Added edge_profile_asym(). Improved edge_profile().

This commit is contained in:
Revar Desmera 2023-06-17 22:41:17 -07:00
parent 51b59859db
commit 2d31a31f48

View file

@ -1614,33 +1614,48 @@ module face_profile(faces=[], r, d, excess=0.01, convexity=10) {
module edge_profile(edges=EDGES_ALL, except=[], excess=0.01, convexity=10) { module edge_profile(edges=EDGES_ALL, except=[], excess=0.01, convexity=10) {
req_children($children); req_children($children);
check1 = assert($parent_geom != undef, "No object to attach to!"); check1 = assert($parent_geom != undef, "No object to attach to!");
edges = _edges(edges, except=except); conoid = $parent_geom[0] == "conoid";
vecs = [ edges = !conoid? _edges(edges, except=except) :
edges==EDGES_ALL? [TOP,BOT] :
assert(all([for (e=edges) in_list(e,[TOP,BOT])]), "Invalid conoid edge spec.")
edges;
vecs = conoid
? [for (e=edges) e+FWD]
: [
for (i = [0:3], axis=[0:2]) for (i = [0:3], axis=[0:2])
if (edges[axis][i]>0) if (edges[axis][i]>0)
EDGE_OFFSETS[axis][i] EDGE_OFFSETS[axis][i]
]; ];
all_vecs_are_edges = all([for (vec = vecs) sum(v_abs(vec))==2]); all_vecs_are_edges = all([for (vec = vecs) sum(v_abs(vec))==2]);
check2 = assert(all_vecs_are_edges, "All vectors must be edges."); check2 = assert(all_vecs_are_edges, "All vectors must be edges.");
default_tag("remove")
for ($idx = idx(vecs)) { for ($idx = idx(vecs)) {
vec = vecs[$idx]; vec = vecs[$idx];
anch = _find_anchor(vec, $parent_geom); anch = _find_anchor(vec, $parent_geom);
path_angs_T = _attach_geom_edge_path($parent_geom, vec);
path = path_angs_T[0];
vecs = path_angs_T[1];
post_T = path_angs_T[2];
$attach_to = undef; $attach_to = undef;
$attach_anchor = anch; $attach_anchor = anch;
$attach_norot = true; $attach_norot = true;
$profile_type = "edge"; $profile_type = "edge";
psize = point3d($parent_size); multmatrix(post_T) {
length = [for (i=[0:2]) if(!vec[i]) psize[i]][0] + excess; for (i = idx(path,e=-2)) {
rotang = pt1 = select(path,i);
vec.z<0? [90,0,180+v_theta(vec)] : pt2 = select(path,i+1);
vec.z==0 && sign(vec.x)==sign(vec.y)? 135+v_theta(vec) : cp = (pt1 + pt2) / 2;
vec.z==0 && sign(vec.x)!=sign(vec.y)? [0,180,45+v_theta(vec)] : v1 = vecs[i][0];
[-90,0,180+v_theta(vec)]; v2 = vecs[i][1];
translate(anch[1]) { $edge_angle = 180 - vector_angle(v1,v2);
rot(rotang) { if (!approx(pt1,pt2)) {
linear_extrude(height=length, center=true, convexity=convexity) { seglen = norm(pt2-pt1) + 2 * excess;
if ($tag=="") tag("remove") children(); move(cp) {
else children(); frame_map(y=-v1, z=unit(pt2-pt1)) {
linear_extrude(height=seglen, center=true, convexity=convexity)
children();
}
}
} }
} }
} }
@ -1670,6 +1685,7 @@ module edge_profile(edges=EDGES_ALL, except=[], excess=0.01, convexity=10) {
// convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10 // convexity = Max number of times a line could intersect the perimeter of the mask shape. Default: 10
// flip = If true, reverses the orientation of any external profile parts at each edge. Default false // flip = If true, reverses the orientation of any external profile parts at each edge. Default false
// corner_type = Specifies how exterior corners should be formed. Must be one of `"none"`, `"chamfer"`, `"round"`, or `"sharp"`. Default: `"none"` // corner_type = Specifies how exterior corners should be formed. Must be one of `"none"`, `"chamfer"`, `"round"`, or `"sharp"`. Default: `"none"`
// size = If given the width and height of the 2D profile, will enable rounding and chamfering of internal corners when given a negative profile.
