mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2024-12-29 16:29:40 +00:00
Added error bounds to poly_roots, added poly_div, poly_mult and
poly_add, fixed bugs in factorial.
This commit is contained in:
parent
4e2092f347
commit
3864f14333
1 changed files with 124 additions and 23 deletions
147
math.scad
147
math.scad
|
@ -67,7 +67,7 @@ function hypot(x,y,z=0) = norm([x,y,z]);
|
|||
// Usage:
|
||||
// x = factorial(n,[d]);
|
||||
// Description:
|
||||
// Returns the factorial of the given integer value.
|
||||
// Returns the factorial of the given integer value, or n!/d! if d is given.
|
||||
// Arguments:
|
||||
// n = The integer number to get the factorial of. (n!)
|
||||
// d = If given, the returned value will be (n! / d!)
|
||||
|
@ -75,7 +75,10 @@ function hypot(x,y,z=0) = norm([x,y,z]);
|
|||
// x = factorial(4); // Returns: 24
|
||||
// y = factorial(6); // Returns: 720
|
||||
// z = factorial(9); // Returns: 362880
|
||||
function factorial(n,d=1) = product([for (i=[n:-1:d]) i]);
|
||||
function factorial(n,d=0) =
|
||||
assert(n>=0 && d>=0, "Factorial is not defined for negative numbers")
|
||||
assert(d<=n, "d cannot be larger than n")
|
||||
product([1,for (i=[n:-1:d+1]) i]);
|
||||
|
||||
|
||||
// Function: lerp()
|
||||
|
@ -525,6 +528,17 @@ function deltas(v) = [for (p=pair(v)) p.y-p.x];
|
|||
function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==undef)? v[i] : is_vector(v[i])? vmul(tot,v[i]) : tot*v[i]));
|
||||
|
||||
|
||||
// Function: outer_product()
|
||||
// Description:
|
||||
// Compute the outer product of two vectors, a matrix.
|
||||
// Usage:
|
||||
// M = outer_product(u,v);
|
||||
function outer_product(u,v) =
|
||||
assert(is_vector(u) && is_vector(v))
|
||||
assert(len(u)==len(v))
|
||||
[for(i=[0:len(u)-1]) [for(j=[0:len(u)-1]) u[i]*v[j]]];
|
||||
|
||||
|
||||
// Function: mean()
|
||||
// Description:
|
||||
// Returns the arithmatic mean/average of all entries in the given array.
|
||||
|
@ -563,7 +577,7 @@ function median(v) =
|
|||
// Description:
|
||||
// Solves the linear system Ax=b. If A is square and non-singular the unique solution is returned. If A is overdetermined
|
||||
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
|
||||
// If A is rank deficient or singular then linear_solve returns `undef`. If b is a matrix that is compatible with A
|
||||
// If A is rank deficient or singular then linear_solve returns []. If b is a matrix that is compatible with A
|
||||
// then the problem is solved for the matrix valued right hand side and a matrix is returned. Note that if you
|
||||
// want to solve Ax=b1 and Ax=b2 that you need to form the matrix transpose([b1,b2]) for the right hand side and then
|
||||
// transpose the returned value.
|
||||
|
@ -582,7 +596,7 @@ function linear_solve(A,b) =
|
|||
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
|
||||
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
|
||||
)
|
||||
zeros != [] ? undef :
|
||||
zeros != [] ? [] :
|
||||
m<n ? Q*back_substitute(R,b,transpose=true) :
|
||||
back_substitute(R, transpose(Q)*b);
|
||||
|
||||
|
@ -604,7 +618,8 @@ function matrix_inverse(A) =
|
|||
// Usage: submatrix(M, ind1, ind2)
|
||||
// Description:
|
||||
// Returns a submatrix with the specified index ranges or index sets.
