Merge pull request #674 from adrianVmariano/master

vnf update, faster path intersection
This commit is contained in:
Revar Desmera 2021-10-05 17:00:50 -07:00 committed by GitHub
commit 3a6a1fd3c0
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 305 additions and 355 deletions

View file

@ -210,36 +210,31 @@ function path_length_fractions(path, closed=false) =
/// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10); /// for (isect=isects) translate(isect[0]) color("blue") sphere(d=10);
function _path_self_intersections(path, closed=true, eps=EPSILON) = function _path_self_intersections(path, closed=true, eps=EPSILON) =
let( let(
path = cleanup_path(path, eps=eps), path = closed ? close_path(path,eps=eps) : path,
plen = len(path) plen = len(path)
) )
[ [ for (i = [0:1:plen-3]) let(
for (i = [0:1:plen-(closed?2:3)]) a1 = path[i],
let( a2 = path[i+1],
a1 = path[i], // The sign of signals is positive if the segment is one one side of
a2 = path[(i+1)%plen], // the line defined by [a1,a2] and negative on the other side.
maxax = max(a1.x,a2.x), seg_normal = unit([-(a2-a1).y, (a2-a1).x]),
minax = min(a1.x,a2.x), signals = [for(j=[i+2:1:plen-(i==0 && closed? 2: 1)]) path[j]-a1 ]*seg_normal
maxay = max(a1.y,a2.y), )
minay = min(a1.y,a2.y) for(j=[i+2:1:plen-(i==0 && closed? 3: 2)])
) // The signals test requires the two signals to have different signs,
for(j=[i+2:1:plen-(closed?1:2)]) // otherwise b1 and b2 are on the same side of the line defined by [a1,a2]
// and hence intersection is impossible
if( signals[j-i-2]*signals[j-i-1] <= 0 )
let( let(
b1 = path[j], b1 = path[j],
b2 = path[(j+1)%plen], b2 = path[j+1]
isect =
maxax < b1.x && maxax < b2.x ||
minax > b1.x && minax > b2.x ||
maxay < b1.y && maxay < b2.y ||
minay > b1.y && minay > b2.y
? undef
: _general_line_intersection([a1,a2],[b1,b2])
) )
if ((!closed || i!=0 || j!=plen-1) // This test checks that a1 and a2 are on opposite sides of the
&& isect != undef // line defined by [b1,b2].
&& isect[1]>=-eps && isect[1]<=1+eps if( cross(b2-b1, a1-b1)*cross(b2-b1, a2-b1) <= 0 )
&& isect[2]>=-eps && isect[2]<=1+eps) let(isect = _general_line_intersection([a1,a2],[b1,b2],eps=eps))
[isect[0], i, isect[1], j, isect[2]] if (isect) [isect[0], i, isect[1], j, isect[2]]
]; ];
@ -266,7 +261,7 @@ function _sum_preserving_round(data, index=0) =
// Function: subdivide_path() // Function: subdivide_path()
// Usage: // Usage:
// newpath = subdivide_path(path, [N|refine], method); // newpath = subdivide_path(path, [N|refine], method, [closed], [exact]);
// Description: // Description:
// Takes a path as input (closed or open) and subdivides the path to produce a more // Takes a path as input (closed or open) and subdivides the path to produce a more
// finely sampled path. The new points can be distributed proportional to length // finely sampled path. The new points can be distributed proportional to length

View file

@ -1931,8 +1931,8 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b
top_patch[i][4][4] top_patch[i][4][4]
] ]
], ],
top_simple = is_path_simple(faces[0],closed=true), top_simple = is_path_simple(project_plane(faces[0],faces[0]),closed=true),
bot_simple = is_path_simple(faces[1],closed=true), bot_simple = is_path_simple(project_plane(faces[1],faces[1]),closed=true),
// verify vertical edges // verify vertical edges
verify_vert = verify_vert =
[for(i=[0:N-1],j=[0:4]) [for(i=[0:N-1],j=[0:4])
@ -1958,8 +1958,8 @@ function rounded_prism(bottom, top, joint_bot=0, joint_top=0, joint_sides=0, k_b
vnf = vnf_merge([ each subindex(top_samples,0), vnf = vnf_merge([ each subindex(top_samples,0),
each subindex(bot_samples,0), each subindex(bot_samples,0),
for(pts=edge_points) vnf_vertex_array(pts), for(pts=edge_points) vnf_vertex_array(pts),
debug ? vnf_add_faces(EMPTY_VNF,faces) debug ? vnf_from_polygons(faces)
: vnf_triangulate(vnf_add_faces(EMPTY_VNF,faces)) : vnf_triangulate(vnf_from_polygons(faces))
]) ])
) )
debug ? [concat(top_patch, bot_patch), vnf] : vnf; debug ? [concat(top_patch, bot_patch), vnf] : vnf;

View file

@ -0,0 +1,8 @@
include<../std.scad>
module test__standard_anchors() {
assert_equal(_standard_anchors(), [[-1,-1,1],[0,-1,1],[1,-1,1],[-1,0,1],[0,0,1],[1,0,1],[-1,1,1],[0,1,1],[1,1,1],[-1,-1,0],[0,-1,0],[1,-1,0],[-1,0,0],[0,0,0],[1,0,0],[-1,1,0],[0,1,0],[1,1,0],[-1,-1,-1],[0,-1,-1],[1,-1,-1],[-1,0,-1],[0,0,-1],[1,0,-1],[-1,1,-1],[0,1,-1],[1,1,-1]]);