// Side Effects: // Side Effects:
// Tags the children with "remove" (and hence sets `$tag`) if no tag is already set. // Tags the children with "remove" (and hence sets `$tag`) if no tag is already set.
// `$idx` is set to the index number of each edge. // `$idx` is set to the index number of each edge.
@ -1720,17 +1736,43 @@ module edge_profile(edges=EDGES_ALL, except=[], excess=0.01, convexity=10) {
// Example: More complicated edge sets // Example: More complicated edge sets
// cuboid(50) { // cuboid(50) {
// edge_profile_asym( // edge_profile_asym(
// "ALL", except=[TOP+FWD+RIGHT, BOT+BACK+LEFT], // [FWD,BACK,BOT+RIGHT], except=[FWD+RIGHT,BOT+BACK],
// corner_type="chamfer" // corner_type="round"
// ) xflip() mask2d_roundover(10);
// }
// Example: Mixing it up a bit.
// diff()
// cuboid(60) {
// tag("keep") edge_profile_asym(LEFT, flip=true, corner_type="chamfer")
// xflip() mask2d_chamfer(10);
// edge_profile_asym(RIGHT)
// mask2d_roundover(10);
// }
// Example: Chamfering internal corners.
// cuboid(40) {
// edge_profile_asym(
// [FWD+DOWN,FWD+LEFT],
// corner_type="chamfer", size=[7,10]
// ) xflip() mask2d_chamfer(10);
// }
// Example: Rounding internal corners.
// cuboid(40) {
// edge_profile_asym(
// [FWD+DOWN,FWD+LEFT],
// corner_type="round", size=[10,10]
// ) xflip() mask2d_roundover(10); // ) xflip() mask2d_roundover(10);
// } // }
module edge_profile_asym(edges=EDGES_ALL, except=[], excess=0.01, convexity=10, flip=false, corner_type="none") { module edge_profile_asym(
edges=EDGES_ALL, except=[],
excess=0.01, convexity=10,
flip=false, corner_type="none",
size=[0,0]
) {
function _corner_orientation(pos,pvec) = function _corner_orientation(pos,pvec) =
let( let(
j = [for (i=[0:2]) if (pvec[i]) i][0], j = [for (i=[0:2]) if (pvec[i]) i][0],
T = T = (pos.x>0? xflip() : ident(4)) *
(pos.x>0? xflip() : ident(4)) *
(pos.y>0? yflip() : ident(4)) * (pos.y>0? yflip() : ident(4)) *
(pos.z>0? zflip() : ident(4)) * (pos.z>0? zflip() : ident(4)) *
rot(-120*(2-j), v=[1,1,1]) rot(-120*(2-j), v=[1,1,1])
@ -1872,6 +1914,7 @@ module edge_profile_asym(edges=EDGES_ALL, except=[], excess=0.01, convexity=10,
check2 = assert(all_vecs_are_edges, "All vectors must be edges."); check2 = assert(all_vecs_are_edges, "All vectors must be edges.");
edge_corners = [for (vec = vecs) [vec, _edge_corner_numbers(vec)]]; edge_corners = [for (vec = vecs) [vec, _edge_corner_numbers(vec)]];
edge_strings = _gather_contiguous_edges(edge_corners); edge_strings = _gather_contiguous_edges(edge_corners);
default_tag("remove")
for (edge_string = edge_strings) { for (edge_string = edge_strings) {
inverts = _edge_transition_inversions(edge_string); inverts = _edge_transition_inversions(edge_string);
