mirror of
https://github.com/BelfrySCAD/BOSL2.git
synced 2025-01-01 09:49:45 +00:00
Fixed a bunch of docs errors with Usage headers.
This commit is contained in:
parent
16ee49e8b2
commit
38873d8ef9
9 changed files with 51 additions and 27 deletions
|
@ -399,7 +399,8 @@ function affine3d_chain(affines, _m=undef, _i=0) =
|
||||||
|
|
||||||
|
|
||||||
// Function: apply()
|
// Function: apply()
|
||||||
// Usage: apply(transform, points)
|
// Usage:
|
||||||
|
// pts = apply(transform, points)
|
||||||
// Description:
|
// Description:
|
||||||
// Applies the specified transformation matrix to a point list (or single point). Both inputs can be 2d or 3d, and it is also allowed
|
// Applies the specified transformation matrix to a point list (or single point). Both inputs can be 2d or 3d, and it is also allowed
|
||||||
// to supply 3d transformations with 2d data as long as the the only action on the z coordinate is a simple scaling.
|
// to supply 3d transformations with 2d data as long as the the only action on the z coordinate is a simple scaling.
|
||||||
|
@ -423,7 +424,8 @@ function apply(transform,points) =
|
||||||
|
|
||||||
|
|
||||||
// Function: apply_list()
|
// Function: apply_list()
|
||||||
// Usage: apply_list(points, transform_list)
|
// Usage:
|
||||||
|
// pts = apply_list(points, transform_list)
|
||||||
// Description:
|
// Description:
|
||||||
// Transforms the specified point list (or single point) using a list of transformation matrices. Transformations on
|
// Transforms the specified point list (or single point) using a list of transformation matrices. Transformations on
|
||||||
// the list are applied in the order they appear in the list (as in right multiplication of matrices). Both inputs can be
|
// the list are applied in the order they appear in the list (as in right multiplication of matrices). Both inputs can be
|
||||||
|
|
|
@ -1146,7 +1146,8 @@ function subindex(M, idx) =
|
||||||
|
|
||||||
|
|
||||||
// Function: submatrix()
|
// Function: submatrix()
|
||||||
// Usage: submatrix(M, idx1, idx2)
|
// Usage:
|
||||||
|
// mat = submatrix(M, idx1, idx2)
|
||||||
// Description:
|
// Description:
|
||||||
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
|
// The input must be a list of lists (a matrix or 2d array). Returns a submatrix by selecting the rows listed in idx1 and columns listed in idx2.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
|
@ -1245,7 +1246,8 @@ function diagonal_matrix(diag,offdiag=0) =
|
||||||
|
|
||||||
|
|
||||||
// Function: submatrix_set()
|
// Function: submatrix_set()
|
||||||
// Usage: submatrix_set(M,A,[m],[n])
|
// Usage:
|
||||||
|
// mat = submatrix_set(M,A,[m],[n])
|
||||||
// Description:
|
// Description:
|
||||||
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
|
// Sets a submatrix of M equal to the matrix A. By default the top left corner of M is set to A, but
|
||||||
// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds
|
// you can specify offset coordinates m and n. If A (as adjusted by m and n) extends beyond the bounds
|
||||||
|
|
|
@ -1443,7 +1443,8 @@ function circle_point_tangents(r, d, cp, pt) =
|
||||||
|
|
||||||
|
|
||||||
// Function: circle_circle_tangents()
|
// Function: circle_circle_tangents()
|
||||||
// Usage: circle_circle_tangents(c1, r1|d1, c2, r2|d2)
|
// Usage:
|
||||||
|
// segs = circle_circle_tangents(c1, r1|d1, c2, r2|d2);
|
||||||
// Description:
|
// Description:
|
||||||
// Computes 2d lines tangents to a pair of circles in 2d. Returns a list of line endpoints [p1,p2] where
|
// Computes 2d lines tangents to a pair of circles in 2d. Returns a list of line endpoints [p1,p2] where
|
||||||
// p2 is the tangent point on circle 1 and p2 is the tangent point on circle 2.
|
// p2 is the tangent point on circle 1 and p2 is the tangent point on circle 2.