}
test__standard_anchors();

View file

@ -34,27 +34,13 @@ module test_vnf_faces() {
test_vnf_faces(); test_vnf_faces();
module test_vnf_add_face() { module test_vnf_from_polygons() {
verts = [[-1,-1,-1],[1,-1,-1],[0,1,-1],[0,0,1]]; verts = [[-1,-1,-1],[1,-1,-1],[0,1,-1],[0,0,1]];
faces = [[0,1,2],[0,3,1],[1,3,2],[2,3,0]]; faces = [[0,1,2],[0,1,3,2],[2,3,0]];
vnf1 = vnf_add_face(pts=select(verts,faces[0])); assert(vnf_merge(cleanup=true,
vnf2 = vnf_add_face(vnf1, pts=select(verts,faces[1])); [vnf_from_polygons([for (face=faces) select(verts,face)])]) == [verts,faces]);
vnf3 = vnf_add_face(vnf2, pts=select(verts,faces[2]));
vnf4 = vnf_add_face(vnf3, pts=select(verts,faces[3]));
assert(vnf1 == [select(verts,0,2),select(faces,[0])]);
assert(vnf2 == [verts,select(faces,[0:1])]);
assert(vnf3 == [verts,select(faces,[0:2])]);
assert(vnf4 == [verts,faces]);
} }
test_vnf_add_face(); test_vnf_from_polygons();
module test_vnf_add_faces() {
verts = [[-1,-1,-1],[1,-1,-1],[0,1,-1],[0,0,1]];
faces = [[0,1,2],[0,3,1],[1,3,2],[2,3,0]];
assert(vnf_add_faces(faces=[for (face=faces) select(verts,face)]) == [verts,faces]);
}
test_vnf_add_faces();
module test_vnf_centroid() { module test_vnf_centroid() {
@ -85,8 +71,8 @@ test_vnf_area();
module test_vnf_merge() { module test_vnf_merge() {
vnf1 = vnf_add_face(pts=[[-1,-1,-1],[1,-1,-1],[0,1,-1]]); vnf1 = vnf_from_polygons([[[-1,-1,-1],[1,-1,-1],[0,1,-1]]]);
vnf2 = vnf_add_face(pts=[[1,1,1],[-1,1,1],[0,1,-1]]); vnf2 = vnf_from_polygons([[[1,1,1],[-1,1,1],[0,1,-1]]]);
assert(vnf_merge([vnf1,vnf2]) == [[[-1,-1,-1],[1,-1,-1],[0,1,-1],[1,1,1],[-1,1,1],[0,1,-1]],[[0,1,2],[3,4,5]]]); assert(vnf_merge([vnf1,vnf2]) == [[[-1,-1,-1],[1,-1,-1],[0,1,-1],[1,1,1],[-1,1,1],[0,1,-1]],[[0,1,2],[3,4,5]]]);
} }
test_vnf_merge(); test_vnf_merge();

View file

@ -23,7 +23,8 @@
// left_handed = if true, create left-handed threads. Default = false // left_handed = if true, create left-handed threads. Default = false
// bevel = if true, bevel the thread ends. Default: false // bevel = if true, bevel the thread ends. Default: false
// bevel1 = if true bevel the bottom end. // bevel1 = if true bevel the bottom end.
// bevel2 = if true bevel the top end. // bevel2 = if true bevel the top end.
// starts = The number of lead starts. Default: 1
// internal = If true, make this a mask for making internal threads. // internal = If true, make this a mask for making internal threads.
// d1 = Bottom outside diameter of threads. // d1 = Bottom outside diameter of threads.
// d2 = Top outside diameter of threads. // d2 = Top outside diameter of threads.
@ -40,10 +41,23 @@
// Examples(Med): // Examples(Med):
// threaded_rod(d=10, l=20, pitch=1.25, left_handed=true, $fa=1, $fs=1); // threaded_rod(d=10, l=20, pitch=1.25, left_handed=true, $fa=1, $fs=1);
// threaded_rod(d=25, l=20, pitch=2, $fa=1, $fs=1); // threaded_rod(d=25, l=20, pitch=2, $fa=1, $fs=1);
// Example: Diamond threading where both left-handed and right-handed nuts travel (in the same direction) on the threaded rod:
// $slop = 0.075;
// d = 3/8*INCH;
// pitch = 1/16*INCH;
// starts=3;
// xdistribute(19){
// intersection(){
// threaded_rod(l=40, pitch=pitch, d=d,starts=starts,anchor=BOTTOM);
// threaded_rod(l=40, pitch=pitch, d=d, left_handed=true,starts=starts,anchor=BOTTOM);
// }
// threaded_nut(od=4.5/8*INCH,id=d,h=3/8*INCH,pitch=pitch,starts=starts,anchor=BOTTOM);
// threaded_nut(od=4.5/8*INCH,id=d,h=3/8*INCH,pitch=pitch,starts=starts,left_handed=true,anchor=BOTTOM);
// }
module threaded_rod( module threaded_rod(
d, l, pitch, d, l, pitch,
left_handed=false, left_handed=false,
bevel,bevel1,bevel2, bevel,bevel1,bevel2,starts=1,
internal=false, internal=false,
d1, d2, d1, d2,
higbee, higbee1, higbee2, higbee, higbee1, higbee2,
@ -82,7 +96,7 @@ module threaded_rod(
generic_threaded_rod( generic_threaded_rod(
d=basic ? d : d[2], d1=d1, d2=d2, l=l, d=basic ? d : d[2], d1=d1, d2=d2, l=l,
pitch=pitch, pitch=pitch,
profile=profile, profile=profile,starts=starts,
left_handed=left_handed, left_handed=left_handed,
bevel=bevel,bevel1=bevel1,bevel2=bevel2, bevel=bevel,bevel1=bevel1,bevel2=bevel2,
internal=internal, internal=internal,
@ -106,6 +120,7 @@ module threaded_rod(
// h = height/thickness of nut. // h = height/thickness of nut.
// pitch = Length between threads. // pitch = Length between threads.
// --- // ---
// starts = The number of lead starts. Default: 1
// left_handed = if true, create left-handed threads. Default = false // left_handed = if true, create left-handed threads. Default = false
// bevel = if true, bevel the thread ends. Default: false // bevel = if true, bevel the thread ends. Default: false
// bevel1 = if true bevel the bottom end. // bevel1 = if true bevel the bottom end.
@ -119,7 +134,7 @@ module threaded_rod(
// threaded_nut(od=16, id=8, h=8, pitch=1.25, left_handed=true, bevel=true, $slop=0.1, $fa=1, $fs=1); // threaded_nut(od=16, id=8, h=8, pitch=1.25, left_handed=true, bevel=true, $slop=0.1, $fa=1, $fs=1);
module threaded_nut( module threaded_nut(
od, id, h, od, id, h,
pitch, left_handed=false, bevel, bevel1, bevel2, pitch, starts=1, left_handed=false, bevel, bevel1, bevel2,
anchor, spin, orient anchor, spin, orient
) { ) {
depth = pitch * cos(30) * 5/8; depth = pitch * cos(30) * 5/8;
@ -134,7 +149,7 @@ module threaded_nut(
generic_threaded_nut( generic_threaded_nut(
od=od, id=id, h=h, od=od, id=id, h=h,
pitch=pitch, pitch=pitch,
profile=profile, profile=profile,starts=starts,
left_handed=left_handed, left_handed=left_handed,
bevel=bevel,bevel1=bevel1,bevel2=bevel2, bevel=bevel,bevel1=bevel1,bevel2=bevel2,
anchor=anchor, spin=spin, anchor=anchor, spin=spin,

544
vnf.scad
View file

@ -328,59 +328,26 @@ function vnf_merge(vnfs, cleanup=false, eps=EPSILON) =
[nverts, nfaces]; [nverts, nfaces];
// Function: vnf_from_polygons()
// Function: vnf_add_face()
// Usage: // Usage:
// vnf_add_face(vnf, pts); // vnf = vnf_from_polygons(polygons);
// Description: // Description:
// Given a VNF structure and a list of face vertex points, adds the face to the VNF structure. // Given a list of 3d polygons, produces a VNF containing those polygons.
// Returns the modified VNF structure `[VERTICES, FACES]`. It is up to the caller to make
// sure that the points are in the correct order to make the face normal point outwards.
// Arguments:
// vnf = The VNF structure to add a face to.
// pts = The vertex points for the face.
function vnf_add_face(vnf=EMPTY_VNF, pts) =
assert(is_vnf(vnf))
assert(is_path(pts))
let(
res = set_union(vnf[0], pts, get_indices=true),
face = deduplicate(res[0], closed=true)
) [
res[1],
concat(vnf[1], len(face)>2? [face] : [])
];
// Function: vnf_add_faces()
// Usage:
// vnf_add_faces(vnf, faces);
// Description:
// Given a VNF structure and a list of faces, where each face is given as a list of vertex points,
// adds the faces to the VNF structure. Returns the modified VNF structure `[VERTICES, FACES]`.
// It is up to the caller to make sure that the points are in the correct order to make the face // It is up to the caller to make sure that the points are in the correct order to make the face
// normals point outwards. // normals point outwards. No checking for duplicate vertices is done. If you want to
// remove duplicate vertices use vnf_merge with the cleanup option.
// Arguments: // Arguments:
// vnf = The VNF structure to add a face to. // polygons = The list of 3d polygons to turn into a VNF
// faces = The list of faces, where each face is given as a list of vertex points. function vnf_from_polygons(polygons) =
function vnf_add_faces(vnf=EMPTY_VNF, faces) = assert(is_list(polygons) && is_path(polygons[0]),"Input should be a list of polygons")
assert(is_vnf(vnf)) let(
assert(is_list(faces)) offs = cumsum([0, for(p=polygons) len(p)]),
let( faces = [for(i=idx(polygons))
res = set_union(vnf[0], flatten(faces), get_indices=true), [for (j=idx(polygons[i])) offs[i]+j]
idxs = res[0], ]
nverts = res[1], )
offs = cumsum([0, for (face=faces) len(face)]), [flatten(polygons), faces];
ifaces = [
for (i=idx(faces)) [
for (j=idx(faces[i]))
idxs[offs[i]+j]
]
]
) [
nverts,
concat(vnf[1],ifaces)
];
// Section: VNF Testing and Access // Section: VNF Testing and Access
@ -486,33 +453,34 @@ module vnf_polyhedron(vnf, convexity=2, extent=true, cp=[0,0,0], anchor="origin"
// Usage: // Usage:
// vnf_wireframe(vnf, <r|d>); // vnf_wireframe(vnf, <r|d>);
// Description: // Description:
// Given a VNF, creates a wire frame ball-and-stick model of the polyhedron with a cylinder for each edge and a sphere at each vertex. // Given a VNF, creates a wire frame ball-and-stick model of the polyhedron with a cylinder for
// each edge and a sphere at each vertex. The width parameter specifies the width of the sticks
// that form the wire frame.
// Arguments: // Arguments:
// vnf = A vnf structure // vnf = A vnf structure
// r|d = radius or diameter of the cylinders forming the wire frame. Default: r=1 // width = width of the cylinders forming the wire frame. Default: 1
// Example: // Example:
// $fn=32; // $fn=32;
// ball = sphere(r=20, $fn=6); // ball = sphere(r=20, $fn=6);
// vnf_wireframe(ball,d=1); // vnf_wireframe(ball,width=1);
// Example: // Example:
// include<BOSL2/polyhedra.scad> // include <BOSL2/polyhedra.scad>
// $fn=32; // $fn=32;
// cube_oct = regular_polyhedron_info("vnf", name="cuboctahedron", or=20); // cube_oct = regular_polyhedron_info("vnf", name="cuboctahedron", or=20);
// vnf_wireframe(cube_oct); // vnf_wireframe(cube_oct);
// Example: The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal. // Example: The spheres at the vertex are imperfect at aligning with the cylinders, so especially at low $fn things look prety ugly. This is normal.
