Added path_self_intersections(), decompose_path(), and fixed inverted t result in _general_line_intersection()

This commit is contained in:
Revar Desmera 2019-09-19 02:44:28 -07:00
parent ccfed6b306
commit 3846a367ee

View file

@ -125,18 +125,18 @@ function line_normal(p1,p2) =
// 2D Line intersection from two segments. // 2D Line intersection from two segments.
// This function returns [p,t,u] where p is the intersection point of // This function returns [p,t,u] where p is the intersection point of
// the lines defined by the two segments, t is the bezier parameter // the lines defined by the two segments, t is the proportional distance
// for the intersection point on s1 and u is the bezier parameter for // of the intersection point along s1, and u is the proportional distance
// the intersection point on s2. The bezier parameter runs over [0,1] // of the intersection point along s2. The proportional values run over
// for each segment, so if it is in this range, then the intersection // the range of 0 to 1 for each segment, so if it is in this range, then
// lies on the segment. Otherwise it lies somewhere on the extension // the intersection lies on the segment. Otherwise it lies somewhere on
// of the segment. // the extension of the segment.
function _general_line_intersection(s1,s2,eps=EPSILON) = function _general_line_intersection(s1,s2,eps=EPSILON) =
let( let(
denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]]) denominator = det2([s1[0],s2[0]]-[s1[1],s2[1]])
) approx(denominator,0,eps=eps)? [undef,undef,undef] : let( ) approx(denominator,0,eps=eps)? [undef,undef,undef] : let(
t = det2([s1[0],s2[0]]-s2) / denominator, t = det2([s1[0],s2[0]]-s2) / denominator,
u = det2([s1[0],s1[0]]-[s1[1],s2[1]]) /denominator u = det2([s1[0],s1[0]]-[s2[0],s1[1]]) / denominator
) [s1[0]+t*(s1[1]-s1[0]), t, u]; ) [s1[0]+t*(s1[1]-s1[0]), t, u];
@ -544,6 +544,88 @@ function close_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? path : co
function cleanup_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? select(path,0,-2) : path; function cleanup_path(path, eps=EPSILON) = is_closed_path(path,eps=eps)? select(path,0,-2) : path;
// Function: path_self_intersections()
// Usage:
// isects = path_self_intersections(path, [eps]);
// Description:
// Locates all self intersections of the given path. Returns a list of intersections, where
// each intersection is a list like [POINT, SEGNUM1, PROPORTION1, SEGNUM2, PROPORTION2] where
// POINT is the coordinates of the intersection point, SEGNUMs are the integer indices of the
// intersecting segments along the path, and the PROPORTIONS are the 0.0 to 1.0 proportions
// of how far along those segments they intersect at. A proportion of 0.0 indicates the start
// of the segment, and a proportion of 1.0 indicates the end of the segment.
// Arguments:
// path = The path to find self intersections of.
// closed = If true, treat path like a closed polygon. Default: true
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
// ];
// isects = path_self_intersections(path, closed=true);
// // isects == [[[-33.3333, 0], 0, 0.666667, 4, 0.333333], [[33.3333, 0], 1, 0.333333, 3, 0.666667]]
// stroke(path, closed=true, width=1);
// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10);
// echo(isects=isects);
function path_self_intersections(path, closed=true, eps=EPSILON) =
let(
path = cleanup_path(path, eps=eps)
) [
for (i = idx(path,end=closed?-2:-3), j = idx(path,start=i+1,end=closed?-1:-2)) let(
a = select(path,i,i+1),
b = select(path,j,j+1),
isect = _general_line_intersection(a,b,eps=eps)
) if ( !is_undef(isect) && isect[1]>0 && isect[1]<=1 && isect[2]>0 && isect[2]<=1)
[isect[0], i, isect[1], j, isect[2]]
];
// Function: decompose_path()
// Usage:
// splitpaths = decompose_path(path, [closed], [eps]);
// Description:
// Given a possibly self-intersecting path, splits it up into a list of non-intersecting sub-paths.
// If the given path is not a closed polygon, then the first returned subpath will not be closed.
// All other returned subpaths should be considered as closed polygons. Subpaths of crossing areas
// will have the opposite clockwise-ness from the first path returned.
// Arguments:
// path = The path to split up.
// closed = If true, treat path like a closed polygon. Default: true
// eps = The epsilon error value to determine whether two points coincide. Default: `EPSILON` (1e-9)
// Example(2D):
// path = [
// [-100,100], [0,-50], [100,100], [100,-100], [0,50], [-100,-100]
// ];
// splitpaths = decompose_path(path, closed=true);
// rainbow(splitpaths) stroke($item, closed=true, width=3);
function decompose_path(path, closed=true, eps=EPSILON) =
let(
path = cleanup_path(path, eps=eps),
isects = path_self_intersections(path, closed, eps)
) isects==[]? [path] :
let(
isect = isects[0],
plen = len(path)
) concat(
decompose_path(
let(
subpath1 = path_subselect(path, 0, 0, isect[1], isect[2]),
subpath2 = path_subselect(path, isect[3], isect[4], plen-(closed?0:1), 1),
patha = cleanup_path(deduplicate(concat(subpath1, subpath2), eps=eps), eps=eps)
) patha,
closed=closed,
eps=eps
),
decompose_path(
let(
subpath3 = path_subselect(path, isect[1], isect[2], isect[3], isect[4]),
pathb = cleanup_path(subpath3, eps=eps)
) pathb,
closed=true,
eps=eps
)
);
// Function: path_subselect() // Function: path_subselect()
// Usage: // Usage:
// path_subselect(path,s1,u1,s2,u2): // path_subselect(path,s1,u1,s2,u2):