|
||||||
|
|
|
@ -731,7 +731,8 @@ function null_space(A,eps=1e-12) =
|
||||||
|
|
||||||
|
|
||||||
// Function: qr_factor()
|
// Function: qr_factor()
|
||||||
// Usage: qr = qr_factor(A,[pivot])
|
// Usage:
|
||||||
|
// qr = qr_factor(A,[pivot]);
|
||||||
// Description:
|
// Description:
|
||||||
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R,P]. This factorization can be
|
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R,P]. This factorization can be
|
||||||
// used to solve linear systems of equations. The factorization is A = Q*R*transpose(P). If pivot is false (the default)
|
// used to solve linear systems of equations. The factorization is A = Q*R*transpose(P). If pivot is false (the default)
|
||||||
|
@ -780,7 +781,8 @@ function _swap_matrix(n,i,j) =
|
||||||
|
|
||||||
|
|
||||||
// Function: back_substitute()
|
// Function: back_substitute()
|
||||||
// Usage: back_substitute(R, b, <transpose>)
|
// Usage:
|
||||||
|
// x = back_substitute(R, b, <transpose>);
|
||||||
// Description:
|
// Description:
|
||||||
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
|
// Solves the problem Rx=b where R is an upper triangular square matrix. The lower triangular entries of R are
|
||||||
// ignored. If transpose==true then instead solve transpose(R)*x=b.
|
// ignored. If transpose==true then instead solve transpose(R)*x=b.
|
||||||
|
|
18
paths.scad
18
paths.scad
|
@ -316,7 +316,8 @@ function path_closest_point(path, pt) =
|
||||||
|
|
||||||
|
|
||||||
// Function: path_tangents()
|
// Function: path_tangents()
|
||||||
// Usage: path_tangents(path, [closed], [uniform])
|
// Usage:
|
||||||
|
// tangs = path_tangents(path, <closed>, <uniform>);
|
||||||
// Description:
|
// Description:
|
||||||
// Compute the tangent vector to the input path. The derivative approximation is described in deriv().
|
// Compute the tangent vector to the input path. The derivative approximation is described in deriv().
|
||||||
// The returns vectors will be normalized to length 1. If any derivatives are zero then
|
// The returns vectors will be normalized to length 1. If any derivatives are zero then
|
||||||
|
@ -348,7 +349,8 @@ function path_tangents(path, closed=false, uniform=true) =
|
||||||
|
|
||||||
|
|
||||||
// Function: path_normals()
|
// Function: path_normals()
|
||||||
// Usage: path_normals(path, [tangents], [closed])
|
// Usage:
|
||||||
|
// norms = path_normals(path, <tangents>, <closed>);
|
||||||
// Description:
|
// Description:
|
||||||
// Compute the normal vector to the input path. This vector is perpendicular to the
|
// Compute the normal vector to the input path. This vector is perpendicular to the
|
||||||
// path tangent and lies in the plane of the curve. When there are collinear points,
|
// path tangent and lies in the plane of the curve. When there are collinear points,
|
||||||
|
@ -371,7 +373,8 @@ function path_normals(path, tangents, closed=false) =
|
||||||
|
|
||||||
|
|
||||||
// Function: path_curvature()
|
// Function: path_curvature()
|
||||||
// Usage: path_curvature(path, [closed])
|
// Usage:
|
||||||
|
// curvs = path_curvature(path, <closed>);
|
||||||
// Description:
|
// Description:
|
||||||
// Numerically estimate the curvature of the path (in any dimension).
|
// Numerically estimate the curvature of the path (in any dimension).
|
||||||
function path_curvature(path, closed=false) =
|
function path_curvature(path, closed=false) =
|
||||||
|
@ -388,7 +391,8 @@ function path_curvature(path, closed=false) =
|
||||||
|
|
||||||
|
|
||||||
// Function: path_torsion()
|
// Function: path_torsion()
|
||||||
// Usage: path_torsion(path, [closed])
|
// Usage:
|
||||||
|
// tortions = path_torsion(path, <closed>);
|
||||||
// Description:
|
// Description:
|
||||||
// Numerically estimate the torsion of a 3d path.
|
// Numerically estimate the torsion of a 3d path.
