Corrected prismoid geometry corner anchor vectors.

This commit is contained in:
Revar Desmera 2023-03-27 02:21:26 -07:00
parent ee3e2466bd
commit 2f1266e8c3
2 changed files with 39 additions and 6 deletions

View file

@ -2542,12 +2542,25 @@ function _find_anchor(anchor, geom) =
bot = point3d(v_mul(point2d(size )/2, axy), -h/2), bot = point3d(v_mul(point2d(size )/2, axy), -h/2),
top = point3d(v_mul(point2d(size2)/2, axy) + shift, h/2), top = point3d(v_mul(point2d(size2)/2, axy) + shift, h/2),
pos = point3d(cp) + lerp(bot,top,u) + offset, pos = point3d(cp) + lerp(bot,top,u) + offset,
vecs = [ vecs = anchor==CENTER? [UP]
: [
if (anch.x!=0) unit(rot(from=UP, to=[(top-bot).x,0,h], p=[axy.x,0,0]), UP), if (anch.x!=0) unit(rot(from=UP, to=[(top-bot).x,0,h], p=[axy.x,0,0]), UP),
if (anch.y!=0) unit(rot(from=UP, to=[0,(top-bot).y,h], p=[0,axy.y,0]), UP), if (anch.y!=0) unit(rot(from=UP, to=[0,(top-bot).y,h], p=[0,axy.y,0]), UP),
if (anch.z!=0) anch==CENTER? UP : unit([0,0,anch.z],UP) if (anch.z!=0) unit([0,0,anch.z],UP)
], ],
vec = anchor==CENTER? UP : rot(from=UP, to=axis, p=unit(sum(vecs) / len(vecs))), vec2 = anchor==CENTER? UP
: len(vecs)==1? unit(vecs[0],UP)
: len(vecs)==2? vector_bisect(vecs[0],vecs[1])
: let(
v1 = vector_bisect(vecs[0],vecs[2]),
v2 = vector_bisect(vecs[1],vecs[2]),
p1 = plane_from_normal(yrot(90,p=v1)),
p2 = plane_from_normal(xrot(-90,p=v2)),
line = plane_intersection(p1,p2),
v3 = unit(line[1]-line[0],UP) * anch.z
)
unit(v3,UP),
vec = rot(from=UP, to=axis, p=vec2),
pos2 = rot(from=UP, to=axis, p=pos) pos2 = rot(from=UP, to=axis, p=pos)
) [anchor, pos2, vec, oang] ) [anchor, pos2, vec, oang]
) : type == "conoid"? ( //r1, r2, l, shift ) : type == "conoid"? ( //r1, r2, l, shift

View file

@ -284,6 +284,26 @@ function vector_axis(v1,v2=undef,v3=undef) =
) unit(cross(w1,w3)); ) unit(cross(w1,w3));
// Function: vector_bisect()
// Usage:
// newv = vector_bisect(v1,v2);
// Description:
// Returns a unit vector that exactly bisects the minor angle between two given vectors.
// If given two vectors that are directly opposed, returns `undef`.
function vector_bisect(v1,v2) =
assert(is_vector(v1))
assert(is_vector(v2))
assert(!approx(norm(v1),0), "Zero length vector.")
assert(!approx(norm(v2),0), "Zero length vector.")
assert(len(v1)==len(v2), "Vectors are of different sizes.")
let( v1 = unit(v1), v2 = unit(v2) )
approx(v1,-v2)? undef :
let(
axis = vector_axis(v1,v2),
ang = vector_angle(v1,v2),
v3 = rot(ang/2, v=axis, p=v1)
) v3;
// Section: Vector Searching // Section: Vector Searching