Added error bounds to poly_roots, added poly_div, poly_mult and

poly_add, fixed bugs in factorial.
This commit is contained in:
Adrian Mariano 2020-07-11 12:22:59 -04:00
parent 4e2092f347
commit 3864f14333

147
math.scad
View file

@ -67,7 +67,7 @@ function hypot(x,y,z=0) = norm([x,y,z]);
// Usage: // Usage:
// x = factorial(n,[d]); // x = factorial(n,[d]);
// Description: // Description:
// Returns the factorial of the given integer value. // Returns the factorial of the given integer value, or n!/d! if d is given.
// Arguments: // Arguments:
// n = The integer number to get the factorial of. (n!) // n = The integer number to get the factorial of. (n!)
// d = If given, the returned value will be (n! / d!) // d = If given, the returned value will be (n! / d!)
@ -75,7 +75,10 @@ function hypot(x,y,z=0) = norm([x,y,z]);
// x = factorial(4); // Returns: 24 // x = factorial(4); // Returns: 24
// y = factorial(6); // Returns: 720 // y = factorial(6); // Returns: 720
// z = factorial(9); // Returns: 362880 // z = factorial(9); // Returns: 362880
function factorial(n,d=1) = product([for (i=[n:-1:d]) i]); function factorial(n,d=0) =
assert(n>=0 && d>=0, "Factorial is not defined for negative numbers")
assert(d<=n, "d cannot be larger than n")
product([1,for (i=[n:-1:d+1]) i]);
// Function: lerp() // Function: lerp()
@ -525,6 +528,17 @@ function deltas(v) = [for (p=pair(v)) p.y-p.x];
function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==undef)? v[i] : is_vector(v[i])? vmul(tot,v[i]) : tot*v[i])); function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==undef)? v[i] : is_vector(v[i])? vmul(tot,v[i]) : tot*v[i]));
// Function: outer_product()
// Description:
// Compute the outer product of two vectors, a matrix.
// Usage:
// M = outer_product(u,v);
function outer_product(u,v) =
assert(is_vector(u) && is_vector(v))
assert(len(u)==len(v))
[for(i=[0:len(u)-1]) [for(j=[0:len(u)-1]) u[i]*v[j]]];
// Function: mean() // Function: mean()
// Description: // Description:
// Returns the arithmatic mean/average of all entries in the given array. // Returns the arithmatic mean/average of all entries in the given array.
@ -563,7 +577,7 @@ function median(v) =
// Description: // Description:
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined // Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned. // the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
// If A is rank deficient or singular then linear_solve returns `undef`. If b is a matrix that is compatible with A // If A is rank deficient or singular then linear_solve returns []. If b is a matrix that is compatible with A
// then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you // then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you
// want to solve Ax=b1 and Ax=b2 that you need to form the matrix transpose([b1,b2]) for the right hand side and then // want to solve Ax=b1 and Ax=b2 that you need to form the matrix transpose([b1,b2]) for the right hand side and then
// transpose the returned value. // transpose the returned value.
@ -582,7 +596,7 @@ function linear_solve(A,b) =
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]), R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i] zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
) )
zeros != [] ? undef : zeros != [] ? [] :
m<n ? Q*back_substitute(R,b,transpose=true) : m<n ? Q*back_substitute(R,b,transpose=true) :
back_substitute(R, transpose(Q)*b); back_substitute(R, transpose(Q)*b);
@ -604,7 +618,8 @@ function matrix_inverse(A) =
// Usage: submatrix(M, ind1, ind2) // Usage: submatrix(M, ind1, ind2)
// Description: // Description:
// Returns a submatrix with the specified index ranges or index sets. // Returns a submatrix with the specified index ranges or index sets.
function submatrix(M,ind1,ind2) = [for(i=ind1) [for(j=ind2) M[i][j] ] ]; function submatrix(M,ind1,ind2) =
[for(i=ind1) [for(j=ind2) M[i][j] ] ];
// Function: qr_factor() // Function: qr_factor()
@ -635,7 +650,7 @@ function _qr_factor(A,Q, column, m, n) =
alpha = (x[0]<=0 ? 1 : -1) * norm(x), alpha = (x[0]<=0 ? 1 : -1) * norm(x),
u = x - concat([alpha],repeat(0,m-1)), u = x - concat([alpha],repeat(0,m-1)),
v = alpha==0 ? u : u / norm(u), v = alpha==0 ? u : u / norm(u),
Qc = ident(len(x)) - 2*transpose([v])*[v], Qc = ident(len(x)) - 2*outer_product(v,v),
Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i<column || j<column ? (i==j ? 1 : 0) : Qc[i-column][j-column]]] Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i<column || j<column ? (i==j ? 1 : 0) : Qc[i-column][j-column]]]
) )
_qr_factor(Qf*A, Q*Qf, column+1, m, n); _qr_factor(Qf*A, Q*Qf, column+1, m, n);
@ -647,11 +662,12 @@ function _qr_factor(A,Q, column, m, n) =
// Solves the problem Rx=b where R is an upper triangular square matrix. No check is made that the lower triangular entries // Solves the problem Rx=b where R is an upper triangular square matrix. No check is made that the lower triangular entries
// are actually zero. If transpose==true then instead solve transpose(R)*x=b. // are actually zero. If transpose==true then instead solve transpose(R)*x=b.