|
||||
function submatrix(M,ind1,ind2) = [for(i=ind1) [for(j=ind2) M[i][j] ] ];
|
||||
function submatrix(M,ind1,ind2) =
|
||||
[for(i=ind1) [for(j=ind2) M[i][j] ] ];
|
||||
|
||||
|
||||
// Function: qr_factor()
|
||||
|
@ -635,7 +650,7 @@ function _qr_factor(A,Q, column, m, n) =
|
|||
alpha = (x[0]<=0 ? 1 : -1) * norm(x),
|
||||
u = x - concat([alpha],repeat(0,m-1)),
|
||||
v = alpha==0 ? u : u / norm(u),
|
||||
Qc = ident(len(x)) - 2*transpose([v])*[v],
|
||||
Qc = ident(len(x)) - 2*outer_product(v,v),
|
||||
Qf = [for(i=[0:m-1]) [for(j=[0:m-1]) i<column || j<column ? (i==j ? 1 : 0) : Qc[i-column][j-column]]]
|
||||
)
|
||||
_qr_factor(Qf*A, Q*Qf, column+1, m, n);
|
||||
|
@ -647,11 +662,12 @@ function _qr_factor(A,Q, column, m, n) =
|
|||
// Solves the problem Rx=b where R is an upper triangular square matrix. No check is made that the lower triangular entries
|
||||
// are actually zero. If transpose==true then instead solve transpose(R)*x=b.
|
||||
// You can supply a compatible matrix b and it will produce the solution for every column of b. Note that if you want to
|
||||
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result.
|
||||
// solve Rx=b1 and Rx=b2 you must set b to transpose([b1,b2]) and then take the transpose of the result. If the matrix
|
||||
// is singular (e.g. has a zero on the diagonal) then it returns [].
|
||||
function back_substitute(R, b, x=[],transpose = false) =
|
||||
assert(is_matrix(R, square=true))
|
||||
let(n=len(R))
|
||||
assert(is_vector(b,n) || is_matrix(b,n),"R and b are not compatible in back_substitute")
|
||||
assert(is_vector(b,n) || is_matrix(b,n),str("R and b are not compatible in back_substitute ",n, len(b)))
|
||||
!is_vector(b) ? transpose([for(i=[0:len(b[0])-1]) back_substitute(R,subindex(b,i),transpose=transpose)]) :
|
||||
transpose?
|
||||
reverse(back_substitute(
|
||||
|
@ -660,7 +676,10 @@ function back_substitute(R, b, x=[],transpose = false) =
|
|||
)) :
|
||||
len(x) == n ? x :
|
||||
let(
|
||||
ind = n - len(x) - 1,
|
||||
ind = n - len(x) - 1
|
||||
)
|
||||
R[ind][ind] == 0 ? [] :
|
||||
let(
|
||||
newvalue =
|
||||
len(x)==0? b[ind]/R[ind][ind] :
|
||||
(b[ind]-select(R[ind],ind+1,-1) * x)/R[ind][ind]
|
||||
|
@ -733,7 +752,7 @@ function determinant(M) =
|
|||
// m = optional height of matrix
|
||||
// n = optional width of matrix
|
||||
// square = set to true to require a square matrix. Default: false
|
||||
function is_matrix(A,n,m,square=false) =
|
||||
function is_matrix(A,m,n,square=false) =
|
||||
is_vector(A[0],n) && is_vector(A*(0*A[0]),m) &&
|
||||
(!square || len(A)==len(A[0]));
|
||||
|
||||
|
@ -1037,12 +1056,82 @@ function C_div(z1,z2) = let(den = z2.x*z2.x + z2.y*z2.y)
|
|||
// Evaluates specified real polynomial, p, at the complex or real input value, z.
|
||||
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
|
||||
// where a_n is the z^n coefficient. Polynomial coefficients are real.
|
||||
|
||||
// Note: this should probably be recoded to use division by [1,-z], which is more accurate
|
||||
// and avoids overflow with large coefficients, but requires poly_div to support complex coefficients.
|
||||
function polynomial(p, z, k, zk, total) =
|
||||
is_undef(k) ? polynomial(p, z, len(p)-1, is_num(z)? 1 : [1,0], is_num(z) ? 0 : [0,0]) :
|
||||
k==-1 ? total :
|
||||
polynomial(p, z, k-1, is_num(z) ? zk*z : C_times(zk,z), total+zk*p[k]);
|
||||
|
||||
|
||||
// Function: poly_mult()
|
||||
// Usage
|
||||
// polymult(p,q)
|
||||
// polymult([p1,p2,p3,...])