// include<BOSL2/polyhedra.scad> // include <BOSL2/polyhedra.scad>
// $fn=8; // $fn=8;
// octahedron = regular_polyhedron_info("vnf", name="octahedron", or=20); // octahedron = regular_polyhedron_info("vnf", name="octahedron", or=20);
// vnf_wireframe(octahedron,r=5); // vnf_wireframe(octahedron,width=5);
module vnf_wireframe(vnf, r, d) module vnf_wireframe(vnf, width=1)
{ {
r = get_radius(r=r,d=d,dflt=1);
vertex = vnf[0]; vertex = vnf[0];
edges = unique([for (face=vnf[1], i=idx(face)) edges = unique([for (face=vnf[1], i=idx(face))
sort([face[i], select(face,i+1)]) sort([face[i], select(face,i+1)])
]); ]);
for (e=edges) extrude_from_to(vertex[e[0]],vertex[e[1]]) circle(r=r); for (e=edges) extrude_from_to(vertex[e[0]],vertex[e[1]]) circle(d=width);
move_copies(vertex) sphere(r=r); move_copies(vertex) sphere(d=width);
} }
@ -682,6 +650,109 @@ function _vnfcut(plane, vertices, vertexmap, inside, faces, vertcount, newfaces=
// Function: vnf_slice()
// Usage:
// sliced = vnf_slice(vnf, dir, cuts);
// Description:
// Slice the faces of a VNF along a specified axis direction at a given list
// of cut points. You can use this to refine the faces of a VNF before applying
// a nonlinear transformation to its vertex set.
// Example:
// include <BOSL2-fork/polyhedra.scad>
// vnf = regular_polyhedron_info("vnf", "dodecahedron", side=12);
// vnf_polyhedron(vnf);
// sliced = vnf_slice(vnf, "X", [-6,-1,10]);
// color("red")vnf_wireframe(sliced,width=.3);
function vnf_slice(vnf,dir,cuts) =
let(
vert = vnf[0],
faces = [for(face=vnf[1]) select(vert,face)],
poly_list = _slice_3dpolygons(faces, dir, cuts)
)
vnf_merge([vnf_from_polygons(poly_list)], cleanup=true);
function _split_polygon_at_x(poly, x) =
let(
xs = subindex(poly,0)
) (min(xs) >= x || max(xs) <= x)? [poly] :
let(
poly2 = [
for (p = pair(poly,true)) each [
p[0],
if(
(p[0].x < x && p[1].x > x) ||
(p[1].x < x && p[0].x > x)
) let(
u = (x - p[0].x) / (p[1].x - p[0].x)
) [
x, // Important for later exact match tests
u*(p[1].y-p[0].y)+p[0].y
]
]
],
out1 = [for (p = poly2) if(p.x <= x) p],
out2 = [for (p = poly2) if(p.x >= x) p],
out3 = [
if (len(out1)>=3) each split_path_at_self_crossings(out1),
if (len(out2)>=3) each split_path_at_self_crossings(out2),
],
out = [for (p=out3) if (len(p) > 2) cleanup_path(p)]
) out;
function _split_2dpolygons_at_each_x(polys, xs, _i=0) =
_i>=len(xs)? polys :
_split_2dpolygons_at_each_x(
[
for (poly = polys)
each _split_polygon_at_x(poly, xs[_i])
], xs, _i=_i+1
);
/// Function: _slice_3dpolygons()
/// Usage:
/// splitpolys = _slice_3dpolygons(polys, dir, cuts);
/// Topics: Geometry, Polygons, Intersections
/// Description:
/// Given a list of 3D polygons, a choice of X, Y, or Z, and a cut list, `cuts`, splits all of the polygons where they cross
/// X/Y/Z at any value given in cuts.
/// Arguments:
/// polys = A list of 3D polygons to split.
/// dir_ind = slice direction, 0=X, 1=Y, or 2=Z
/// cuts = A list of scalar values for locating the cuts
function _slice_3dpolygons(polys, dir, cuts) =
assert( [for (poly=polys) if (!is_path(poly,3)) 1] == [], "Expects list of 3D paths.")
assert( is_vector(cuts), "The split list must be a vector.")
assert( in_list(dir, ["X", "Y", "Z"]))
let(
I = ident(3),
dir_ind = ord(dir)-ord("X")
)
flatten([for (poly = polys)
let(
plane = plane_from_polygon(poly),
normal = point3d(plane),
pnormal = normal - (normal*I[dir_ind])*I[dir_ind]
)
approx(pnormal,[0,0,0]) ? [poly] :
let (
pind = max_index(v_abs(pnormal)), // project along this direction
otherind = 3-pind-dir_ind, // keep dir_ind and this direction
keep = [I[dir_ind], I[otherind]], // dir ind becomes the x dir
poly2d = poly*transpose(keep), // project to 2d, putting selected direction in the X position
poly_list = [for(p=_split_2dpolygons_at_each_x([poly2d], cuts))
let(
a = p*keep, // unproject, but pind dimension data is missing
ofs = outer_product((repeat(plane[3], len(a))-a*normal)/plane[pind],I[pind])
)
a+ofs] // ofs computes the missing pind dimension data and adds it back in
)
poly_list
]);
function _triangulate_planar_convex_polygons(polys) = function _triangulate_planar_convex_polygons(polys) =
polys==[]? [] : polys==[]? [] :
let( let(
@ -708,9 +779,11 @@ function _triangulate_planar_convex_polygons(polys) =
// Usage: // Usage:
// bentvnf = vnf_bend(vnf,r,d,[axis]); // bentvnf = vnf_bend(vnf,r,d,[axis]);
// Description: // Description:
// Given a VNF that is entirely above, or entirely below the Z=0 plane, bends the VNF around the // Bend a VNF around the X, Y or Z axis, splitting up faces as necessary. Returns the bent
// Y axis, splitting up faces as necessary. Returns the bent VNF. Will error out if the VNF // VNF. For bending around the Z axis the input VNF must not cross the Y=0 plane. For bending
// straddles the Z=0 plane, or if the bent VNF would wrap more than completely around. The 1:1 // around the X or Y axes the VNF must not cross the Z=0 plane. Note that if you wrap a VNF all the way around
// it may intersect itself, which produces an invalid polyhedron. It is your responsibility to
// avoid this situation. The 1:1
// radius is where the curved length of the bent VNF matches the length of the original VNF. If the // radius is where the curved length of the bent VNF matches the length of the original VNF. If the
// `r` or `d` arguments are given, then they will specify the 1:1 radius or diameter. If they are // `r` or `d` arguments are given, then they will specify the 1:1 radius or diameter. If they are
// not given, then the 1:1 radius will be defined by the distance of the furthest vertex in the // not given, then the 1:1 radius will be defined by the distance of the furthest vertex in the
@ -775,10 +848,14 @@ function _triangulate_planar_convex_polygons(polys) =
// #vnf_polyhedron(vnf1); // #vnf_polyhedron(vnf1);
// bent1 = vnf_bend(vnf1, axis="Z"); // bent1 = vnf_bend(vnf1, axis="Z");
// vnf_polyhedron([bent1]); // vnf_polyhedron([bent1]);
// Example(3D): Bending more than once around the cylinder
// $fn=32;
// vnf = apply(fwd(5)*yrot(30),cube([100,2,5],center=true));
// bent = vnf_bend(vnf, axis="Z");
// vnf_polyhedron(bent);
function vnf_bend(vnf,r,d,axis="Z") = function vnf_bend(vnf,r,d,axis="Z") =
let( let(
chk_axis = assert(in_list(axis,["X","Y","Z"])), chk_axis = assert(in_list(axis,["X","Y","Z"])),
vnf = vnf_triangulate(vnf),
verts = vnf[0], verts = vnf[0],
bounds = pointlist_bounds(verts), bounds = pointlist_bounds(verts),
bmin = bounds[0], bmin = bounds[0],
@ -787,153 +864,34 @@ function vnf_bend(vnf,r,d,axis="Z") =
max(abs(bmax.y), abs(bmin.y)) : max(abs(bmax.y), abs(bmin.y)) :
max(abs(bmax.z), abs(bmin.z)), max(abs(bmax.z), abs(bmin.z)),
r = get_radius(r=r,d=d,dflt=dflt), r = get_radius(r=r,d=d,dflt=dflt),
width = axis=="X"? (bmax.y-bmin.y) : (bmax.x - bmin.x) extent = axis=="X" ? [bmin.y, bmax.y] : [bmin.x, bmax.x]
) )
assert(width <= 2*PI*r, "Shape would wrap more than completely around the cylinder.")
let( let(
span_chk = axis=="Z"? span_chk = axis=="Z"?
assert(bmin.y > 0 || bmax.y < 0, "Entire shape MUST be completely in front of or behind y=0.") : assert(bmin.y > 0 || bmax.y < 0, "Entire shape MUST be completely in front of or behind y=0.") :
assert(bmin.z > 0 || bmax.z < 0, "Entire shape MUST be completely above or below z=0."), assert(bmin.z > 0 || bmax.z < 0, "Entire shape MUST be completely above or below z=0."),
min_ang = 180 * bmin.x / (PI * r), steps = ceil(segs(r) * (extent[1]-extent[0])/(2*PI*r)),
max_ang = 180 * bmax.x / (PI * r), step = (extent[1]-extent[0]) / steps,
ang_span = max_ang-min_ang, bend_at = [for(i = [1:1:steps-1]) i*step+extent[0]],
steps = ceil(segs(r) * ang_span/360), slicedir = axis=="X"? "Y" : "X", // slice in y dir for X axis case, and x dir otherwise
step = width / steps, sliced = vnf_slice(vnf, slicedir, bend_at),
bend_at = axis=="X"? [for(i = [1:1:steps-1]) i*step+bmin.y] : coord = axis=="X" ? [0,sign(bmax.z),0] : axis=="Y" ? [sign(bmax.z),0,0] : [sign(bmax.y),0,0],
[for(i = [1:1:steps-1]) i*step+bmin.x], new_vert = [for(p=sliced[0])
facepolys = [for (face=vnf[1]) select(verts,face)], let(a=coord*p*180/(PI*r))
splits = axis=="X"? axis=="X"? [p.x, p.z*sin(a), p.z*cos(a)] :
_split_polygons_at_each_y(facepolys, bend_at) : axis=="Y"? [p.z*sin(a), p.y, p.z*cos(a)] :
_split_polygons_at_each_x(facepolys, bend_at), [p.y*sin(a), p.y*cos(a), p.z]]
newtris = _triangulate_planar_convex_polygons(splits),
bent_faces = [ ) [new_vert,sliced[1]];
for (tri = newtris) [
for (p = tri) let(
a = axis=="X"? 180*p.y/(r*PI) * sign(bmax.z) :
axis=="Y"? 180*p.x/(r*PI) * sign(bmax.z) :
180*p.x/(r*PI) * sign(bmax.y)
)
axis=="X"? [p.x, p.z*sin(a), p.z*cos(a)] :
axis=="Y"? [p.z*sin(a), p.y, p.z*cos(a)] :
[p.y*sin(a), p.y*cos(a), p.z]
]
]
) vnf_add_faces(faces=bent_faces);
function _split_polygon_at_x(poly, x) =
let(
xs = subindex(poly,0)
) (min(xs) >= x || max(xs) <= x)? [poly] :
let(
poly2 = [
for (p = pair(poly,true)) each [
p[0],
if(
(p[0].x < x && p[1].x > x) ||
(p[1].x < x && p[0].x > x)
) let(
u = (x - p[0].x) / (p[1].x - p[0].x)
) [
x, // Important for later exact match tests
u*(p[1].y-p[0].y)+p[0].y,
u*(p[1].z-p[0].z)+p[0].z,
]
]
],
out1 = [for (p = poly2) if(p.x <= x) p],
out2 = [for (p = poly2) if(p.x >= x) p],
out3 = [
if (len(out1)>=3) each split_path_at_self_crossings(out1),
if (len(out2)>=3) each split_path_at_self_crossings(out2),
],
out = [for (p=out3) if (len(p) > 2) cleanup_path(p)]
) out;
function _split_polygon_at_y(poly, y) =
let(
ys = subindex(poly,1)
) (min(ys) >= y || max(ys) <= y)? [poly] :
let(
poly2 = [
for (p = pair(poly,true)) each [
p[0],
if(
(p[0].y < y && p[1].y > y) ||
(p[1].y < y && p[0].y > y)
) let(
u = (y - p[0].y) / (p[1].y - p[0].y)
) [
u*(p[1].x-p[0].x)+p[0].x,
y, // Important for later exact match tests
u*(p[1].z-p[0].z)+p[0].z,
]
]
],
out1 = [for (p = poly2) if(p.y <= y) p],
out2 = [for (p = poly2) if(p.y >= y) p],
out3 = [
if (len(out1)>=3) each split_path_at_self_crossings(out1),
if (len(out2)>=3) each split_path_at_self_crossings(out2),
],
out = [for (p=out3) if (len(p) > 2) cleanup_path(p)]
) out;
/// Function: _split_polygons_at_each_x()
// Usage:
// splitpolys = split_polygons_at_each_x(polys, xs);
/// Topics: Geometry, Polygons, Intersections
// Description:
// Given a list of 3D polygons, splits all of them wherever they cross any X value given in `xs`.
// Arguments:
// polys = A list of 3D polygons to split.
// xs = A list of scalar X values to split at.
function _split_polygons_at_each_x(polys, xs, _i=0) =
assert( [for (poly=polys) if (!is_path(poly,3)) 1] == [], "Expects list of 3D paths.")
assert( is_vector(xs), "The split value list should contain only numbers." )
_i>=len(xs)? polys :
_split_polygons_at_each_x(
[
for (poly = polys)
each _split_polygon_at_x(poly, xs[_i])
], xs, _i=_i+1
);
///Internal Function: _split_polygons_at_each_y()
// Usage:
// splitpolys = _split_polygons_at_each_y(polys, ys);
/// Topics: Geometry, Polygons, Intersections
// Description:
// Given a list of 3D polygons, splits all of them wherever they cross any Y value given in `ys`.
// Arguments:
// polys = A list of 3D polygons to split.
// ys = A list of scalar Y values to split at.
function _split_polygons_at_each_y(polys, ys, _i=0) =
assert( [for (poly=polys) if (!is_path(poly,3)) 1] == [], "Expects list of 3D paths.")
assert( is_vector(ys), "The split value list should contain only numbers." )
_i>=len(ys)? polys :
_split_polygons_at_each_y(
[
for (poly = polys)
each _split_polygon_at_y(poly, ys[_i])
], ys, _i=_i+1
);
// Section: Debugging VNFs
// Section: Debugging Polyhedrons // Section: Debugging Polyhedrons
// Module: _show_vertices()
// Module: debug_vertices()
// Usage: // Usage:
// debug_vertices(vertices, [size], [disabled=]); // _show_vertices(vertices, [size])
// Description: // Description:
// Draws all the vertices in an array, at their 3D position, numbered by their // Draws all the vertices in an array, at their 3D position, numbered by their
// position in the vertex array. Also draws any children of this module with // position in the vertex array. Also draws any children of this module with
@ -941,92 +899,76 @@ function _split_polygons_at_each_y(polys, ys, _i=0) =
// Arguments: // Arguments:
// vertices = Array of point vertices. // vertices = Array of point vertices.
// size = The size of the text used to label the vertices. Default: 1 // size = The size of the text used to label the vertices. Default: 1
// ---
// disabled = If true, don't draw numbers, and draw children without transparency. Default = false.
// Example: // Example:
// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]]; // verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]];
// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]]; // faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]];
// debug_vertices(vertices=verts, size=2) { // _show_vertices(vertices=verts, size=2) {
// polyhedron(points=verts, faces=faces); // polyhedron(points=verts, faces=faces);
// } // }
module debug_vertices(vertices, size=1, disabled=false) { module _show_vertices(vertices, size=1) {
if (!disabled) { color("blue") {
color("blue") { dups = vector_search(vertices, EPSILON, vertices);
dups = vector_search(vertices, EPSILON, vertices); for (ind = dups){
for (ind = dups){ numstr = str_join([for(i=ind) str(i)],",");
numstr = str_join([for(i=ind) str(i)],","); v = vertices[ind[0]];
v = vertices[ind[0]]; translate(v) {
translate(v) { rot($vpr) back(size/8){
up(size/8) zrot($vpr[2]) xrot(90) { linear_extrude(height=size/10, center=true, convexity=10) {
linear_extrude(height=size/10, center=true, convexity=10) { text(text=numstr, size=size, halign="center");
text(text=numstr, size=size, halign="center"); }
}
}
sphere(size/10);
} }
sphere(size/10);
} }
} }
} }
if ($children > 0) {
if (!disabled) {
color([0.2, 1.0, 0, 0.5]) children();
} else {
children();
}
}
} }
/// Module: _show_faces()
// Module: debug_faces() /// Usage:
// Usage: /// _show_faces(vertices, faces, [size=]);
// debug_faces(vertices, faces, [size=], [disabled=]); /// Description:
// Description: /// Draws all the vertices at their 3D position, numbered in blue by their
// Draws all the vertices at their 3D position, numbered in blue by their /// position in the vertex array. Each face will have their face number drawn
// position in the vertex array. Each face will have their face number drawn /// in red, aligned with the center of face. All children of this module are drawn
// in red, aligned with the center of face. All children of this module are drawn /// with transparency.
