = repeat( [1.5*mindist*cos((maxangle+minangle)/2),1.5*mindist*sin((maxangle+minangle)/2),zmean], len(path));
|
outerpt = repeat( [1.5*mindist*cos((maxangle+minangle)/2),1.5*mindist*sin((maxangle+minangle)/2),zmean], len(path));
|
||||||
vnf_polyhedron(vnf_vertex_array([innerzero, each profiles, outerpt],col_wrap=true),convexity=convexity);
|
vnf_polyhedron(vnf_vertex_array([innerzero, each profiles, outerpt],col_wrap=true),convexity=convexity);
|
||||||
|
|
|
@ -363,7 +363,7 @@ function regular_ngon(n=6, r, d, or, od, ir, id, side, rounding=0, realign=false
|
||||||
)
|
)
|
||||||
each arc(N=steps, cp=p, r=rounding, start=a+180/n, angle=-360/n)
|
each arc(N=steps, cp=p, r=rounding, start=a+180/n, angle=-360/n)
|
||||||
],
|
],
|
||||||
maxx_idx = max_index(subindex(path2,0)),
|
maxx_idx = max_index(columns(path2,0)),
|
||||||
path3 = polygon_shift(path2,maxx_idx)
|
path3 = polygon_shift(path2,maxx_idx)
|
||||||
) path3
|
) path3
|
||||||
),
|
),
|
||||||
|
@ -961,7 +961,7 @@ function teardrop2d(r, ang=45, cap_h, d, anchor=CENTER, spin=0) =
|
||||||
[-cap_w,cap_h]
|
[-cap_w,cap_h]
|
||||||
], closed=true
|
], closed=true
|
||||||
),
|
),
|
||||||
maxx_idx = max_index(subindex(path,0)),
|
maxx_idx = max_index(columns(path,0)),
|
||||||
path2 = polygon_shift(path,maxx_idx)
|
path2 = polygon_shift(path,maxx_idx)
|
||||||
) reorient(anchor,spin, two_d=true, path=path2, p=path2);
|
) reorient(anchor,spin, two_d=true, path=path2, p=path2);
|
||||||
|
|
||||||
|
@ -1016,7 +1016,7 @@ function glued_circles(r, spread=10, tangent=30, d, anchor=CENTER, spin=0) =
|
||||||
[for (i=[0:1:lobesegs]) let(a=sa1+i*lobestep+180) r * [cos(a),sin(a)] + cp1],
|
[for (i=[0:1:lobesegs]) let(a=sa1+i*lobestep+180) r * [cos(a),sin(a)] + cp1],
|
||||||
tangent==0? [] : [for (i=[0:1:arcsegs]) let(a=ea2-i*arcstep) r2 * [cos(a),sin(a)] + cp2]
|
tangent==0? [] : [for (i=[0:1:arcsegs]) let(a=ea2-i*arcstep) r2 * [cos(a),sin(a)] + cp2]
|
||||||
),
|
),
|
||||||
maxx_idx = max_index(subindex(path,0)),
|
maxx_idx = max_index(columns(path,0)),
|
||||||
path2 = reverse_polygon(polygon_shift(path,maxx_idx))
|
path2 = reverse_polygon(polygon_shift(path,maxx_idx))
|
||||||
) reorient(anchor,spin, two_d=true, path=path2, extent=true, p=path2);
|
) reorient(anchor,spin, two_d=true, path=path2, extent=true, p=path2);
|
||||||
|
|
||||||
|
|
|
@ -2211,7 +2211,7 @@ module path_text(path, text, font, size, thickness, lettersize, offset=0, revers
|
||||||
usernorm = is_def(normal);
|
usernorm = is_def(normal);
|
||||||
usetop = is_def(top);
|
usetop = is_def(top);
|
||||||
|
|
||||||
normpts = is_undef(normal) ? (reverse?1:-1)*subindex(pts,3) : _cut_interp(pts,path, normal);
|
normpts = is_undef(normal) ? (reverse?1:-1)*columns(pts,3) : _cut_interp(pts,path, normal);
|
||||||
toppts = is_undef(top) ? undef : _cut_interp(pts,path,top);
|
toppts = is_undef(top) ? undef : _cut_interp(pts,path,top);
|
||||||
for(i=idx(text))
|
for(i=idx(text))
|
||||||
let( tangent = pts[i][2] )
|
let( tangent = pts[i][2] )
|
||||||
|
|
|
@ -985,7 +985,7 @@ function path_sweep2d(shape, path, closed=false, caps, quality=1, style="min_edg
|
||||||
[for(pt = profile)
|
[for(pt = profile)
|
||||||
let(
|
let(
|
||||||
ofs = offset(path, delta=-flip*pt.x, return_faces=true,closed=closed, quality=quality),
|
ofs = offset(path, delta=-flip*pt.x, return_faces=true,closed=closed, quality=quality),
|
||||||
map = subindex(_ofs_vmap(ofs,closed=closed),1)
|
map = columns(_ofs_vmap(ofs,closed=closed),1)
|
||||||
)
|
)
|
||||||
select(path3d(ofs[0],pt.y),map)
|
select(path3d(ofs[0],pt.y),map)
|
||||||
]
|
]
|
||||||
|
|
|
@ -433,14 +433,14 @@ module test_add_scalar() {
|
||||||
test_add_scalar();
|
test_add_scalar();
|
||||||
|
|
||||||
|
|
||||||
module test_subindex() {
|
module test_columns() {
|
||||||
v = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
|
v = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]];
|
||||||
assert(subindex(v,2) == [3, 7, 11, 15]);
|
assert(columns(v,2) == [3, 7, 11, 15]);
|
||||||
assert(subindex(v,[2]) == [[3], [7], [11], [15]]);
|
assert(columns(v,[2]) == [[3], [7], [11], [15]]);
|
||||||
assert(subindex(v,[2,1]) == [[3, 2], [7, 6], [11, 10], [15, 14]]);
|
assert(columns(v,[2,1]) == [[3, 2], [7, 6], [11, 10], [15, 14]]);
|
||||||
assert(subindex(v,[1:3]) == [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]);
|
assert(columns(v,[1:3]) == [[2, 3, 4], [6, 7, 8], [10, 11, 12], [14, 15, 16]]);
|
||||||
}
|
}
|
||||||
test_subindex();
|
test_columns();
|
||||||
|
|
||||||
|
|
||||||
// Need decision about behavior for out of bounds ranges, empty ranges
|
// Need decision about behavior for out of bounds ranges, empty ranges
|
||||||
|
@ -532,7 +532,7 @@ module test_hstack() {
|
||||||
a = hstack(v1,v2);
|
a = hstack(v1,v2);
|
||||||
b = hstack(v1,v2,v3);
|
b = hstack(v1,v2,v3);
|
||||||
c = hstack([M,v1,M]);
|
c = hstack([M,v1,M]);
|
||||||
d = hstack(subindex(M,0), subindex(M,[1, 2]));
|
d = hstack(columns(M,0), columns(M,[1, 2]));
|
||||||
assert_equal(a,[[2, 5], [3, 6], [4, 7]]);
|
assert_equal(a,[[2, 5], [3, 6], [4, 7]]);
|
||||||
assert_equal(b,[[2, 5, 8], [3, 6, 9], [4, 7, 10]]);
|
assert_equal(b,[[2, 5, 8], [3, 6, 9], [4, 7, 10]]);
|
||||||
assert_equal(c,[[1, 0, 0, 2, 1, 0, 0], [0, 1, 0, 3, 0, 1, 0], [0, 0, 1, 4, 0, 0, 1]]);
|
assert_equal(c,[[1, 0, 0, 2, 1, 0, 0], [0, 1, 0, 3, 0, 1, 0], [0, 0, 1, 4, 0, 0, 1]]);
|
||||||
|
|
|
@ -994,7 +994,7 @@ module test_linear_solve(){
|
||||||
-8.378819388897780e-01,
|
-8.378819388897780e-01,
|
||||||
2.330507118860985e-01,
|
2.330507118860985e-01,
|
||||||
8.511278195488737e-01]);
|
8.511278195488737e-01]);
|
||||||
assert_approx(linear_solve(subindex(M,[0:2]), [2,4,4,4]),
|
assert_approx(linear_solve(columns(M,[0:2]), [2,4,4,4]),
|
||||||
[-2.457142857142859e-01,
|
[-2.457142857142859e-01,
|
||||||
5.200000000000000e-01,
|
5.200000000000000e-01,
|
||||||
7.428571428571396e-02]);
|
7.428571428571396e-02]);
|
||||||
|
|
|
@ -926,8 +926,8 @@ module generic_threaded_rod(
|
||||||
assert(higang1 < twist/2);
|
assert(higang1 < twist/2);
|
||||||
assert(higang2 < twist/2);
|
assert(higang2 < twist/2);
|
||||||
prof3d = path3d(profile);
|
prof3d = path3d(profile);
|
||||||
pdepth = -min(subindex(profile,1));
|
pdepth = -min(columns(profile,1));
|
||||||
pmax = pitch * max(subindex(profile,1));
|
pmax = pitch * max(columns(profile,1));
|
||||||
rmax = max(_r1,_r2)+pmax;
|
rmax = max(_r1,_r2)+pmax;
|
||||||
depth = pdepth * pitch;
|
depth = pdepth * pitch;
|
||||||
dummy1 = assert(_r1>depth && _r2>depth, "Screw profile deeper than rod radius");
|
dummy1 = assert(_r1>depth && _r2>depth, "Screw profile deeper than rod radius");
|
||||||
|
@ -1087,7 +1087,7 @@ module generic_threaded_nut(
|
||||||
bevel1 = first_defined([bevel1,bevel,false]);
|
bevel1 = first_defined([bevel1,bevel,false]);
|
||||||
bevel2 = first_defined([bevel2,bevel,false]);
|
bevel2 = first_defined([bevel2,bevel,false]);
|
||||||
dummy1 = assert(is_num(pitch) && pitch>0);
|
dummy1 = assert(is_num(pitch) && pitch>0);
|
||||||
depth = -pitch*min(subindex(profile,1));
|
depth = -pitch*min(columns(profile,1));
|
||||||
attachable(anchor,spin,orient, size=[od/cos(30),od,h]) {
|
attachable(anchor,spin,orient, size=[od/cos(30),od,h]) {
|
||||||
difference() {
|
difference() {
|
||||||
cyl(d=od/cos(30), h=h, center=true, $fn=6,chamfer1=bevel1?depth:undef,chamfer2=bevel2?depth:undef);
|
cyl(d=od/cos(30), h=h, center=true, $fn=6,chamfer1=bevel1?depth:undef,chamfer2=bevel2?depth:undef);
|
||||||
|
|
|
@ -504,8 +504,8 @@ function vector_nearest(query, k, target) =
|
||||||
"More results are requested than the number of points.")
|
"More results are requested than the number of points.")
|
||||||
tgpts
|
tgpts
|
||||||
? let( tree = _bt_tree(target, count(len(target))) )
|
? let( tree = _bt_tree(target, count(len(target))) )
|
||||||
subindex(_bt_nearest( query, k, target, tree),0)
|
columns(_bt_nearest( query, k, target, tree),0)
|
||||||
: subindex(_bt_nearest( query, k, target[0], target[1]),0);
|
: columns(_bt_nearest( query, k, target[0], target[1]),0);
|
||||||
|
|
||||||
|
|
||||||
//Ball tree nearest
|
//Ball tree nearest
|
||||||
|
|
8
vnf.scad
8
vnf.scad
|
@ -354,7 +354,7 @@ function vnf_from_polygons(polygons) =
|
||||||
function _path_path_closest_vertices(path1,path2) =
|
function _path_path_closest_vertices(path1,path2) =
|
||||||
let(
|
let(
|
||||||
dists = [for (i=idx(path1)) let(j=closest_point(path1[i],path2)) [j,norm(path2[j]-path1[i])]],
|
dists = [for (i=idx(path1)) let(j=closest_point(path1[i],path2)) [j,norm(path2[j]-path1[i])]],
|
||||||
i1 = min_index(subindex(dists,1)),
|
i1 = min_index(columns(dists,1)),
|
||||||
i2 = dists[i1][0]
|
i2 = dists[i1][0]
|
||||||
) [dists[i1][1], i1, i2];
|
) [dists[i1][1], i1, i2];
|
||||||
|
|
||||||
|
@ -384,7 +384,7 @@ function _cleave_connected_region(region) =
|
||||||
for (i=[1:1:len(region)-1])
|
for (i=[1:1:len(region)-1])
|
||||||
_path_path_closest_vertices(region[0],region[i])
|
_path_path_closest_vertices(region[0],region[i])
|
||||||
],
|
],
|
||||||
idxi = min_index(subindex(dists,0)),
|
idxi = min_index(columns(dists,0)),
|
||||||
newoline = _join_paths_at_vertices(
|
newoline = _join_paths_at_vertices(
|
||||||
region[0], region[idxi+1],
|
region[0], region[idxi+1],
|
||||||
dists[idxi][1], dists[idxi][2]
|
dists[idxi][1], dists[idxi][2]
|
||||||
|
@ -479,7 +479,7 @@ function vnf_faces(vnf) = vnf[1];
|
||||||
// Usage:
|
// Usage:
|
||||||
// rvnf = vnf_reverse_faces(vnf);
|
// rvnf = vnf_reverse_faces(vnf);
|
||||||
// Description:
|
// Description:
|
||||||
// Reverses the facing of all the faces in the given VNF.
|
// Reverses the orientation of all the faces in the given VNF.
|
||||||
function vnf_reverse_faces(vnf) =
|
function vnf_reverse_faces(vnf) =
|
||||||
[vnf[0], [for (face=vnf[1]) reverse(face)]];
|
[vnf[0], [for (face=vnf[1]) reverse(face)]];
|
||||||
|
|
||||||
|
@ -568,7 +568,7 @@ function vnf_slice(vnf,dir,cuts) =
|
||||||
|
|
||||||
function _split_polygon_at_x(poly, x) =
|
function _split_polygon_at_x(poly, x) =
|
||||||
let(
|
let(
|
||||||
xs = subindex(poly,0)
|
xs = columns(poly,0)
|
||||||
) (min(xs) >= x || max(xs) <= x)? [poly] :
|
) (min(xs) >= x || max(xs) <= x)? [poly] :
|
||||||
let(
|
let(
|
||||||
poly2 = [
|
poly2 = [
|
||||||
|
|
Loading…
Reference in a new issue