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to // You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. // solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix
// is singular (e.g. has a zero on the diagonal) then it returns [].
function back_substitute(R, b, x=[],transpose = false) = function back_substitute(R, b, x=[],transpose = false) =
assert(is_matrix(R, square=true)) assert(is_matrix(R, square=true))
let(n=len(R)) let(n=len(R))
assert(is_vector(b,n) || is_matrix(b,n),"R and b are not compatible in back_substitute") assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) : !is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) :
transpose? transpose?
reverse(back_substitute( reverse(back_substitute(
@ -660,7 +676,10 @@ function back_substitute(R, b, x=[],transpose = false) =
)) : )) :
len(x) == n ? x : len(x) == n ? x :
let( let(
ind = n - len(x) - 1, ind = n - len(x) - 1
)
R[ind][ind] == 0 ? [] :
let(
newvalue = newvalue =
len(x)==0? b[ind]/R[ind][ind] : len(x)==0? b[ind]/R[ind][ind] :
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind] (b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
@ -733,7 +752,7 @@ function determinant(M) =
// m = optional height of matrix // m = optional height of matrix
// n = optional width of matrix // n = optional width of matrix
// square = set to true to require a square matrix. Default: false // square = set to true to require a square matrix. Default: false
function is_matrix(A,n,m,square=false) = function is_matrix(A,m,n,square=false) =
is_vector(A[0],n) && is_vector(A*(0*A[0]),m) && is_vector(A[0],n) && is_vector(A*(0*A[0]),m) &&
(!square || len(A)==len(A[0])); (!square || len(A)==len(A[0]));
@ -1037,12 +1056,82 @@ function C_div(z1,z2) = let(den = z2.x*z2.x + z2.y*z2.y)
// Evaluates specified real polynomial, p, at the complex or real input value, z. // Evaluates specified real polynomial, p, at the complex or real input value, z.
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
// where a_n is the z^n coefficient. Polynomial coefficients are real. // where a_n is the z^n coefficient. Polynomial coefficients are real.
// Note: this should probably be recoded to use division by [1,-z], which is more accurate
// and avoids overflow with large coefficients, but requires poly_div to support complex coefficients.
function polynomial(p, z, k, zk, total) = function polynomial(p, z, k, zk, total) =
is_undef(k) ? polynomial(p, z, len(p)-1, is_num(z)? 1 : [1,0], is_num(z) ? 0 : [0,0]) : is_undef(k) ? polynomial(p, z, len(p)-1, is_num(z)? 1 : [1,0], is_num(z) ? 0 : [0,0]) :
k==-1 ? total : k==-1 ? total :
polynomial(p, z, k-1, is_num(z) ? zk*z : C_times(zk,z), total+zk*p[k]); polynomial(p, z, k-1, is_num(z) ? zk*z : C_times(zk,z), total+zk*p[k]);
// Function: poly_mult()
// Usage
// polymult(p,q)
// polymult([p1,p2,p3,...])
// Descriptoin:
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
// computes the coefficient list of the product polynomial.
function poly_mult(p,q) =
is_undef(q) ?
assert(is_list(p) && (is_vector(p[0]) || p[0]==[]), "Invalid arguments to poly_mult")
len(p)==2 ? poly_mult(p[0],p[1])
: poly_mult(p[0], poly_mult(select(p,1,-1)))
:
_poly_trim(
[
for(n = [len(p)+len(q)-2:-1:0])
sum( [for(i=[0:1:len(p)-1])
let(j = len(p)+len(q)- 2 - n - i)
if (j>=0 && j<len(q)) p[i]*q[j]
])
]);
// Function: poly_div()
// Usage:
// [quotient,remainder] = poly_div(n,d)
// Description:
// Computes division of the numerator polynomial by the denominator polynomial and returns
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then
// the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero
// the returned quotient will be [].
function poly_div(n,d,q=[]) =
assert(len(d)>0 && d[0]!=0 , "Denominator is zero or has leading zero coefficient")
len(n)<len(d) ? [q,_poly_trim(n)] :
let(
t = n[0] / d[0],
newq = concat(q,[t]),
newn = [for(i=[1:1:len(n)-1]) i<len(d) ? n[i] - t*d[i] : n[i]]
)
poly_div(newn,d,newq);
// Internal Function: _poly_trim()
// Usage:
// _poly_trim(p,[eps])
// Description:
// Removes leading zero terms of a polynomial. By default zeros must be exact,
// or give epsilon for approximate zeros.
function _poly_trim(p,eps=0) =
let( nz = [for(i=[0:1:len(p)-1]) if (!approx(p[i],0,eps)) i])
len(nz)==0 ? [] : select(p,nz[0],-1);
// Function: poly_add()
// Usage:
// sum = poly_add(p,q)
// Description:
// Computes the sum of two polynomials.
function poly_add(p,q) =
let( plen = len(p),
qlen = len(q),
long = plen>qlen ? p : q,
short = plen>qlen ? q : p
)
_poly_trim(long + concat(repeat(0,len(long)-len(short)),short));
// Function: poly_roots() // Function: poly_roots()
// Usage: // Usage:
// poly_roots(p,[tol]) // poly_roots(p,[tol])
@ -1062,14 +1151,18 @@ function polynomial(p, z, k, zk, total) =
// Dario Bini. "Numerical computation of polynomial zeros by means of Aberth's Method", Numerical Algorithms, Feb 1996. // Dario Bini. "Numerical computation of polynomial zeros by means of Aberth's Method", Numerical Algorithms, Feb 1996.