// with transparency. /// Arguments:
// Arguments: /// vertices = Array of point vertices.
// vertices = Array of point vertices. /// faces = Array of faces by vertex numbers.
// faces = Array of faces by vertex numbers. /// size = The size of the text used to label the faces and vertices. Default: 1
// --- /// Example(EdgesMed):
// size = The size of the text used to label the faces and vertices. Default: 1 /// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]];
// disabled = If true, don't draw numbers, and draw children without transparency. Default: false. /// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]];
// Example(EdgesMed): /// _show_faces(vertices=verts, faces=faces, size=2) {
// verts = [for (z=[-10,10], y=[-10,10], x=[-10,10]) [x,y,z]]; /// polyhedron(points=verts, faces=faces);
// faces = [[0,1,2], [1,3,2], [0,4,5], [0,5,1], [1,5,7], [1,7,3], [3,7,6], [3,6,2], [2,6,4], [2,4,0], [4,6,7], [4,7,5]]; /// }
// debug_faces(vertices=verts, faces=faces, size=2) { module _show_faces(vertices, faces, size=1) {
// polyhedron(points=verts, faces=faces); vlen = len(vertices);
// } color("red") {
module debug_faces(vertices, faces, size=1, disabled=false) { for (i = [0:1:len(faces)-1]) {
if (!disabled) { face = faces[i];
vlen = len(vertices); if (face[0] < 0 || face[1] < 0 || face[2] < 0 || face[0] >= vlen || face[1] >= vlen || face[2] >= vlen) {
color("red") { echo("BAD FACE: ", vlen=vlen, face=face);
for (i = [0:1:len(faces)-1]) { } else {
face = faces[i]; verts = select(vertices,face);
if (face[0] < 0 || face[1] < 0 || face[2] < 0 || face[0] >= vlen || face[1] >= vlen || face[2] >= vlen) { c = mean(verts);
echo("BAD FACE: ", vlen=vlen, face=face); v0 = verts[0];
} else { v1 = verts[1];
verts = select(vertices,face); v2 = verts[2];
c = mean(verts); dv0 = unit(v1 - v0);
v0 = verts[0]; dv1 = unit(v2 - v0);
v1 = verts[1]; nrm0 = cross(dv0, dv1);
v2 = verts[2]; nrm1 = UP;
dv0 = unit(v1 - v0); axis = vector_axis(nrm0, nrm1);
dv1 = unit(v2 - v0); ang = vector_angle(nrm0, nrm1);
nrm0 = cross(dv0, dv1); theta = atan2(nrm0[1], nrm0[0]);
nrm1 = UP; translate(c) {
axis = vector_axis(nrm0, nrm1); rotate(a=180-ang, v=axis) {
ang = vector_angle(nrm0, nrm1); zrot(theta-90)
theta = atan2(nrm0[1], nrm0[0]); linear_extrude(height=size/10, center=true, convexity=10) {
translate(c) { union() {
rotate(a=180-ang, v=axis) { text(text=str(i), size=size, halign="center");
zrot(theta-90) text(text=str("_"), size=size, halign="center");
linear_extrude(height=size/10, center=true, convexity=10) {
union() {
text(text=str(i), size=size, halign="center");
text(text=str("_"), size=size, halign="center");
}
} }
} }
} }
@ -1034,44 +976,48 @@ module debug_faces(vertices, faces, size=1, disabled=false) {
} }
} }
} }
debug_vertices(vertices, size=size, disabled=disabled) {
children();
}
if (!disabled) {
echo(faces=faces);
}
} }
// Module: debug_vnf() // Module: vnf_debug()
// Usage: // Usage:
// debug_vnf(vnfs, [convexity=], [txtsize=], [disabled=]); // vnf_debug(vnfs, [faces], [vertices], [opacity], [size], [convexity]);
// Description: // Description:
// A drop-in module to replace `vnf_polyhedron()` and help debug vertices and faces. // A drop-in module to replace `vnf_polyhedron()` to help debug vertices and faces.
// Draws all the vertices at their 3D position, numbered in blue by their // Draws all the vertices at their 3D position, numbered in blue by their
// position in the vertex array. Each face will have its face number drawn // position in the vertex array. Each face will have its face number drawn
// in red, aligned with the center of face. All given faces are drawn with // in red, aligned with the center of face. All given faces are drawn with
// transparency. All children of this module are drawn with transparency. // transparency. All children of this module are drawn with transparency.
// Works best with Thrown-Together preview mode, to see reversed faces. // Works best with Thrown-Together preview mode, to see reversed faces.
// You can set opacity to 0 if you want to supress the display of the polyhedron faces.
// .
// The vertex numbers are shown rotated to face you. As you rotate your polyhedron you
// can rerun the preview to display them oriented for viewing from a different viewpoint.