|
||||||
function path_torsion(path, closed=false) =
|
function path_torsion(path, closed=false) =
|
||||||
|
@ -1290,7 +1294,8 @@ function subdivide_path(path, N, refine, closed=true, exact=true, method="length
|
||||||
|
|
||||||
|
|
||||||
// Function: path_length_fractions()
|
// Function: path_length_fractions()
|
||||||
// Usage: path_length_fractions(path, [closed])
|
// Usage:
|
||||||
|
// fracs = path_length_fractions(path, <closed>);
|
||||||
// Description:
|
// Description:
|
||||||
// Returns the distance fraction of each point in the path along the path, so the first
|
// Returns the distance fraction of each point in the path along the path, so the first
|
||||||
// point is zero and the final point is 1. If the path is closed the length of the output
|
// point is zero and the final point is 1. If the path is closed the length of the output
|
||||||
|
@ -1311,7 +1316,8 @@ function path_length_fractions(path, closed=false) =
|
||||||
|
|
||||||
|
|
||||||
// Function: resample_path()
|
// Function: resample_path()
|
||||||
// Usage: resample_path(path, N|spacing, [closed])
|
// Usage:
|
||||||
|
// newpath = resample_path(path, N|spacing, <closed>);
|
||||||
// Description:
|
// Description:
|
||||||
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
|
// Compute a uniform resampling of the input path. If you specify `N` then the output path will have N
|
||||||
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the
|
// points spaced uniformly (by linear interpolation along the input path segments). The only points of the
|
||||||
|
|
|
@ -543,7 +543,8 @@ _stellated_polyhedra_ = [
|
||||||
|
|
||||||
// Function: regular_polyhedron_info()
|
// Function: regular_polyhedron_info()
|
||||||
//
|
//
|
||||||
// Usage: regular_polyhedron_info(info, ....)
|
// Usage:
|
||||||
|
// x = regular_polyhedron_info(info, ....);
|
||||||
//
|
//
|
||||||
// Description:
|
// Description:
|
||||||
// Calculate characteristics of regular polyhedra or the selection set for regular_polyhedron().
|
// Calculate characteristics of regular polyhedra or the selection set for regular_polyhedron().
|
||||||
|
|
|
@ -405,6 +405,10 @@ class LeafNode(object):
|
||||||
dummy, title = line.split(":", 1)
|
dummy, title = line.split(":", 1)
|
||||||
title = title.strip()
|
title = title.strip()
|
||||||
lines, block = get_comment_block(lines, prefix)
|
lines, block = get_comment_block(lines, prefix)
|
||||||
|
if block == []:
|
||||||
|
print("Error: Usage header without any usage examples.")
|
||||||
|
print(line)
|
||||||
|
sys.exit(-2)
|
||||||
self.usages.append([title, block])
|
self.usages.append([title, block])
|
||||||
continue
|
continue
|
||||||
if line.startswith("Description:"):
|
if line.startswith("Description:"):
|
||||||
|
|
30
skin.scad
30
skin.scad
|
@ -512,8 +512,9 @@ function subdivide_and_slice(profiles, slices, numpoints, method="length", close
|
||||||
slice_profiles(fixpoly, slices, closed);
|
slice_profiles(fixpoly, slices, closed);
|
||||||
|
|
||||||
|
|
||||||
// Function slice_profiles()
|
// Function: slice_profiles()
|
||||||
// Usage: slice_profiles(profiles,slices,[closed])
|
// Usage:
|
||||||
|
// profs = slice_profiles(profiles,slices,<closed>);
|
||||||
// Description:
|
// Description:
|
||||||
// Given an input list of profiles, linearly interpolate between each pair to produce a
|
// Given an input list of profiles, linearly interpolate between each pair to produce a
|
||||||
// more finely sampled list. The parameters `slices` specifies the number of slices to
|
// more finely sampled list. The parameters `slices` specifies the number of slices to
|
||||||
|
@ -640,7 +641,8 @@ function _dp_extract_map(map) =
|
||||||
|
|
||||||
|
|
||||||
// Internal Function: _skin_distance_match(poly1,poly2)
|
// Internal Function: _skin_distance_match(poly1,poly2)
|
||||||
// Usage: _skin_distance_match(poly1,poly2)
|
// Usage:
|
||||||
|
// polys = _skin_distance_match(poly1,poly2);
|
||||||
// Description:
|
// Description:
|
||||||
// Find a way of associating the vertices of poly1 and vertices of poly2
|
// Find a way of associating the vertices of poly1 and vertices of poly2
|
||||||
// that minimizes the sum of the length of the edges that connect the two polygons.