|
||||
// Descriptoin:
|
||||
// Given a list of polynomials represented as real coefficient lists, with the highest degree coefficient first,
|
||||
// computes the coefficient list of the product polynomial.
|
||||
function poly_mult(p,q) =
|
||||
is_undef(q) ?
|
||||
assert(is_list(p) && (is_vector(p[0]) || p[0]==[]), "Invalid arguments to poly_mult")
|
||||
len(p)==2 ? poly_mult(p[0],p[1])
|
||||
: poly_mult(p[0], poly_mult(select(p,1,-1)))
|
||||
:
|
||||
_poly_trim(
|
||||
[
|
||||
for(n = [len(p)+len(q)-2:-1:0])
|
||||
sum( [for(i=[0:1:len(p)-1])
|
||||
let(j = len(p)+len(q)- 2 - n - i)
|
||||
if (j>=0 && j<len(q)) p[i]*q[j]
|
||||
])
|
||||
]);
|
||||
|
||||
|
||||
// Function: poly_div()
|
||||
// Usage:
|
||||
// [quotient,remainder] = poly_div(n,d)
|
||||
// Description:
|
||||
// Computes division of the numerator polynomial by the denominator polynomial and returns
|
||||
// a list of two polynomials, [quotient, remainder]. If the division has no remainder then
|
||||
// the zero polynomial [] is returned for the remainder. Similarly if the quotient is zero
|
||||
// the returned quotient will be [].
|
||||
function poly_div(n,d,q=[]) =
|
||||
assert(len(d)>0 && d[0]!=0 , "Denominator is zero or has leading zero coefficient")
|
||||
len(n)<len(d) ? [q,_poly_trim(n)] :
|
||||
let(
|
||||
t = n[0] / d[0],
|
||||
newq = concat(q,[t]),
|
||||
newn = [for(i=[1:1:len(n)-1]) i<len(d) ? n[i] - t*d[i] : n[i]]
|
||||
)
|
||||
poly_div(newn,d,newq);
|
||||
|
||||
|
||||
// Internal Function: _poly_trim()
|
||||
// Usage:
|
||||
// _poly_trim(p,[eps])
|
||||
// Description:
|
||||
// Removes leading zero terms of a polynomial. By default zeros must be exact,
|
||||
// or give epsilon for approximate zeros.
|
||||
function _poly_trim(p,eps=0) =
|
||||
let( nz = [for(i=[0:1:len(p)-1]) if (!approx(p[i],0,eps)) i])
|
||||
len(nz)==0 ? [] : select(p,nz[0],-1);
|
||||
|
||||
|
||||
// Function: poly_add()
|
||||
// Usage:
|
||||
// sum = poly_add(p,q)
|
||||
// Description:
|
||||
// Computes the sum of two polynomials.
|
||||
function poly_add(p,q) =
|
||||
let( plen = len(p),
|
||||
qlen = len(q),
|
||||
long = plen>qlen ? p : q,
|
||||
short = plen>qlen ? q : p
|
||||
)
|
||||
_poly_trim(long + concat(repeat(0,len(long)-len(short)),short));
|
||||
|
||||
|
||||
// Function: poly_roots()
|
||||
// Usage:
|
||||
// poly_roots(p,[tol])
|
||||
|
@ -1062,14 +1151,18 @@ function polynomial(p, z, k, zk, total) =
|
|||
// Dario Bini. "Numerical computation of polynomial zeros by means of Aberth's Method", Numerical Algorithms, Feb 1996.