// Topics: Polyhedra, Debugging
// Arguments: // Arguments:
// vnf = vnf to display // vnf = vnf to display
// --- // ---
// faces = if true display face numbers. Default: true
// vertices = if true display vertex numbers. Default: true
// opacity = Opacity of the polyhedron faces. Default: 0.5
// convexity = The max number of walls a ray can pass through the given polygon paths. // convexity = The max number of walls a ray can pass through the given polygon paths.
// txtsize = The size of the text used to label the faces and vertices. // size = The size of the text used to label the faces and vertices. Default: 1
// disabled = If true, act exactly like `polyhedron()`. Default = false.
// Example(EdgesMed): // Example(EdgesMed):
// verts = [for (z=[-10,10], a=[0:120:359.9]) [10*cos(a),10*sin(a),z]]; // verts = [for (z=[-10,10], a=[0:120:359.9]) [10*cos(a),10*sin(a),z]];
// faces = [[0,1,2], [5,4,3], [0,3,4], [0,4,1], [1,4,5], [1,5,2], [2,5,3], [2,3,0]]; // faces = [[0,1,2], [5,4,3], [0,3,4], [0,4,1], [1,4,5], [1,5,2], [2,5,3], [2,3,0]];
// debug_vnf([verts,faces], txtsize=2); // vnf_debug([verts,faces], size=2);
module debug_vnf(vnf, convexity=6, txtsize=1, disabled=false) { module vnf_debug(vnf, faces=true, vertices=true, opacity=0.5, size=1, convexity=6 ) {
debug_faces(vertices=vnf[0], faces=vnf[1], size=txtsize, disabled=disabled) { no_children($children);
vnf_polyhedron(vnf, convexity=convexity); if (faces)
} _show_faces(vertices=vnf[0], faces=vnf[1], size=size);
if (vertices)
_show_vertices(vertices=vnf[0], size=size);
color([0.2, 1.0, 0, opacity])
vnf_polyhedron(vnf,convexity=convexity);
} }
// Function&Module: vnf_validate() // Function&Module: vnf_validate()
// Usage: As Function // Usage: As Function
// fails = vnf_validate(vnf); // fails = vnf_validate(vnf);
@ -1115,7 +1061,7 @@ module debug_vnf(vnf, convexity=6, txtsize=1, disabled=false) {
// c = [-50, 50, 50]; // c = [-50, 50, 50];
// d = [ 50, 50, 60]; // d = [ 50, 50, 60];
// e = [ 50,-50, 50]; // e = [ 50,-50, 50];
// vnf = vnf_add_faces(faces=[ // vnf = vnf_from_polygons([
// [a, b, e], [a, c, b], [a, d, c], [a, e, d], [b, c, d, e] // [a, b, e], [a, c, b], [a, d, c], [a, e, d], [b, c, d, e]
// ]); // ]);
// vnf_validate(vnf); // vnf_validate(vnf);
@ -1127,26 +1073,26 @@ module debug_vnf(vnf, convexity=6, txtsize=1, disabled=false) {
// path3d(square(100,center=true),0), // path3d(square(100,center=true),0),
// path3d(square(100,center=true),100), // path3d(square(100,center=true),100),
// ], slices=0, caps=false); // ], slices=0, caps=false);
// vnf = vnf_add_faces(vnf=vnf1, faces=[ // vnf = vnf_merge([vnf1, vnf_from_polygons([
// [[-50,-50, 0], [ 50, 50, 0], [-50, 50, 0]], // [[-50,-50, 0], [ 50, 50, 0], [-50, 50, 0]],
// [[-50,-50, 0], [ 50,-50, 0], [ 50, 50, 0]], // [[-50,-50, 0], [ 50,-50, 0], [ 50, 50, 0]],
// [[-50,-50,100], [-50, 50,100], [ 50, 50,100]], // [[-50,-50,100], [-50, 50,100], [ 50, 50,100]],
// [[-50,-50,100], [ 50,-50,100], [ 50, 50,100]], // [[-50,-50,100], [ 50,-50,100], [ 50, 50,100]],
// ]); // ])]);
// vnf_validate(vnf); // vnf_validate(vnf);
// Example: T_JUNCTION Errors; Vertex is Mid-Edge on Another Face. // Example: T_JUNCTION Errors; Vertex is Mid-Edge on Another Face.
// vnf1 = skin([ // vnf1 = skin([
// path3d(square(100,center=true),0), // path3d(square(100,center=true),0),
// path3d(square(100,center=true),100), // path3d(square(100,center=true),100),
// ], slices=0, caps=false); // ], slices=0, caps=false);
// vnf = vnf_add_faces(vnf=vnf1, faces=[ // vnf = vnf_merge([vnf1, vnf_from_polygons([
// [[-50,-50,0], [50,50,0], [-50,50,0]], // [[-50,-50,0], [50,50,0], [-50,50,0]],
// [[-50,-50,0], [50,-50,0], [50,50,0]], // [[-50,-50,0], [50,-50,0], [50,50,0]],
// [[-50,-50,100], [-50,50,100], [0,50,100]], // [[-50,-50,100], [-50,50,100], [0,50,100]],
// [[-50,-50,100], [0,50,100], [0,-50,100]], // [[-50,-50,100], [0,50,100], [0,-50,100]],
// [[0,-50,100], [0,50,100], [50,50,100]], // [[0,-50,100], [0,50,100], [50,50,100]],
// [[0,-50,100], [50,50,100], [50,-50,100]], // [[0,-50,100], [50,50,100], [50,-50,100]],
// ]); // ])]);
// vnf_validate(vnf); // vnf_validate(vnf);
// Example: FACE_ISECT Errors; Faces Intersect // Example: FACE_ISECT Errors; Faces Intersect
// vnf = vnf_merge([ // vnf = vnf_merge([