// https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method // https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method
function poly_roots(p,tol=1e-14) = function poly_roots(p,tol=1e-14,error_bound=false) =
assert(p!=[], "Input polynomial must have a nonzero coefficient") assert(p!=[], "Input polynomial must have a nonzero coefficient")
assert(is_vector(p), "Input must be a vector") assert(is_vector(p), "Input must be a vector")
p[0] == 0 ? poly_roots(slice(p,1,-1)) : // Strip leading zero coefficients p[0] == 0 ? poly_roots(slice(p,1,-1),tol=tol,error_bound=error_bound) : // Strip leading zero coefficients
p[len(p)-1] == 0 ? [[0,0], // Strip trailing zero coefficients p[len(p)-1] == 0 ? // Strip trailing zero coefficients
each poly_roots(select(p,0,-2))] : let( solutions = poly_roots(select(p,0,-2),tol=tol, error_bound=error_bound))
len(p)==1 ? [] : // Nonzero constant case has no solutions (error_bound ? [ [[0,0], each solutions[0]], [0, each solutions[1]]]
len(p)==2 ? [[-p[1]/p[0],0]] : // Linear case needs special handling : [[0,0], each solutions]) :
len(p)==1 ? (error_bound ? [[],[]] : []) : // Nonzero constant case has no solutions
len(p)==2 ? let( solution = [[-p[1]/p[0],0]]) // Linear case needs special handling
(error_bound ? [solution,[0]] : solution)
:
let( let(
n = len(p)-1, // polynomial degree n = len(p)-1, // polynomial degree
pderiv = [for(i=[0:n-1]) p[i]*(n-i)], pderiv = [for(i=[0:n-1]) p[i]*(n-i)],
@ -1082,9 +1175,12 @@ function poly_roots(p,tol=1e-14) =
init = [for(i=[0:1:n-1]) // Initial guess for roots init = [for(i=[0:1:n-1]) // Initial guess for roots
let(angle = 360*i/n+270/n/PI) let(angle = 360*i/n+270/n/PI)
[beta,0]+r*[cos(angle),sin(angle)] [beta,0]+r*[cos(angle),sin(angle)]
] ],
roots = _poly_roots(p,pderiv,s,init,tol=tol),
error = error_bound ? [for(xi=roots) n * (norm(polynomial(p,xi))+tol*polynomial(s,norm(xi))) /
abs(norm(polynomial(pderiv,xi))-tol*polynomial(s,norm(xi)))] : 0
) )
_poly_roots(p,pderiv,s,init,tol=tol); error_bound ? [roots, error] : roots;
// p = polynomial // p = polynomial
// pderiv = derivative polynomial of p // pderiv = derivative polynomial of p
@ -1114,7 +1210,10 @@ function _poly_roots(p, pderiv, s, z, tol, i=0) =
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0] // The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
// where a_n is the x^n coefficient. This function works by // where a_n is the x^n coefficient. This function works by
// computing the complex roots and returning those roots where // computing the complex roots and returning those roots where
// the imaginary part is closed to zero, specifically: z.y/(1+norm(z)) < eps. Because // the imaginary part is closed to zero. By default it uses a computed
// error bound from the polynomial solver to decide whether imaginary
// parts are zero. You can specify eps, in which case the test is
// z.y/(1+norm(z)) < eps. Because
// of poor convergence and higher error for repeated roots, such roots may // of poor convergence and higher error for repeated roots, such roots may
// be missed by the algorithm because their imaginary part is large. // be missed by the algorithm because their imaginary part is large.
// Arguments: // Arguments:
@ -1122,11 +1221,13 @@ function _poly_roots(p, pderiv, s, z, tol, i=0) =
// eps = used to determine whether imaginary parts of roots are zero // eps = used to determine whether imaginary parts of roots are zero
// tol = tolerance for the complex polynomial root finder // tol = tolerance for the complex polynomial root finder
function real_roots(p,eps=EPSILON,tol=1e-14) = function real_roots(p,eps=undef,tol=1e-14) =
let( let(
roots = poly_roots(p) roots_err = poly_roots(p,error_bound=true),
roots = roots_err[0],
err = roots_err[1]
) )
[for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x]; is_def(eps) ? [for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x]
: [for(i=idx(roots)) if (abs(roots[i].y)<=err[i]) roots[i].x];
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap // vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap