Added median()

This commit is contained in:
Revar Desmera 2020-03-17 01:13:47 -07:00
parent 412dd9e260
commit 3ac23e15e6
2 changed files with 35 additions and 16 deletions

View file

@ -433,8 +433,8 @@ function lcm(a,b=[]) =
// sum([1,2,3]); // returns 6.
// sum([[1,2,3], [3,4,5], [5,6,7]]); // returns [9, 12, 15]
function sum(v, dflt=0) =
assert(is_consistent(v), "Input to sum is non-numeric or inconsistent")
len(v) == 0 ? dflt : _sum(v,v[0]*0);
assert(is_consistent(v), "Input to sum is non-numeric or inconsistent")
len(v) == 0 ? dflt : _sum(v,v[0]*0);
function _sum(v,_total,_i=0) = _i>=len(v) ? _total : _sum(v,_total+v[_i], _i+1);
@ -519,8 +519,8 @@ function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==un
// Function: mean()
// Description:
// Returns the mean of all entries in the given array.
// If passed an array of vectors, returns a vector of mean of each part.
// Returns the arithmatic mean/average of all entries in the given array.
// If passed a list of vectors, returns a vector of the mean of each part.
// Arguments:
// v = The list of values to get the mean of.
// Example:
@ -529,6 +529,25 @@ function product(v, i=0, tot=undef) = i>=len(v)? tot : product(v, i+1, ((tot==un
function mean(v) = sum(v)/len(v);
// Function: median()
// Usage:
// x = median(v);
// Description:
// Given a list of numbers or vectors, finds the median value or midpoint.
// If passed a list of vectors, returns the vector of the median of each part.
function median(v) =
assert(is_list(v))
assert(len(v)>0)
is_vector(v[0])? (
assert(is_consistent(v))
[
for (i=idx(v[0]))
let(vals = subindex(v,i))
(min(vals)+max(vals))/2
]
) : (min(v)+max(v))/2;
// Section: Matrix math
// Function: linear_solve()
@ -538,23 +557,23 @@ function mean(v) = sum(v)/len(v);
// the least squares solution is returned. If A is underdetermined, the minimal norm solution is returned.
// If A is rank deficient or singular then linear_solve returns `undef`.
function linear_solve(A,b) =
assert(is_matrix(A))
assert(is_vector(b))
assert(is_matrix(A))
assert(is_vector(b))
let(
dim = array_dim(A),
m=dim[0], n=dim[1]
)
assert(len(b)==m,str("Incompatible matrix and vector",dim,len(b)))
let (
qr = m<n ? qr_factor(transpose(A)) : qr_factor(A),
qr = m<n? qr_factor(transpose(A)) : qr_factor(A),
maxdim = max(n,m),
mindim = min(n,m),
Q = submatrix(qr[0],[0:maxdim-1], [0:mindim-1]),
R = submatrix(qr[1],[0:mindim-1], [0:mindim-1]),
zeros = [for(i=[0:mindim-1]) if (approx(R[i][i],0)) i]
)
zeros != [] ? undef :
m<n ? Q*back_substitute(R,b,transpose=true) :
zeros != []? undef :
m<n? Q*back_substitute(R,b,transpose=true) :
back_substitute(R, transpose(Q)*b);
@ -571,7 +590,7 @@ function submatrix(M,ind1,ind2) = [for(i=ind1) [for(j=ind2) M[i][j] ] ];
// Calculates the QR factorization of the input matrix A and returns it as the list [Q,R]. This factorization can be
// used to solve linear systems of equations.
function qr_factor(A) =
assert(is_matrix(A))
assert(is_matrix(A))
let(
dim = array_dim(A),
m = dim[0],
@ -683,11 +702,11 @@ function determinant(M) =
// Returns true if A is a numeric matrix of height m and width n. If m or n
// are omitted or set to undef then true is returned for any positive dimension.
function is_matrix(A,m,n) =
is_list(A) && len(A)>0 &&
(is_undef(m) || len(A)==m) &&
is_vector(A[0]) &&
(is_undef(n) || len(A[0])==n) &&
is_consistent(A);
is_list(A) && len(A)>0 &&
(is_undef(m) || len(A)==m) &&
is_vector(A[0]) &&
(is_undef(n) || len(A[0])==n) &&
is_consistent(A);
// Section: Comparisons and Logic

View file

@ -8,7 +8,7 @@
//////////////////////////////////////////////////////////////////////
BOSL_VERSION = [2,0,197];
BOSL_VERSION = [2,0,198];
// Section: BOSL Library Version Functions