|
// that minimizes the sum of the length of the edges that connect the two polygons.
|
||||||
|
@ -686,16 +688,17 @@ function _skin_distance_match(poly1,poly2) =
|
||||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||||
//
|
//
|
||||||
// Internal Function: _skin_tangent_match()
|
// Internal Function: _skin_tangent_match()
|
||||||
// Usage: _skin_tangent_match(poly1, poly2)
|
// Usage:
|
||||||
|
// x = _skin_tangent_match(poly1, poly2)
|
||||||
// Description:
|
// Description:
|
||||||
// Finds a mapping of the vertices of the larger polygon onto the smaller one. Whichever input is the
|
// Finds a mapping of the vertices of the larger polygon onto the smaller one. Whichever input is the
|
||||||
// shorter path is the polygon, and the longer input is the curve. For every edge of the polygon, the algorithm seeks a plane that contains that
|
// shorter path is the polygon, and the longer input is the curve. For every edge of the polygon, the algorithm seeks a plane that contains that
|
||||||
// edge and is tangent to the curve. There will be more than one such point. To choose one, the algorithm centers the polygon and curve on their centroids
|
// edge and is tangent to the curve. There will be more than one such point. To choose one, the algorithm centers the polygon and curve on their centroids
|
||||||
// and chooses the closer tangent point. The algorithm works its way around the polygon, computing a series of tangent points and then maps all of the
|
// and chooses the closer tangent point. The algorithm works its way around the polygon, computing a series of tangent points and then maps all of the
|
||||||
// points on the curve between two tangent points into one vertex of the polygon. This algorithm can fail if the curve has too few points or if it is concave.
|
// points on the curve between two tangent points into one vertex of the polygon. This algorithm can fail if the curve has too few points or if it is concave.
|
||||||
// Arguments:
|
// Arguments:
|
||||||
// poly1 = input polygon
|
// poly1 = input polygon
|
||||||
// poly2 = input polygon
|
// poly2 = input polygon
|
||||||
function _skin_tangent_match(poly1, poly2) =
|
function _skin_tangent_match(poly1, poly2) =
|
||||||
let(
|
let(
|
||||||
swap = len(poly1)>len(poly2),
|
swap = len(poly1)>len(poly2),
|
||||||
|
@ -794,7 +797,10 @@ function associate_vertices(polygons, split, curpoly=0) =
|
||||||
|
|
||||||
|
|
||||||
// Function&Module: sweep()
|
// Function&Module: sweep()
|
||||||
// Usage: sweep(shape, transformations, [closed], [caps])
|
// Usage: As Module
|
||||||
|
// sweep(shape, transformations, <closed<, <caps>)
|
||||||
|
// Usage: As Function
|
||||||
|
// vnf = sweep(shape, transformations, <closed>, <caps>);
|
||||||
// Description:
|
// Description:
|
||||||
// The input `shape` must be a non-self-intersecting polygon in two dimensions, and `transformations`
|
// The input `shape` must be a non-self-intersecting polygon in two dimensions, and `transformations`
|
||||||
// is a list of 4x4 transformation matrices. The sweep algorithm applies each transformation in sequence
|
// is a list of 4x4 transformation matrices. The sweep algorithm applies each transformation in sequence
|
||||||
|
|
|
@ -8,7 +8,7 @@
|
||||||
//////////////////////////////////////////////////////////////////////
|
//////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
|
||||||
BOSL_VERSION = [2,0,437];
|
BOSL_VERSION = [2,0,438];
|
||||||
|
|
||||||
|
|
||||||
// Section: BOSL Library Version Functions
|
// Section: BOSL Library Version Functions
|
||||||
|
|
Loading…
Reference in a new issue