flipverts = [for (x = inverts) flip? !x : x]; flipverts = [for (x = inverts) flip? !x : x];
@ -1889,11 +1932,37 @@ module edge_profile_asym(edges=EDGES_ALL, except=[], excess=0.01, convexity=10,
vp2 = select(vecpairs,i); vp2 = select(vecpairs,i);
pvec = _edge_pair_perp_vec(e1,e2); pvec = _edge_pair_perp_vec(e1,e2);
pos = [for (i=[0:2]) e1[i]? e1[i] : e2[i]]; pos = [for (i=[0:2]) e1[i]? e1[i] : e2[i]];
if (vp1.y == vp2.y) {
default_tag("remove")
position(pos) {
mirT = _corner_orientation(pos, pvec); mirT = _corner_orientation(pos, pvec);
$attach_to = undef;
$attach_anchor = _find_anchor(pos, $parent_geom);
$attach_norot = true;
$profile_type = "corner";
position(pos) {
multmatrix(mirT) { multmatrix(mirT) {
if (vp1.x == vp2.x && size.y > 0) {
zflip() {
if (corner_type=="chamfer") {
fn = $fn;
move([size.y,size.y]) {
rotate_extrude(angle=90, $fn=4)
left_half(planar=true, $fn=fn)
zrot(-90) fwd(size.y) children();
}
linear_extrude(height=size.x) {
mask2d_roundover(size.y, inset=0.01, $fn=4);
}
} else if (corner_type=="round") {
move([size.y,size.y]) {
rotate_extrude(angle=90)
left_half(planar=true)
zrot(-90) fwd(size.y) children();
}
linear_extrude(height=size.x) {
mask2d_roundover(size.y, inset=0.01);
}
}
}
} else if (vp1.y == vp2.y) {
if (corner_type=="chamfer") { if (corner_type=="chamfer") {
fn = $fn; fn = $fn;
rotate_extrude(angle=90, $fn=4) rotate_extrude(angle=90, $fn=4)
@ -1921,6 +1990,10 @@ module edge_profile_asym(edges=EDGES_ALL, except=[], excess=0.01, convexity=10,
} }
} }
for (i = idx(edge_string)) { for (i = idx(edge_string)) {
$attach_to = undef;
$attach_anchor = _find_anchor(edge_string[i], $parent_geom);
$attach_norot = true;
$profile_type = "edge";
edge_profile(edge_string[i], excess=excess, convexity=convexity) { edge_profile(edge_string[i], excess=excess, convexity=convexity) {
if (flipverts[i]) { if (flipverts[i]) {
mirror([-1,1]) children(); mirror([-1,1]) children();
@ -1933,6 +2006,7 @@ module edge_profile_asym(edges=EDGES_ALL, except=[], excess=0.01, convexity=10,
} }
// Module: corner_profile() // Module: corner_profile()
// Synopsis: Rotationally extrudes a 2d edge profile into corner mask on the given corners of the parent. // Synopsis: Rotationally extrudes a 2d edge profile into corner mask on the given corners of the parent.
// SynTags: Geom // SynTags: Geom
@ -2768,6 +2842,101 @@ function _attach_geom_size(geom) =
assert(false, "Unknown attachment geometry type."); assert(false, "Unknown attachment geometry type.");
/// Internal Function: _attach_geom_edge_path()
/// Usage:
/// angle = _attach_geom_edge_path(geom, edge);
/// Topics: Attachments
/// See Also: reorient(), attachable()
/// Description:
/// Returns the path and post-transform matrix of the indicated edge.