|
||||
// https://www.researchgate.net/publication/225654837_Numerical_computation_of_polynomial_zeros_by_means_of_Aberth's_method
|
||||
|
||||
function poly_roots(p,tol=1e-14) =
|
||||
function poly_roots(p,tol=1e-14,error_bound=false) =
|
||||
assert(p!=[], "Input polynomial must have a nonzero coefficient")
|
||||
assert(is_vector(p), "Input must be a vector")
|
||||
p[0] == 0 ? poly_roots(slice(p,1,-1)) : // Strip leading zero coefficients
|
||||
p[len(p)-1] == 0 ? [[0,0], // Strip trailing zero coefficients
|
||||
each poly_roots(select(p,0,-2))] :
|
||||
len(p)==1 ? [] : // Nonzero constant case has no solutions
|
||||
len(p)==2 ? [[-p[1]/p[0],0]] : // Linear case needs special handling
|
||||
p[0] == 0 ? poly_roots(slice(p,1,-1),tol=tol,error_bound=error_bound) : // Strip leading zero coefficients
|
||||
p[len(p)-1] == 0 ? // Strip trailing zero coefficients
|
||||
let( solutions = poly_roots(select(p,0,-2),tol=tol, error_bound=error_bound))
|
||||
(error_bound ? [ [[0,0], each solutions[0]], [0, each solutions[1]]]
|
||||
: [[0,0], each solutions]) :
|
||||
len(p)==1 ? (error_bound ? [[],[]] : []) : // Nonzero constant case has no solutions
|
||||
len(p)==2 ? let( solution = [[-p[1]/p[0],0]]) // Linear case needs special handling
|
||||
(error_bound ? [solution,[0]] : solution)
|
||||
:
|
||||
let(
|
||||
n = len(p)-1, // polynomial degree
|
||||
pderiv = [for(i=[0:n-1]) p[i]*(n-i)],
|
||||
|
@ -1082,9 +1175,12 @@ function poly_roots(p,tol=1e-14) =
|
|||
init = [for(i=[0:1:n-1]) // Initial guess for roots
|
||||
let(angle = 360*i/n+270/n/PI)
|
||||
[beta,0]+r*[cos(angle),sin(angle)]
|
||||
]
|
||||
],
|
||||
roots = _poly_roots(p,pderiv,s,init,tol=tol),
|
||||
error = error_bound ? [for(xi=roots) n * (norm(polynomial(p,xi))+tol*polynomial(s,norm(xi))) /
|
||||
abs(norm(polynomial(pderiv,xi))-tol*polynomial(s,norm(xi)))] : 0
|
||||
)
|
||||
_poly_roots(p,pderiv,s,init,tol=tol);
|
||||
error_bound ? [roots, error] : roots;
|
||||
|
||||
// p = polynomial
|
||||
// pderiv = derivative polynomial of p
|
||||
|
@ -1114,7 +1210,10 @@ function _poly_roots(p, pderiv, s, z, tol, i=0) =
|
|||
// The polynomial is specified as p=[a_n, a_{n-1},...,a_1,a_0]
|
||||
// where a_n is the x^n coefficient. This function works by
|
||||
// computing the complex roots and returning those roots where
|
||||
// the imaginary part is closed to zero, specifically: z.y/(1+norm(z)) < eps. Because
|
||||
// the imaginary part is closed to zero. By default it uses a computed
|
||||
// error bound from the polynomial solver to decide whether imaginary
|
||||
// parts are zero. You can specify eps, in which case the test is
|
||||
// z.y/(1+norm(z)) < eps. Because
|
||||
// of poor convergence and higher error for repeated roots, such roots may
|
||||
// be missed by the algorithm because their imaginary part is large.
|
||||
// Arguments:
|
||||
|
@ -1122,11 +1221,13 @@ function _poly_roots(p, pderiv, s, z, tol, i=0) =
|
|||
// eps = used to determine whether imaginary parts of roots are zero
|
||||
// tol = tolerance for the complex polynomial root finder
|
||||
|
||||
function real_roots(p,eps=EPSILON,tol=1e-14) =
|
||||
function real_roots(p,eps=undef,tol=1e-14) =
|
||||
let(
|
||||
roots = poly_roots(p)
|
||||
roots_err = poly_roots(p,error_bound=true),
|
||||
roots = roots_err[0],
|
||||
err = roots_err[1]
|
||||
)
|
||||
[for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x];
|
||||
|
||||
is_def(eps) ? [for(z=roots) if (abs(z.y)/(1+norm(z))<eps) z.x]
|
||||
: [for(i=idx(roots)) if (abs(roots[i].y)<=err[i]) roots[i].x];
|
||||
|
||||
// vim: expandtab tabstop=4 shiftwidth=4 softtabstop=4 nowrap
|
||||
|
|
Loading…
Reference in a new issue