/// If the edge is invalid for the geometry, returns `undef`.
function _attach_geom_edge_path(geom, edge) =
assert(is_vector(edge),str("Invalid edge: edge=",edge))
let(
type = geom[0],
cp = _get_cp(geom),
offset_raw = select(geom,-2),
offset = [for (i=[0:2]) edge[i]==0? 0 : offset_raw[i]], // prevents bad centering.
edge = point3d(edge)
)
type == "prismoid"? ( //size, size2, shift, axis
let(all_comps_good = [for (c=edge) if (c!=sign(c)) 1]==[])
assert(all_comps_good, "All components of an edge for a cuboid/prismoid must be -1, 0, or 1")
let(edge_good = len([for (c=edge) if(c) 1])==2)
assert(edge_good, "Invalid edge.")
let(
size = geom[1],
size2 = geom[2],
shift = point2d(geom[3]),
axis = point3d(geom[4]),
edge = rot(from=axis, to=UP, p=edge),
offset = rot(from=axis, to=UP, p=offset),
h = size.z,
cpos = function(vec) let(
u = (vec.z + 1) / 2,
siz = lerp(point2d(size), size2, u) / 2,
z = vec.z * h / 2,
pos = point3d(v_mul(siz, point2d(vec)) + shift * u, z)
) pos,
ep1 = cpos([for (c=edge) c? c : -1]),
ep2 = cpos([for (c=edge) c? c : 1]),
cp = (ep1 + ep2) / 2,
axy = point2d(edge),
bot = point3d(v_mul(point2d(size )/2, axy), -h/2),
top = point3d(v_mul(point2d(size2)/2, axy) + shift, h/2),
xang = atan2(h,(top-bot).x),
yang = atan2(h,(top-bot).y),
vecs = [
if (edge.x) yrot(90-xang, p=sign(axy.x)*RIGHT),
if (edge.y) xrot(yang-90, p=sign(axy.y)*BACK),
if (edge.z) [0,0,sign(edge.z)]
],
segvec = cross(unit(vecs[1]), unit(vecs[0])),
seglen = norm(ep2 - ep1),
path = [
cp - segvec * seglen/2,
cp + segvec * seglen/2
],
m = rot(from=UP,to=axis) * move(offset)
) [path, [vecs], m]
) : type == "conoid"? ( //r1, r2, l, shift, axis
assert(edge.z && edge.z == sign(edge.z), "The Z component of an edge for a cylinder/cone must be -1 or 1")
let(
rr1 = geom[1],
rr2 = geom[2],
l = geom[3],
shift = point2d(geom[4]),
axis = point3d(geom[5]),
r1 = is_num(rr1)? [rr1,rr1] : point2d(rr1),
r2 = is_num(rr2)? [rr2,rr2] : point2d(rr2),
edge = rot(from=axis, to=UP, p=edge),
offset = rot(from=axis, to=UP, p=offset),
maxr = max([each r1, each r2]),
sides = segs(maxr),
top = path3d(move(shift, p=ellipse(r=r2, $fn=sides)), l/2),
bot = path3d(ellipse(r=r1, $fn=sides), -l/2),
path = edge.z < 0 ? bot : top,
path2 = edge.z < 0 ? top : bot,
zed = edge.z<0? [0,0,-l/2] : point3d(shift,l/2),
vecs = [
for (i = idx(top)) let(
pt1 = (path[i] + select(path,i+1)) /2,
pt2 = (path2[i] + select(path2,i+1)) /2,
v1 = unit(zed - pt1),
v2 = unit(pt2 - pt1),
v3 = unit(cross(v1,v2)),
v4 = cross(v3,v2),
v5 = cross(v1,v3)
) [v4, v5]
],
m = rot(from=UP,to=axis) * move(offset)
) edge.z>0
? [reverse(list_wrap(path)), reverse(vecs), m]
: [list_wrap(path), vecs, m]
) : undef;
/// Internal Function: _attach_transform() /// Internal Function: _attach_transform()
/// Usage: To Get a Transformation Matrix /// Usage: To Get a Transformation Matrix
/// mat = _attach_transform(anchor, spin, orient, geom); /// mat = _attach_transform(anchor, spin, orient, geom);